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A unicity theorem for plurisubharmonic functions

by NGUYEN QUANG DIEU (Hanoi)

Abstract. We give sufficient conditions for unicity of plurisubharmonic functions in
Cegrell classes.

1. Introduction. Let {2 be an open subset of C"”. An upper semicon-
tinuous function u : 2 — [—o00,00) is said to be plurisubharmonic if the
restriction of u to each complex line is subharmonic (we allow the function
identically —oo to be plurisubharmonic). We write PSH({2) (resp. PSH™ (£2))
for the cone of plurisubharmonic (resp. negative plurisubharmonic) functions
on {2. The domain {2 is said to be hyperconvez if there exists a continuous
negative plurisubharmonic exhaustion function for 2.

Let u,v € PSH™(£2) be such that lim, 9o u(z) = lim,_9nv(z) = 0.
In this note, we are aiming at sufficient conditions to ensure that u = v
near the boundary 0f2. Before formulating the main result, it is convenient
to recall the following concept. A compact subset K of (2 is said to be
holomorphically convex if for every z € 2\ K, there exists a holomorphic
function f on (2 such that ||f||x < |f(2)].

We will prove the following.

THEOREM A. Let {2 be a bounded hyperconvex domain in C"™. Let K C {2
be a compact holomorphically convex subset of §2. Let uy,us € PSH™(§2) be
such that the following conditions hold:

(a) lim, 90 u1(z) = lim, g0 u2(2z) = 0.

(b) (dd®up)™ < (dd°ug)™ on 2\ K and §,(ddus)" < oo.
(¢) up <wug on 2\ K.

(d) §(ddour)™ < § o (ddug)™.

Then uy = ug on 2\ K.
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Here (dd®)™ is the complex Monge—-Ampere operator, which can be de-
fined over the class of locally bounded plurisubharmonic functions (cf. [BT1],
[BT2]). Later on, this operator was extensively studied in [Dem)], where
we can find extensions of (dd®)™ to certain classes of non-locally bounded
plurisubharmonic functions. In particular, this operator can be well defined
in the class of negative plurisubharmonic functions which are bounded in
a neighborhood of the boundary (e.g., functions like u1, u2 in Theorem A).
See Lemma 3.3 in |[Ce]. We refer the reader to [Ce] also for a comprehensive
account on the domain of definition of (dd®)™. Theorem A is inspired by
Theorem 2.4 in [BL], where the authors study a sort of unique continuation
of plurisubharmonic functions.

Theorem A can be used to give a sort of quasi-unicity property for poly-
nomial maps of n complex variables. Before turning to this result, we intro-
duce some notation. Given a polynomial map P := (p1,...,p,) : C* — C",
we write Z(P) for the common zero set of p1,...,p,; we also denote by
P(P; A) the polynomial polyhedron

{zeC":|pi(z)| < A,...,|pn(2)| < A}

COROLLARY B. Let P := (p1,...,0n),Q = (q1,--.,qn) be proper poly-
nomial maps C" — C". Assume that the following conditions are satisfied:

(a) H;'l:1 degp; > H;'l:1 deg q;.

(b) There exists a > 0 such that P(P;a) = P(Q;a) =: 2 and (2 is
connected.

(c) There existse > 0 such that P(P;b) C P(Q;b) for everyb € (a—¢,a).

Then for every 1 < j < n there exists 1 < k(j) < n and a constant |\j| =1
such that pj = Ajqu(j)-

By considering the two polynomial maps (21, ...,2,) and (23, ...,22) we

rn
see that assumption (a) is indispensable.

2. Proofs. Throughout this note, we will write {2 for a bounded hy-
perconvex domain in C". Recall that &y(£?2) is the Cegrell class of bounded
functions u € PSH™(2) such that

li = d ddu)" .
Z_I%IQU(Z) 0 an (SZ( u)" < 0o

First, we need the following useful fact.

