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Abstract. We show that non-flatness of a morphism ϕ : X → Y of complex-analytic
spaces with a locally irreducible target of dimension n manifests in the existence of vertical
components in the n-fold fibred power of the pull-back of ϕ to the desingularization
of Y . An algebraic analogue follows: Let R be a locally (analytically) irreducible finite
type C-algebra and an integral domain of Krull dimension n, and let S be a regular
n-dimensional algebra of finite type over R (but not necessarily a finite R-module), such
that SpecS → SpecR is dominant. Then a finite type R-algebra A is R-flat if and only if
(A⊗

n
R)⊗R S is a torsion-free R-module.

1. Introduction and main results. This note is concerned with the al-
gebraic notion of flatness. The past few years have seen a significant progress
in the attempts to understand flatness of an (analytic or algebraic) morphism
in explicit geometric terms. Following the work of Galligo and Kwieciński [8],
Adamus, Bierstone and Milman [1] characterized flatness of a morphism
ϕ : X → Y of complex-analytic spaces in terms of the so-called vertical
components (see 1.1) in fibred powers of ϕ. An analogous result in the al-
gebraic category was later obtained by Avramov and Iyengar [4]. Both the-
orems assume smoothness of the target Y , as the arguments, inspired by
Auslander’s [3], rely on homological properties of modules over regular local
rings.

On the other hand, very little is known in this context in the case of
singular targets. The best result we know of works only for finite maps over
irreducible plane curves (see [13]).
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Our goal in the present paper is to generalize the results of [1] to the sin-
gular setting. The following is a special case of our main result (Theorem 1.6
and Corollary 1.8 below).

Theorem 1.1. Let ϕ : X → Y be a morphism of complex-analytic
spaces, where Y is locally irreducible. Let ξ ∈ X. Let X{n} denote the
n-fold fibred power of X over Y , where n = dimY , and let ξ{n} ∈ X{n}

be the diagonal point corresponding to ξ. Finally, let σζ : Zζ → Yη be any
dominant morphism of complex-analytic space germs with Zζ smooth of di-
mension n (e.g., Zζ can be a desingularization of Yη), where η = ϕ(ξ).
Then ϕ is not flat at ξ if and only if the fibred product X{n} ×Y Z has a
vertical component at (ξ{n}, ζ), i.e., a local irreducible component (perhaps
embedded) of X{n} ×Y Z at (ξ{n}, ζ) whose image under the canonical map
X{n} ×Y Z → Y is nowhere-dense in Y .

Throughout the paper, by a dominant morphism σζ : Zζ → Yη of
complex-analytic space germs we mean a germ at ζ of a holomorphic map-
ping σ : Z → Y such that σ(ζ) = η and, for an arbitrarily small open
neighbourhood U of ζ in Z, we have dimσ(U) = dimYη.

Remark 1.2. Note that, according to Theorem 1.1, (X{n} ×Y Z)(ξ{n},ζ)
has no vertical components for some map germ σζ : Zζ → Yη satisfying the
hypotheses of the theorem if and only if it has no vertical components for all
such map germs. In particular, if Y is smooth then, to investigate flatness of
ϕξ, we can choose Z = Y and σ = idY . Then X{n} ×Y Z can be identified
with X{n}, and so in this case Theorem 1.1 specializes to [1, Thm. 1.1].

Theorem 1.6 and Corollary 1.8 provide a more general criterion for
OY,η-flatness of a finitely generated OX,ξ-module. Before formulating these
results, we will recall the notion of verticality in complex-analytic modules.

1.1. Background: vertical elements and analytic tensor product.
Let ϕ : X → Y be a holomorphic mapping of complex-analytic spaces. Let
ξ ∈ X, η = ϕ(ξ) ∈ Y , and let ϕξ : Xξ → Yη be the induced morphism of
germs. Let Σξ be an irreducible component (isolated or embedded) of Xξ,
i.e., the zero-set germ of an associated prime (minimal or not) of the zero
ideal in the local ring OX,ξ. We will say that Σξ is a geometric vertical
component with respect to ϕξ when a sufficiently small representative of Σξ
is mapped by a representative of ϕξ into a nowhere-dense (with respect to
the strong topology) subset of a representative of Yη.

