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Proper holomorphic mappings vs. peak points
and Shilov boundary

by Łukasz Kosiński and Włodzimierz Zwonek (Kraków)

Abstract. We present a result on the existence of some kind of peak functions for
C-convex domains and for the symmetrized polydisc. Then we apply the latter result
to show the equivariance of the set of peak points for A(D) under proper holomorphic
mappings. Additionally, we present a description of the set of peak points in the class of
bounded pseudoconvex Reinhardt domains.

1. Introduction. The aim of the paper is to present some results on
different kinds of holomorphic peak points—for basic definitions and relevant
properties see the survey article [14]. First we show the existence of a special
kind of weak peak functions for the class of C-convex domains (see Theo-
rem 2.2). We also show the existence of peak functions for the symmetrized
polydisc (see Theorem 2.1). The latter fact is crucial in the proof of the
main result of the paper, the equivariance of the set of peak points under
proper holomorphic mappings (see Theorem 3.1). It is interesting that the
symmetrized polydisc, a domain that has recently been extensively studied,
is also an important tool in the proof of the invariance of c-finite compactness
(a notion slightly stronger than Carathéodory completeness) under proper
holomorphic mappings (see Theorem 4.1). Then we give a description of the
set of peak points for the class of pseudoconvex Reinhardt domains (see The-
orem 5.2). Finally we deal with the claim of Bremermann on the form of the
Shilov boundary of the schlicht envelope of holomorphy—although we do
not know whether Bremermann’s claim is correct in general, we can prove it
in the class of Reinhardt domains (see Corollary 6.2).

2. Peak functions in the symmetrized polydisc and in C-convex
domains. We start by recalling a description of the symmetrized polydisc
which is basic in many proofs that we present in the paper.

2010 Mathematics Subject Classification: Primary 32T40; Secondary 32H35, 32A07,
32F45.
Key words and phrases: Shilov boundary, peak points, proper holomorphic mappings,
c-finite compactness, pseudoconvex Reinhardt domains.

DOI: 10.4064/ap107-1-7 [97] c© Instytut Matematyczny PAN, 2013



98 Ł. Kosiński and W. Zwonek

Let us recall that the symmetrized polydisc is a domain denoted byGn and
given by the formula Gn = πn(Dn), where πn = (πn,1, . . . , πn,n) is defined as
follows:

πn,k(λ) =
∑

1≤j1<...<jk≤n
λj1 · · ·λjk , λ ∈ Cn, k = 1, . . . , n.

Here D denotes the unit disc in C. We also put T := ∂D.
Following [6], for n ≥ 2 we define

pn,λ(z) = z̃(λ) = (z̃1(λ), . . . , z̃n−1(λ)) ∈ Cn−1, z ∈ Cn, λ ∈ C, n+λz1 6= 0,

where
z̃j(λ) =

(n− j)zj + λ(j + 1)zj+1

n+ λz1
, 1 ≤ j ≤ n− 1.

It is known (see [6]) that z ∈ Gn if and only if z̃(λ) ∈ Gn−1 and n+ λz1 6= 0
for any λ ∈ D. Recall that the symmetrized polydisc is a domain that came
up naturally a few years ago in the problem of µ-synthesis and turned out to
have extremely interesting function-geometric properties (see e.g. [1], [5], [7]
and many others).

We shall need the following result which is interesting in its own right.

Theorem 2.1. For any point a in the topological boundary of Gn there
is a neighborhood U of a and a mapping ϕ holomorphic on Gn ∪U such that
|ϕ| < 1 on Gn and ϕ(a) = 1.

Proof. We proceed inductively. For n = 1 the statement is clear. Let
us take n > 1. If |a1| = n then it suffices to define ϕ(z) := z1|a1|/na1.
In the other case it follows from the above description of Gn that there is a
λ ∈ D such that pn,λ(a) ∈ Cn−1\Gn−1. By a continuity argument pn,λ(a) lies
in Gn−1, whence pn,λ(a) lies in the topological boundary of Gn−1. Applying
the inductive assumption we find a mapping ϕ̃ peaking at pn,λ(a) for Gn−1.
Composing it with pn,λ we get a desired mapping.

Although it is the above result that we need in the proofs of the main
results of the paper, we present below another result on the existence of
a (weaker) peak function in C-convex domains which we find interesting
too. To the authors’ knowledge the existence of functions presented in the
theorem below has not been proved before.