LEMMA C. Let K be a compact holomorphically convex subset of 2. Let
20 € 2\ K. Then there exist a neighborhood U of zy and ¢ € Ey(£2) NC(£2)
such that v > —1 on 2, ¥ = —1 on a neighborhood of K and i is strictly
plurisubharmonic on U.
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Proof. First, we claim that there exists a continuous bounded plurisub-
harmonic function v on {2 such that

sup u < u(zp).
zeK

For this, we use the following argument due to Poletsky (see Lemma 4.1
in [Pol). Let p be a bounded negative continuous plurisubharmonic exhaus-
tion function for 2. Choose 0 < & < ¢’ such that

KU{z} Cc{p<—€'}c{p<—e}

Since K is holomorphically convex in (2, we can find a bounded function
v € PSH(£2) N C(£2) and a constant ov < —1 such that

—a<vlg <-1, w(z)>—1.

Let § be the maximum of v on {z : p(z) = —e}. Then 5 > —1. Consequently,
the function

p = ZZé/tg max{p+¢,0} —
is smaller than v on {p < —¢’} and larger than v on {p = —¢}. It follows

that the function u equal to max{p’,v} on {p < —¢} and p’ on {p > —¢}
is plurisubharmonic on (2. The claim now follows since u is bounded on {2
and u = v on {p < —¢'}.
Set
—00 < a:=supu(z) < u(zg) < b:=supu(z) < oo.
zeK z€(?

Choose an increasing convex function x : (—o00,b) — R such that x(a) <
—1 < x(b) < 0. Then for small € > 0 we can find a small neighborhood U
of zp such that the function @(z) := y o u(z) + €|2|? is continuous strictly
plurisubharmonic on U and

supt < —1 < infa < supa < 0.

K U [0)
Set @ := max{u,—1}. Then &« € PSH™(£2), @ = —1 on a neighborhood
of K, and % = u is strictly plurisubharmonic on U. Let B be an open ball
contained in (2. It is well known that the relative extremal function

P’ (z) :=sup{f(z) : 6 € PSH™(2), O|p < —1}

belongs to C(£2) N &(§2). It follows that for A > 0 sufficiently large, ¢ :=
max(Ap”, @) € PSH™(£2), ¢ = @ on U, 1) = —1 on a neighborhood of K and
1 = Ap” on a small neighborhood of df2. By Stokes’ theorem we also have

| (ddy)" = A™ | (ddp")" < oo.
2 9
Thus ¢ € & (£2) N C(£2). The proof is complete.
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Now we are able to give
Proof of Theorem A. We proceed in two steps.
STEP 1. We show that (us —u1)T =0 on 2\ K, where

n—1
T:=> (ddu)" A (ddug)" .
=0

After linear changes of coordinates, it is enough to prove
(ug — u1)dd|z]> AT =0 on 2\ K.
Fix zp € 2\ K. By Lemma C, there exists a small neighborhood U C 2\ K of
20 and ¢ € E(§2) such that 1» = —1 on a neighborhood of K and ) is strictly
plurisubharmonic on U. Notice also that, by assumptions (a) and (b),
max{uy, —j} | ui, S(ddcmax{ul, — " = S(ddcul)" <oo Vj>1.
Q Q
Here the latter equality follows from Stokes’ theorem. This implies that
up € F(£2). See Section 4 in [Ce| for details on the Cegrell class F(£2).
Similarly, we also have ug € F(£2). By Corollary 5.6 in [Ce] we have
—o0o < | pdduy AT, —o0 < | ¢ddus A T.
Q Q

These facts allow us to apply Cegrell’s integration by part formula (Corol-
lary 3.4 in [Ce]) to get

\urdd®y AT = | pdduy AT,
| uadd®y AT = | ddus A T.
0 0
Since ¥ = —1 on K, we have u; < ug on 2\ K, and since dd“y = 0 on a

neighborhood of K, we may apply (1) to obtain

Here the last equality follows from (b), (d) and the fact that ¢» < 0 in (2.
Since v is strictly plurisubharmonic on U we get (ug — u1)dd’|z|> AT = 0
on U. The desired conclusion follows.

STEP 2. We show u; = ug on 2\ K. Assume towards a contradiction that
there exists a € 2\ K such that u;(a) < ug2(a). Since K is holomorphically
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convex in {2, we can find a small ball B C 2\ K around the point a and a
(non-constant) holomorphic function f on {2 such that f(B)Nf(K) = (0. Let
Z be the set of points x € {2 such that the complex hypersurface {z € 2 :
f(z) = f(x)} is smooth. By Sard’s theorem, the set {2\ Z has Lebesgue
measure zero. Thus we may choose a point £ € ZNB such that uq(£) < ug(§).