Remark 1.3. One also defines another kind of vertical components,
called algebraic vertical (see, e.g., [1]). We will however not consider them
at all in the present paper, and hence will simply use the term vertical com-
ponents when referring to the geometric vertical ones defined above.
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Since the set of zero-divisors of the ring OX,ξ coincides with the union of
its associated primes, it follows that ϕξ : Xξ → Yη has a vertical component if
and only if there exists a non-zero element m ∈ OX,ξ such that (a sufficiently
small representative of) the zero-set germ V(AnnOX,ξ(m)) of the annihilator
of m in OX,ξ is mapped by (a representative of) ϕξ to a nowhere-dense
subset of (a representative of) Yη. We can thus extend the notion of vertical
component to a finitely generated OX,ξ-module F :

Definition 1.4. Let p1, . . . , ps be the associated primes of F in OX,ξ
and, for j = 1, . . . , s, let (Zj)ξ be the germ of a complex-analytic subspace
of X, defined by OZj ,ξ := OX,ξ/pj . We say that F has a vertical component
over Yη (or over OY,η) when, for some j, (Zj)ξ is vertical over Yη in the above
sense. Equivalently, there exists a non-zero m ∈ F such that V(AnnOX,ξ(m))
is mapped to a nowhere-dense subgerm of Yη. We will call suchm a geometric
vertical element (or simply a vertical element) of F over Yη (or over OY,η).

Vertical elements are geometric analogues of zero-divisors in commutative
algebra (see [1, §1] for details).

Remark 1.5. In the special case that F = OX,ξ, Xξ has no vertical
components over Yη if and only if OX,ξ (as an OX,ξ-module) has no vertical
elements over OY,η.

Now let R denote a local analytic C-algebra, that is, a quotient ring
C{y}/J = C{y1, . . . , yn}/J for some n ∈ N and an ideal J in C{y} (the
ring of convergent power series in n complex variables). By a local ana-
lytic R-algebra we mean a ring of the form R{x}/I := C{y, x}/I, with the
canonical homomorphism R → R{x}/I, where I is an ideal in C{y, x} =
C{y1, . . . , yn, x1, . . . , xm} containing J ·C{x, y}. Let F denote an R-module.
Following [9], we call F an analytic R-module (1) when F is a finitely gen-
erated A-module for some local analytic R-algebra A. In this case, there is
a morphism of germs of complex-analytic spaces ϕξ : Xξ → Yη such that
R ∼= OY,η, A ∼= OX,ξ, R → A is the induced pull-back homomorphism
ϕ∗ξ : OY,η → OX,ξ, and F is a finitely generated OX,ξ-module. We say that
a non-zero element m ∈ F is vertical over R if m is vertical over OY,η in the
sense of Definition 1.4. It is easy to see that the notion of vertical element is
well-defined, i.e., independent of the choice of a witness A for F (cf. [8]).

In the category of local analytic R-algebras with local R-algebra homo-
morphisms, the coproduct of two objects A = R{x}/I, B = R{x′}/I ′ exists,
called the analytic tensor product over R, and is denoted by A ⊗̃R B. This
can be shown to be isomorphic to R{x, x′}/(I + I ′) (cf. [9]). Given two ana-
lytic R-modules F1 and F2, witnessed by A1 and A2 respectively, one defines

(1) Such an F is also called an almost finitely generated R-module, after [8].
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their analytic tensor product over R as

F1 ⊗̃R F2 := ((F1 ⊗A1 (A1 ⊗̃R A2))⊗A1⊗̃RA2
((A1 ⊗̃R A2)⊗A2 F2).

Recall that every local analytic C-algebra R corresponds to a unique
complex-analytic space germ, denoted SpecanR. The duality between the
categories of complex-analytic germs and local analytic C-algebras (see [7])
implies the following important isomorphism. Suppose that ϕ1 : X1 → Y
and ϕ2 : X2 → Y are holomorphic mappings of analytic spaces, with
ϕ1(ξ1) = ϕ2(ξ2) = η. Then the local rings OXi,ξi (i = 1, 2) are OY,η-modules
and, by the uniqueness of fibred product and of analytic tensor product,
the local ring OZ,(ξ1,ξ2) of the fibred product Z = X1 ×Y X2 at (ξ1, ξ2) is
canonically isomorphic to OX1,ξ1 ⊗̃OY,η OX2,ξ2 . Therefore, given a holomor-
phic germ ϕξ : Xξ → Yη, we can identify the d-fold analytic tensor power

O
⊗̃dOY,η
X,ξ = OX,ξ ⊗̃OY,η · · · ⊗̃OY,η OX,ξ with the local ring of the d-fold fibred

power OX{d},ξ{d} for d ≥ 1.