First recall that a domain D ⊂ Cn is C-convex if l ∩D is connected and
simply connected for any complex line l intersecting D (for basic properties
of C-convex domains see e.g. [2]).

Theorem 2.2. Let D be a C-convex domain in Cn. Then for any a ∈ ∂D
there is a ϕ ∈ O(D) ∪ C(D ∪ {a}) such that |ϕ| < 1 on D and ϕ(a) = 1.

For the case of a one-dimensional bounded domain a stronger result has
been obtained in [3] under the additional assumption that every boundary
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point of D is linearly accessible from the interior. In the proof below we
shall show that this assumption is superfluous. It is possible that this one-
dimensional result is known. However, as we could not find a reference, we
present the proof.

Proof of Theorem 2.2. First we focus on the case when D is a bounded
domain of a complex plane. Let d = diamD. Since D is simply connected,
f(x) = log((x−a)d−1), x ∈ D, is a well-defined holomorphic function on D.
Then ϕ = exp(1/f) has the desired properties.

Now we show that for any domain D ⊂ C and for any a ∈ ∂D such that
the connected component of ∂D containing the point a contains at least two
elements there is a holomorphic mapping ϕ on D continuous on D ∪ {a}
such that |ϕ| < 1 on D and ϕ(a) = 1. (Clearly, this statement implies the
assertion for an arbitrary simply-connected proper domain of the complex
plane.) Indeed, let I be the connected component of ∂D containing a and
take any nonempty closed connected subset J of I not containing a and
such that J is not a point. Let C be the connected component of C \ J
containing a. It follows from the Riemann mapping theorem that there is a
conformal mapping F between C and the unit disc. Applying the first step
to F (D̃), where D̃ is a connected component of C \ I containing D, we get a
function ϕ̃ weakly-peaking at F (a). Then the composition ϕ = ϕ̃◦F satisfies
the assertion.

We are left with the case n > 1. Consider a complex hyperplane H
through a such that D ∩ H = ∅ (see Theorem 2.3.9 in [2]) and let l be a
complex line orthogonal to H. Denote by D̃ (respectively ã) the projection
of D (resp. a) onto l in direction H. Then D̃ is a simply-connected domain
(see [2, Theorem 2.3.6]) and ã is its boundary point. It remains to apply the
one-dimensional case and compose the peak function with the projection in
direction H.

Remark 2.3. The above theorem needs some comment. First, note that
the peak functions appearing in Theorem 2.2 are weaker than the ones exist-
ing in Gn (see Theorem 2.1). Secondly, one cannot apply the above theorem
to Gn since the symmetrized polydisc Gn is C-convex iff n ≤ 2 (see [13]).

Motivated by the last result we introduce the following definition. We
shall say that a domain D in Cn has property (†) if for any a ∈ ∂D there is
a ϕ ∈ O(D,D) ∪ C(D ∪ {a}) such that ϕ(a) = 1. We call such a function a
weak peak function at a.

The example of pointed disc shows that being linearly convex is not
sufficient for a domain to have property (†).

It is clear that any bounded domain with property (†) is c-finitely com-
pact (for definition see e.g. [10]) and (hence) Carathéodory complete and
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hyperconvex. It also follows from Theorem 2.1 that the symmetrized poly-
disc Gn is c-finitely compact, which was first proven in [13].

It seems very probable that property (†) is very closely related to the
Carathéodory completeness of a domain. Recall that any bounded complete
Reinhardt domain is c-finitely compact (see e.g. [10]). Therefore, it would be
interesting to know whether all bounded complete pseudoconvex Reinhardt
domains have property (†).

3. Peak points under proper holomorphic mappings. For a bound-
ed domain D ⊂ Cn we denote by A(D) the algebra of all functions holo-
morphic on D and continuous on D. The set of peak points for A(D), i.e.
points z ∈ D such that there is an f ∈ A(D) with |f(z)| > |f(w)| for any
w ∈ D \ {z}, is denoted by P (D). Our main result in this section and in the
whole paper is the following.

Theorem 3.1. Let D,G be bounded domains in Cn. Let F : D → G be a
proper holomorphic mapping which extends to a proper holomorphic mapping
U → V , D ⊂ U , G ⊂ V , with the same multiplicity. Then a ∈ ∂D is a peak
point for A(D) if and only if F (a) is a peak point for A(G).