Denote by Sg¢ the connected component of {z € £2: f(z) = f(£§)} that
contains §. Then Se N K = ().

It follows from Step 1 that

(ug — up)(ddu))" ' =0 on 2\ K.

Denote by u,uf the restrictions of ui,us to Se. Now we apply the slicing
theory of Bedford-Taylor (see Section 4 in [BT2], in particular the remark
following Corollary 4.3) to obtain

(ub —u})(dd“uy)" ' =0 on S.

Since u1, ug are not locally bounded on {2, we cannot directly apply Bedford—

Taylor’s results. Instead, we follow their method: first we notice that the for-

mula is obvious when wu, ug are smooth, and then, by using Proposition 5.1

in [Ce| on the continuity of the complex Monge-Ampere operator in F({2),

we get the desired equality (see [BT2l, p. 149] for a similar argument).
Since u} < uf on S¢ we infer

| (ddup)"' =o.
{u) <uf}
Notice that {2 contains no compact complex variety of positive dimension,
so 0(Se N §2) C 0f2. Therefore

li 1(2) — ul =0.
z—>8(55}1H!12),z€S§(UI(Z) U2(Z))
An application of the comparison principle to the smooth complex hyper-
surface S¢ (see Corollary 3.7.5 in [Kl]) yields ] = u on S¢. In particular,

w1 (€) = ui(§) = up(§) = ua(§).
This contradicts the choice of £. The proof is complete.

REMARK. If we suppose that u; < us entirely on (2 then Theorem A is
a direct consequence of Lemma C and Lemma 3.5 in [ACCH]. Indeed, let
2o be an arbitrary point in 2 \ K. Choose ¢ € &y({2) such that ¢p > —1,
Y|k = —1 and 9 is strictly plurisubharmonic near zp. By Lemma 3.5 in
[ACCH] we have

Lz — ) (ddo)" + §(— ) (ddous)" < | (~6)(ddCur )™,

n!
2 2 Q
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By assumptions on u1, uz and the choice of ¢ we get {, (up—u1)™ (dd))" =
In particular, this implies u;(29) = ua(2p).
Proof of Corollary B. Since the polynomial maps P, @ : C* — C" are

proper we deduce that (2 is bounded. Hence (2 is a hyperconvex domain.
Set

u = max{log|pi],...,log|pn|}, v =max{log|q],...,log]|qn|}

According to Proposition 4.12 in [Dem| we have

(ddcu)n = Z m)ﬁ)\.
AeZ(P)
Here 0, is the Dirac mass at A\ and m, is the multiplicity of Z(P) at \. Set
K :=P(P;a —¢). It follows that

| (ddw)" = §(ddou)" = 3 mA—Hdegpj

Cn K NEZ(P

Here the last equality follows from Bézout’s theorem. In the same way we
obtain

S (ddv)" = S (ddv)" H eg q;.
Cn K =1
Combining the above equality with (a) we get |, (dd°u)™ > |, (dd°v)". On
the other hand, note that (dd‘u)™ = (ddc )" =0 on {2 \ K. It also follows
from (b) and (c) that u = v on 92 and v > v on {2\ K. Therefore, we may
apply Theorem A to u —loga,v —loga and obtain u = v on 2\ K.
Next, we set

U={zc Q\K:|pi(2)| # |pj(2)l, a:()| # g (2)| for all i # j}.
Since P, : C* — C" are proper, we deduce that U is open and dense in
2\ K. Fix 1 < j <mn, and choose zy € U such that |p;(z0)| = u(z0). Then
there exists k(j) such that |gy(;)(20)| = v(20). By continuity, we can find a
small neighborhood V of z in U such that

pj(2)] = u(z) = v(z) = lax() (2)]  Vz €V
Observe that the map ¢ := p;/qu(j) : C" \ {q(;) = 0} — C is either open or
constant. Since ¢ maps an open subset of V' onto the unit circle, we infer
that ¢ must be constant. Thus p; = A;qy(;) for some constant |\;| = 1. The
proof is complete.
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