1.2. Main results. Our main theorem is the following flatness criterion.

Theorem 1.6. Let R be a local analytic C-algebra and an integral do-
main of dimension n. Let F be an analytic R-module, and let S be any local
analytic R-algebra which is regular, n-dimensional, and such that the in-
duced morphism of complex-analytic space germs SpecanS → SpecanR is
dominant. Then F is R-flat if and only if the analytic tensor product

F ⊗̃R · · · ⊗̃R F︸ ︷︷ ︸
n times

⊗̃R S

has no vertical elements over R (equivalently, over S).

Remark 1.7. Note that an R-algebra S with the above properties always
exists. One can, for instance, take S to be the local ring of a desingularization
of (a sufficiently small representative of) SpecanR (cf. [6]).

Corollary 1.8. Let ϕ : X → Y be a morphism of complex-analytic
spaces, where Y is locally irreducible, and let F be a coherent OX-module.
Let ξ ∈ X. Let X{n} denote the n-fold fibred power of X over Y , where
n = dimY , and let ξ{n} ∈ X{n} be the diagonal point corresponding to ξ.
Finally, let σζ : Zζ → Yη be any dominant morphism of complex-analytic
space germs with Zζ smooth of dimension n, where η = ϕ(ξ). Then Fξ is a
flat OY,η-module if and only if the analytic tensor product

Fξ ⊗̃OY,η . . . ⊗̃OY,η Fξ︸ ︷︷ ︸
n times

⊗̃OY,ηOZ,ζ

has no vertical elements over OY,η (equivalently, over OZ,ζ).
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Now, Theorem 1.1 follows from Corollary 1.8 with F = OX , according
to Remark 1.5 and the canonical isomorphism

OX,ξ ⊗̃OY,η · · · ⊗̃OY,η OX,ξ︸ ︷︷ ︸
n times

∼= OX{n},ξ{n} .

In the case when the source X is smooth, of the same dimension as Y ,
and the map germ ϕξ is dominant, Theorem 1.1 has a particularly pleasing
form:

Corollary 1.9. Let ϕξ : Xξ → Yη be a dominant morphism of complex-
analytic space germs, where Yη is irreducible, Xξ is smooth, and dimXξ =
dimYη = n. Then ϕξ is flat if and only if the induced morphism

ϕ
{n+1}
ξ{n+1} : X

{n+1}
ξ{n+1} → Yη

has no vertical components over Yη.

Proof. In Theorem 1.1, take Zζ := Xξ and σζ := ϕξ.

We derive Theorem 1.6 from [1, Thm. 1.9] in Section 3, via an analytic
flatness descent (see below). Section 4 contains an algebraic version of our
flatness criterion (Theorem 4.1) as well as Example 4.5 proving sharpness of
Theorem 1.6.

2. Analytic flatness descent. By definition, a ring homomorphism
R → S descends flatness if, for any R-module F , flatness of F ⊗R S (as
an S-module) implies flatness of F (as an R-module). In general, flatness
descent is a rare luxury. However, as we show below, it does hold for analytic
modules over integral domains and local analytic C-algebra homomorphisms
inducing dominant morphisms of analytic space germs.

We will say that a homomorphism R → S of local analytic C-algebras
analytically descends flatness if S-flatness of F ⊗̃R S implies R-flatness of F
for every analytic R-module F .

Proposition 2.1. Let κ : R → S be a homomorphism of local ana-
lytic C-algebras, where R is an integral domain. If the induced morphism
SpecanS → SpecanR of complex-analytic space germs is dominant, then κ
analytically descends flatness.

Proof. For a proof by contradiction, suppose the morphism SpecanS →
SpecanR is dominant and there exists a non-flat analytic R-module F such
that F ⊗̃R S is S-flat. By Hironaka’s local flattener theorem (see, e.g.,
[5, Thm. 7.12]), there exists a unique, non-zero (!), ideal P in R such that
F ⊗̃R R/P is R/P -flat and, for every morphism of analytic space germs
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ϕ : T → SpecanR, if OT ⊗̃R F is OT -flat then ϕ factors as

T → SpecanR/P ↪→ SpecanR.

Since R is an integral domain, it follows that SpecanR/P (hence also the
image of T via ϕ) is nowhere-dense in SpecanR. Taking T := SpecanS, we
get a contradiction.