The example of {z ∈ D : Re z > 0} 3 z 7→ z2 ∈ D \ (−1, 0] shows that
some additional assumption (besides the continuous extension of F onto D)
is needed in Theorem 3.1.

It is known that the Shilov boundary of a bounded domain equals the
closure of the set of its peak points (see [8]). Thus Theorem 3.1 has the
following interesting corollary. We denote by ∂sD the Shilov boundary of a
bounded domain D in Cn.

Corollary 3.2. Let F be as above. Then F−1(∂sG) = ∂sD.

The above result generalizes a result from [12] on equivariance of the
Shilov boundary under proper holomorphic mappings.

Theorem 3.1 is a consequence of the following two more general lemmas.

Lemma 3.3. Let D,G be bounded domains in Cn, a ∈ ∂D. Let F : D →
G be a proper holomorphic mapping of multiplicity m extending continuously
onto D̄ and such that the following condition is satisfied:

For any b = F (a) ∈ ∂G, there is a set {a1, . . . , al} ⊂ ∂D of pairwise
different points and a sequence of positive integers n1, . . . , nl such that for
any sequence G 3 bk → b such that F−1(bk) = {ak,1, . . . , ak,m} after a
permutation (if necessary) the sequences (ak,j)j are convergent to elements
a1, . . . , al and for any k = 1, . . . , l the number of sequences (ak,j)j tending
to ak is equal to nk.

If a is a peak point for A(D), then F (a) is a peak point for A(G).
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Proof. Let {a1, . . . , al} be as above with a1 = a. Let φ ∈ A(D) be such
that φ(a) = 1, |φ(z)| < 1 for any z ∈ D̄ \ {a}. Consider the mapping
g := πm ◦ (φ× . . .×φ) ◦F−1. Then g ∈ O(G,Gm) and because of properties
imposed on F we find that g extends continuously to Ḡ, g(Ḡ\{b}) ⊂ Gm and
g(b) ∈ ∂Gm. Now let ϕ : Gm ∪ {g(b)} → D ∪ {1} be a continuous function,
holomorphic on Gm, such that ϕ(g(b)) = 1 and |ϕ(z)| < 1, z ∈ Gm (such a
function exists by Theorem 2.1). Then ϕ◦g is an A(G)-peak function for b.

Remark 3.4. Using a similar reasoning one may show that F maps peak
points for Ak(D) (k ∈ N ∪ {∞, ω}) to peak points for Ak(D) provided that
F extends to a proper and holomorphic mapping U → V , where U ⊃ D̄,
V ⊃ Ḡ and D = f−1(G). Actually, it suffices to make use of the fact that
Theorem 2.1 guarantees that the mapping ϕ◦g occurring in the proof of the
above lemma is of class Ak provided that φ is.

Lemma 3.5. Let D,G be bounded domains in Cn. Let F : D → G be a
proper holomorphic mapping extending continuously to D̄ and such that the
fibers F−1(y) are finite for any y ∈ Ḡ. If y is a peak point for A(G) then any
point of F−1(y) is a peak point for A(D).

Proof. The properness of F implies that the fibers F−1(y) are nonempty.
Fix y ∈ P (G) and let ϕ ∈ A(G) be a function peaking at y. Put E :=
F−1(y) = {x1, . . . , xk}. It is clear that E is a peak set and ψ = ϕ ◦ F peaks
at E. Take any j = 1, . . . , k. For any l 6= j chose σl = 1, . . . , n such that
xjσl 6= xlσl . Let us define Φ̃(λ) =

∏
l 6=j(λσl − xlσl) and Φ(λ) = Φ̃(λ)Φ̃(xj)−1.

Now it suffices to apply the 1/4-3/4 method of Bishop (see e.g. [14]) to
functions of the form ψl(x)Φm(x) with suitably chosen l,m ∈ N.

Remark 3.6. Note that Lemma 3.5 remains true if F : D → G is a holo-
morphic mapping extending continuously to a surjective mapping D̄ → Ḡ
whose fibers F−1(y) are finite whenever y ∈ ∂G.

What is more, since any peak set contains a peak point (see [8]) we infer
that P (G) ⊂ F (P (D)) (where P (D) denotes the set of peak points with
respect to A(D)) for any holomorphic mapping F : D → G which extends
continuously to a surjective mapping D̄ → Ḡ.

Remark 3.7. We do not know whether for a proper holomorphic map-
ping F : U ⊃ D̄ → Ḡ ⊂ V the inclusion F−1(Ak(G)) ⊂ Ak(D) is true. If
for example D is smooth, then the ∂̄-problem has a smooth solution on D̄
(Kohn’s theorem; see [11]). Thus one may repeat the argument of Pflug
from [15] (see also [14]) to get an affirmative answer to this problem.

4. Invariance of c-finite compactness under proper holomorphic
mappings. Now we show another result on invariance under proper holo-
morphic mappings. It turns out that c-finite compactness is invariant with
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respect to proper holomorphic mappings (for the definition of Carathéodory
(pseudo)-distance and c-finitely compact domain see e.g. [10]) and in the
proof of Theorem 4.1 below we use once more the properties of the sym-
metrized polydisc. The theorem is motivated by the invariance of hypercon-
vexity and pseudoconvexity under proper holomorphic mappings.

Theorem 4.1. For any bounded domains D,G ⊂ Cn and for any proper,
holomorphic mapping F : D → G, c-finite compactness of D is equivalent to
c-finite compactness of G.

Proof. The sufficiency of c-finite compactness of G for c-finite compact-
ness of D follows from the holomorphic contractibility of c and properness
of F . To show sufficiency of c-finite compactness ofD for c-finite compactness
of G we proceed as follows.

Fix w0 = F (z0) ∈ G. For any w ∈ G we take a point z from F−1(w) and
choose a function f ∈ O(D,D) with f(z0) = 0 and |f(z)| = c∗D(z0, z). Then
gw := πm ◦ (f × · · · × f) ◦ F−1 is a well-defined holomorphic function on G
with gw(G) ⊂ Gm such that gw(w0) lies in some fixed compact K ⊂ Gm

and gw(w) → ∂Gm as w → ∂G (here we use the fact that F is proper and
D is c-finitely compact). Since cG(w0, w) ≥ cGm(gw(w0), gw(w)), the c-finite
compactness of Gm gives cG(w0, w)→∞.

Remark 4.2. Recall here that c-finite compactness implies Carathéodory
(c-)completeness. Moreover, the question whether c-completeness implies c-
finite compactness is not solved yet (see e.g. [10]). It would be interesting to
know if the notion of c-completeness is invariant under proper holomorphic
mappings. It is also interesting to know whether notions of completeness
with respect to other invariant functions (e.g. Kobayashi, Bergman or in-
ner Carathéodory) remain invariant under proper holomorphic mappings.
In this context recall that the Kobayashi completeness is invariant under
holomorphic coverings (see e.g. [10]).

5. Peak points of Reinhardt domains. Below we denote M :=
{z ∈ Cn : z1 · . . . · zn = 0}. Recall also that a point x of a convex set
X ⊂ Rn is called extremal if there are no two different points y, z ∈ X such
that x = (y + z)/2.

In [9] a description of the set of peak points of compact, Reinhardt sets
with respect to H(K) was given, where H(K) is the uniform closure of the
space of functions holomorphic in a neighborhood of K.

In this section we shall describe the set of peak points of bounded Rein-
hardt domains of holomorphy with respect to A(D). In Section 6 this result
will be extended to arbitrary bounded Reinhardt domains. We introduce
some notation. For a point z = (z1, . . . , zn) ∈ D ⊂ Cn with zj 6= 0 we
denote log z := (log |z1|, . . . , log |zn|) ∈ Rn and exp(z) := (ez1 , . . . , ezn). For
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a Reinhardt domain D ⊂ Cn we denote logD := {log z : z ∈ D, zj 6= 0,
j = 1, . . . , n}. Moreover, for a set A ∈ Rn we denote exp(A) := {z ∈ Cn :
log |z| ∈ A}. For z = (z1, . . . , zn), w = (w1, . . . , wn) ∈ Cn, we put z · w =
(z1w1, . . . , znwn).

Lemma 5.1. Let D be a bounded pseudoconvex Reinhardt domain in Cn.
Let z0 ∈ ∂D \M be such that log z0 is an extremal point of logD. Then
there is a sequence (fµ) ⊂ A(D) of Laurent monomials such that fµ(z0)→ 1,
‖fµ‖D → 1 and ‖fµ‖D\U → 0 as µ→∞, for any Reinhardt neighborhood U
of z0.