3. Proof of the main theorem. We begin with a simple observation
regarding commutativity of the analytic tensor product. Let R be a local
analytic C-algebra, let A and S be local analytic R-algebras, and let F be a
finitely generated A-module. Set A′ := A ⊗̃R S and F ′ := F ⊗̃R S.

Lemma 3.1. With the above notation, for every i ≥ 1, we have:

(a) A⊗̃R
i

⊗̃R S ∼= A′⊗̃
i
S (as R-algebras).

(b) F ⊗̃R
i

⊗̃R S ∼= F ′⊗̃
i
S (as R-modules).

Proof. We will prove the isomorphism (a) for i = 2. The general case
follows easily by induction. Write S = R{u}/L, A = R{x}/I, and R{x′}/I ′
for another copy of A. Then, by 1.1, we have

(A⊗̃R
2

) ⊗̃R S =

(
R{x}
I
⊗̃R

R{x′}
I ′

)
⊗̃R S ∼=

R{x, x′}
I + I ′

⊗̃R
R{u}
L

∼=
R{x, x′, u}
I + I ′ + L

∼=
R{x, u}
I + L

⊗̃R{u}/L
R{x′, u}
I ′ + L

= A′⊗̃
2
S .

For the proof of part (b), apply (a) to a presentation of F as a finite
A-module.

For the reader’s convenience, we recall the analytic flatness criterion of [1],
on which the proof of Theorem 1.6 is based.

Theorem 3.2 ([1, Thm. 1.9]). Let S be a regular local analytic C-algebra
and let M denote an analytic S-module. Let n = dimS. Then M is S-flat
if and only if the n-fold analytic tensor power M ⊗̃

n
S has no vertical elements

over S.

3.1. Proof of Theorem 1.6. Let S be an arbitrary local analytic
R-algebra, which is a regular ring of dimension dimS = n = dimR, and
such that the induced morphism SpecanS → SpecanR is dominant. Let F
be an arbitrary analytic R-module.

By Proposition 2.1 and since flatness is preserved by base change ([12,
Prop. 6.8]), it follows that F is a flat R-module if and only if F ⊗̃R S is a
flat S-module. Hence, by Theorem 3.2, F is R-flat if and only if the n-fold
tensor power (F ⊗̃R S)⊗̃

n
S has no vertical elements over S. By Lemma 3.1,

this is equivalent to saying that F ⊗̃
n
R ⊗̃R S has no vertical elements over S.
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To complete the proof, it remains to show that the latter is equivalent
to the lack of vertical elements in F ⊗̃

n
R ⊗̃R S over R. Let then A denote a

local analytic R-algebra for which F is a finitely generated A-module, and let
ϕξ : Xξ → Yη denote a morphism of complex-analytic space germs such that
R = OY,η, A = OX,ξ, and ϕ∗ξ : OY,η → OX,ξ gives the R-algebra structure
of A. Further, let σζ : Zζ → Yη denote a morphism of space germs such that
S = OZ,ζ and σ∗ζ : OY,η → OZ,ζ gives the R-algebra structure of S. Consider
the following fibred product square:

X{n} ×Y Z //

λ
��

X{n}

ϕ{n}

��
Z

σ // Y

Then, by Definition 1.4, F ⊗̃
n
R ⊗̃R S has a vertical element over R if and

only if there is a non-zero m ∈ F ⊗̃
n
R ⊗̃R S such that the zero-set germ

V(AnnO
X{n}×Y Z,(ξ

{n},ζ)
(m)) is mapped by (σ ◦ λ)(ξ{n},ζ) to a nowhere-dense

subgerm of Yη. But σζ is a dominant morphism of irreducible germs of the
same dimension, and hence σζ(Wζ) is nowhere-dense if and only if Wζ is
so. Therefore verticality of m over R is equivalent to saying that λ(ξ{n},ζ)
maps V(AnnO

X{n}×Y Z,(ξ
{n},ζ)

(m)) to a nowhere-dense subgerm of Zζ , i.e.,
m is vertical over S.