Proof. We proceed inductively. For n = 1 the assertion is trivial. Let
n > 1. Fix ε > 0, N > 0 and let U be a Reinhardt neighborhood of z0.
We are looking for a Laurent monomial f in A(D) such that ‖f‖D < eε,
‖f‖D\U < e−N and f(z0) > e−ε. Put x0 := log z0, G := logD, V = logU
and let {L = l0}, Lx = 〈l, x〉, x ∈ Rn, l = (l1, . . . , ln) ∈ Rn, l 6= 0, be
a supporting hyperplane to G at x0, G ⊂ {L < l0}. We lose no gener-
ality assuming that ln 6= 0 and that V is bounded. Dividing l and l0 by
ln we may assume that ln = 1. Clearly Ḡ ∩ {L = l0} is convex and x0
is its extremal point. Let G′ = projn−1(Ḡ∩{L = l0}) be the projection of
Ḡ ∩ {L = l0} onto the first n − 1 variables. G′ is a convex subset and
x0 is its extreme point. Note that its interior may be empty (viewed as a
subset of Rn−1 = Rn−1 × {0}). However we may increase it, if necessary,
to the closure of a convex domain such that x′0 = projn−1(x0) is its ex-
treme point and int(exp(G′)) is a bounded Reinhardt domain of Cn−1. To
increase it we may proceed as follows. Take a supporting hyperplane at x′0
to G′. This hyperplane divides Rn−1 into two sets. Choose the one contain-
ing G′ and take from its interior any n − 1 vectors y1, . . . , yn−1 such that
y1 − ỹ, . . . , yn−1 − ỹ are linearly independent for some ỹ ∈ G′. Direct cal-
culations show that the convex hull of G′ ∪ {y1, . . . , yn−1} has the desired
property.

This allows us to apply the inductive assumption to the Reinhardt do-
main int(exp(G′)). Then, passing to the logarithmic image for any ε > 0 we
find a linear mapping T , Tx′ = 〈t′, x′〉, x′ ∈ Rn−1, t′ ∈ Zn−1 and t0 ∈ R such
that T < t0 + ε/2 on G′, |Tx′0 − t0| < ε/2 and T < −2N on G′ \ V ′, where
V ′ = projn−1(V ∩ {L = l0}).

Observe that for M large enough the mapping

TM : x 7→M(Lx− l0) + Tx′ − t0
is bounded from above on G by ε and less than −N on G \ V.

Indeed, assume that this is not true. Then there exists a sequence (Mn) ⊂
R>0 converging to∞ such that one of the two possibilities holds: either there
is a sequence (yn) ⊂ G converging to y0 such that TMn(yn) ≥ ε if y0 ∈ V and
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TMn(yn) > −N if y0 6∈ V , or there is a sequence (yn) with no limit point in
Ḡ such that TMn(yn) > −N. If the first possibility holds we immediately find
that L(y0) = l0, so in this case a contradiction follows from the properties
of the mapping T.

In the second case one may easily find a sequence (pn) of positive numbers
such that (pnyn) converges to ỹ ∈ (Rn)∗. Let t > 0. Clearly, the set Ḡ ∩
{TMn > −N} is convex and contains tpnyn + (1 − tpn)x0 for sufficiently
large values of n. Making use of the inequalities TMn(tpnyn + (1 − tpn)x0)
> −N and L(tpnyn + (1− tpn)x0) ≤ l0 we easily find that L(tỹ + x0) = l0.
What is more, the inequality TMn(tpnyn + (1 − tpn)x0) > −N implies that
T (tỹ′ + x′0) − t0 ≥ −N . Collecting the above-mentioned facts and making
use of the behavior of T on the hyperplane {L = l0} we get a contradiction
for t > 0 large enough (i.e. for t such that x0 + tỹ 6∈ V ).

In the same way one may show the existence of δ > 0 such that x 7→
TMx+ 〈α, x〉 has the same properties provided that ‖α‖ < δ.

It follows from the multidimensional Dirichlet Theorem that for any µ∈N
there are integers αµ,1, . . . , αµ,n and kµ such that |lj − αµ,j/kµ| ≤ 1/µkµ,
j = 1, . . . , n. Losing no generality we may assume that (kµ)µ converges
to ∞.

Finally it suffices to observe that the functions defined by the formula

Fµ(z) = eiθµ−l0kµ−t0zt+αµ ,

where t = (t′, 0) ∈ Cn, have the desired property for some θµ ∈ R, µ � 1.
Indeed, let us compute

logFµ(ex) = kµ(Lx− l0) + Tx− t0 +
n∑
j=1

xj(αµ,j − kµlj).

Thus it is enough to make use of the properties of the functions constructed.

Theorem 5.2. Let D be a bounded pseudoconvex Reinhardt domain in Cn.
Then z 6∈ M is a peak point with respect to A(D) iff log z is an extremal
point of the closure of the logarithmic image of D.

Moreover, 0 is not a peak point for A(D) and z = (z′, 0) ∈ Cn−1 × {0}
is a peak point for A(D) if and only if z′ is a peak point of projn−1(D) and
({z′} × C) ∩ D̄ = {z}.

Note that Lemma 5.1 provides a tool which allows us to use Bishop’s
method of constructing peak functions. Below we present a slightly different
proof relying upon the methods developed by Gamelin and involving the
concept of representing measures (see [8]).

Proof of Theorem 5.2. Some ideas of the proof come from [9]. It is clear
that any z ∈ ∂D \M such that log z is not an extremal point of logD lies
in an analytic disc contained in D, hence it is not a peak point.
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We shall show that every z ∈ ∂D \M such that log z is extremal in logD
is a peak point for A(D). Let ν be a representing measure for A(D). Applying
Lemma 5.1 to the point z we get a sequence (fµ) of Laurent monomials with
properties as in that lemma. In particular, fµ(z0) =

	
D fµ dν and fµ is a

bounded sequence in L∞(dν). Let f be a weak-star limit point of fµ. It
follows from the choice of fµ that ‖f‖D ≤ 1 and 1 = |

	
D fdν|. Thus |f | = 1

ν-almost everywhere and it follows that the support of the measure ν is
contained in the torus z0 · Tn.

Applying the formula f(z0) =
	
fdν to every component of g(z) = eiθ · z,

where θ ∈ Rn is such that |z0| = eiθ · z0, we easily find that µ is the Dirac
measure supported at z0.

Now suppose that 0 ∈ D. Then there are α1, . . . , αn ∈ R≤0 not vanishing
simultaneously such that x0 +E(α) := x0 + {(α1t, . . . , αnt) : t > 0} ⊂ logD
for some (so by a simple convexity argument for any) x0 ∈ logD. To simplify
the notation assume that x0 = 0. Seeking a contradiction suppose that f ∈
A(D) peaks at 0. Observe that v(λ) = (sup |f(λα)|)∗, where the supremum
is taken over all branches of λα = (λα1 , . . . , λαn), is a subharmonic function
on the unit disc of the complex plane attaining its maximum at 0. Thus v is
constant. From this we easily get a contradiction.

The remaining part of the theorem is self-evident.

6. Some remarks on Bremermann’s claim. Bremermann claimed
in [4] that the Shilov boundary of any domain with schlicht envelope of holo-
morphy coincides with the Shilov boundary of its envelope of holomorphy.
Note that A(D̂) ⊂ A(D) so we immediately see that ∂sD̂ ⊂ ∂sD. Bremer-
mann stated that the inclusion ∂sD ⊂ ∂sD̂ is trivial, however we do not
know whether this statement is true. That would follow from the inclusion
A(D) ⊂ A(D̂), which however does not hold in general as the following
example (in the class of bounded Reinhardt domains) shows.

Example 6.1. Consider the Reinhardt domain D ⊂ C∗ × C such that
D∗ × {0} ⊂ D and

logD = {(x, y) ∈ R<1 × R<0 : y < 0 if x ∈ (0, 1) and

y < −n2 − n if x ∈ (−n2,−(n− 1)2], n ∈ N}.

Observe that D̂ = {(z, w) ∈ C2 : |w| < |z| < 1 or 1 ≤ |z| < e, |w| < 1}.
Moreover, one may check that the function f(z, w) := w/z is an element of
the algebra A(D) obviously not belonging to A(D̂).

Although we do not know whether the claim of Bremermann holds in
general, we know that it does hold in the class of Reinhardt domains.
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Recall that if D is a Reinhardt domain, then the (schlicht) envelope of
holomorphy D̂ exists and is a Reinhardt domain.

Corollary 6.2. Let D be a bounded Reinhardt domain in Cn. Then its
set of peak points coincides with the set of peak points of the envelope of
holomorphy of D.

Proof. It suffices to show that if z0 ∈ ∂D is a peak point for A(D), then
it is also a peak point for A(D̂). Put G = logD.