4. Algebraic case. The following is an algebraic version of our flatness
criterion.

Theorem 4.1. Let R be an n-dimensional finite type C-algebra, which
is locally analytically irreducible. Let A denote an R-algebra essentially of
finite type, and let F denote a finitely generated A-module. Let S be any
n-dimensional regular R-algebra of finite type such that the induced mor-
phism SpecS → SpecR is dominant. Then F is R-flat if and only if the
tensor product

F ⊗R · · · ⊗R F︸ ︷︷ ︸
n times

⊗R S

is a torsion-free R-module (equivalently, a torsion-free S-module).

Here, by a locally analytically irreducible algebra we mean a finite type C-
algebra R such that the complex-analytic space canonically associated with
SpecR is locally irreducible. This is the case, for example, if R is normal.
An R-algebra essentially of finite type means a localization of a finite type
R-algebra.

By analogy with Corollary 1.9, if F = A is itself regular n-dimensional,
we get the following:
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Corollary 4.2. Let R be an n-dimensional finite type C-algebra which
is locally analytically irreducible, and let A be a regular n-dimensional
R-algebra of finite type such that the induced morphism SpecA → SpecR
is dominant. Then A is R-flat if and only if the (n + 1)-fold tensor power
A⊗

n+1
R is a torsion-free R-module.

Remark 4.3. By Theorem 4.1, in order to verify that F is not R-flat,
it suffices to find an associated prime p of F⊗nR ⊗R S in A⊗

n
R ⊗R S for

which p ∩ R 6= (0). Thus our criterion paired with computer algorithms for
primary decomposition and desingularization (see, e.g., [10]) provides a tool
for checking flatness by effective computation, over an arbitrary complex
affine locally analytically irreducible domain.

On the other hand, the bound n = dimR is sharp (see Remark 1.2 and
Example 4.5).

The proof of Theorem 4.1 is virtually identical with that of [1, Thm. 1.3]
(an algebraic variant of the flatness criterion of [1]). One reduces to the ana-
lytic case by considering the complex-analytic spaces canonically associated
with the spectra of the given rings, and then uses standard faithful flatness
arguments and the fact that vertical elements are precisely the zero-divisors
in the algebraic case. For details we refer the reader to [1].

Remark 4.4. It is worth pointing out that, by the Tarski–Lefschetz
principle, one can generalize Theorem 4.1 by replacing C with any field of
characteristic zero (see [2] for details). In this case, “analytically irreducible”
should be replaced with “geometrically unibranch” (cf. [11]).

We conclude with an explicit calculation showing Theorem 4.1 at work.
This example proves as well that, in general, over a non-regular R, tensoring
with S is necessary to detect non-flatness of an R-module F .

Example 4.5. The following example of a non-flat module is due to
Douady (see, e.g., [7, §3.13]). Let

R :=
C[y1, y2]

(4y31 + 27y22)
and F :=

C[y1, y2, x]√
(4y31 + 27y22, x

3 + y1x+ y2)
,

where
√
I denotes the radical of I. We will use Theorem 4.1 to verify that

F is a non-flat R-module.
Consider the (locally analytically irreducible) plane curve defined by R,

and let S = C[u] denote the coordinate ring of its normalization. Then S
is a regular R-algebra, of dimension dimS = 1 = dimR, and the mapping
SpecS → SpecR is dominant. Now, since dimR = 1, we need to look for
R-torsion in F ⊗R S. Note that, as R-modules,

S ∼= C[y1, y2, u]/(y1 + 3u2, y2 − 2u3),
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and hence

F ⊗R S ∼=
C[y1, y2, x, u]√

(4y31 + 27y22, x
3 + y1x+ y2) + (y1 + 3u2, y2 − 2u3)

.

One can use a computer algebra software, like Singular (cf. [10]), to verify
that the S-module F ⊗R S has an associated prime p such that p ∩ R =
(y1, y2). Therefore F ⊗R S has non-zero R-torsion, and hence F is not R-
flat, by Theorem 4.1. On the other hand, notice that F itself is a torsion-free
R-module. To see this, observe that F has precisely two associated primes,
each of which contracts to zero in R.

Note also that S itself is not R-flat. This can be verified (in light of The-
orem 4.1) by looking at the R-module structure of S ⊗R S. One can readily
see that the element u− t is a zero-divisor in

S ⊗R S ∼=
C[y1, y2, u, t]

(y1 + 3u2, y2 − 2u3, y1 + 3t2, y2 − 2t3)
.

Therefore S is not R-flat, by Theorem 4.1 (or Corollary 4.2). On the other
hand, S itself is R-torsion-free, which proves sharpness of our flatness crite-
rion.
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