First suppose that z0 omitsM . We aim to show that log z0 is extremal in
conv(G) (here conv(G) stands for the convex hull ofG, i.e. conv(G) = log D̂).
To get a contradiction assume that log z0 is not an extreme point of conv(G).

We shall make use of a few definitions. Following [16] for a convex domain
U of Rn we define

C = C(U) = {α ∈ (Rn)∗ : x+ αR+ ⊂ U for some (any) x}.

Boundedness of D implies that C ⊂ (R≤0)n. Note that for any x0 ∈ U there
are m ≥ 1, x1, . . . , xm extremal in U , p1, . . . , pm > 0,

∑m
j=1 pj = 1, α ∈ C

and t0 ≥ 0 such that

(6.1) x0 =
m∑
j=1

pjxj + αt0.

To prove this we proceed inductively. Let n > 1 (for n = 1 there is nothing to
prove). The statement follows immediately from the Krein–Milman theorem
provided that U is bounded, so suppose that U is unbounded and take any
α ∈ C (unboundedness of U implies that C(U) 6= ∅). Then there is t0 ≥ 0
such that y0 = x0−αt0 ∈ ∂U. Let H be a supporting hyperplane to U at y0.
Applying the inductive assumption to y0 and H ∩U (increase it to a convex
domain of Rn−1 if necessary) and using the fact that C is a cone we easily
obtain the formula (6.1).

Now we come back to the proof of the corollary. Let f ∈ A(D) be a peak
function at z0 and denote by f̂ its extension to D̂. Applying a decomposition
(6.1) to x0 = log z0 and U = conv(G) we obtain x1, . . . , xm extremal in
conv(G) and t0 ≥ 0 satisfying (6.1). Every point zj ∈ Cn whose logarithmic
image equals xj lies in the Shilov boundary of D̂, j = 1, . . . ,m. Since ∂sD̂ ⊂
∂sD, we find that x1, . . . , xm ∈ G.

First consider the case t0 = 0. Since log z0 is not extremal in conv(G),
log z0 6= xj , j = 1, . . . ,m. Take any yj ∈ G close to xj , j = 1, . . . ,m, and
consider the closed simplex S with vertices y1, . . . , ym. Clearly f̂ is holomor-
phic in a neighborhood of exp(S). Let Sε = {x ∈ Rn : dist(x,S) < ε} be
the ε-hull of S. Then Sε := exp(Sε) is a Reinhardt domain and its Shilov
boundary is close to {x1, . . . , xm} (in the sense of the Hausdorff distance)
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provided that ε is close to 0 and yj is close to xj , j = 1, . . . ,m. Using The-
orem 5.2 applied to Sε one can find that |f | attains values close to 1 on an
arbitrarily small neighborhood of {z ∈ Cn : log |z| = yj for some j}. This
gives an immediate contradiction with the fact that f peaks at z0 (as |f | is
small far away from the point z0).

If t0 > 0 then again we take yj ∈ G sufficiently close to xj . Put w0 :=

exp(
∑m

j=1 pjyj) ∈ G. Note that w0 · λα ∈ D̂ for any λ ∈ D∗. Therefore
u(λ) = (sup |f̂(w0 · λα)|)∗, where the supremum is taken over all branches
of λα = (λα1 , . . . , λαn), is subharmonic on a neighborhood of D (it may
be extended through 0 because it is bounded). By the maximum principle
applied to the subharmonic function u we get maxe−t0∂D u ≤ max∂D u. Thus,
as in the case t0 = 0, we find that there is z ∈ D̄ close to eyj for some
j = 1, . . . ,m, such that f(z) is close to 1. This contradicts the fact that f
peaks at z0.

In the case when z0 ∈ M we proceed similarly. One may easily see that
0 6∈ ∂sD. Suppose that z0 ∈ M \ {0}. Losing no generality assume that
z0 = (z′0, 0) ∈ Ck∗ × Cn−k. Note that D̄ ∩ ({z′0} × Cn−k) = (z′0, 0) (use the
fact that z0 peaks for A(D)). If z′0 is not a peak point of the projection of D̂
onto Ck, then to get a contradiction one may use the reasoning from the first
part of the proof.

Corollary 6.3. Let D be a bounded Reinhardt domain in Cn. Then
its Shilov boundary coincides with the Shilov boundary of its envelope of
holomorphy.
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