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A Green’s function for θ-incomplete polynomials

by Joe Callaghan (Toronto)

Abstract. Let K be any subset of C
N . We define a pluricomplex Green’s function

VK,θ for θ-incomplete polynomials. We establish properties of VK,θ analogous to those
of the weighted pluricomplex Green’s function. When K is a regular compact subset of
R

N , we show that every continuous function that can be approximated uniformly on K

by θ-incomplete polynomials, must vanish on K\supp (dd
c
VK,θ)

N . We prove a version of
Siciak’s theorem and a comparison theorem for θ-incomplete polynomials. We compute
supp (dd

c
VK,θ)

N when K is a compact section.

1. Introduction

Definition 1.1. For 0 < θ < 1, the set πn,θ shall denote the collection
of all polynomials P of the form P (z) =

∑n
|α|=⌈nθ⌉ cαzα. Here z ∈ C

N and

⌈x⌉ denotes the least integer greater than or equal to x. If P ∈ πn,θ for some
n ≥ 0 then we will refer to P as a θ-incomplete polynomial.

That is, a θ-incomplete polynomial is a polynomial that has no terms of
degree smaller than θ times the degree of the polynomial. For the collection
of all polynomials of degree at most n we will simply write πn. θ-incomplete
polynomials of several variables have previously been defined in [2] as poly-
nomials of the form P (z) =

∑n
|α|=⌊nθ⌋ cαzα where ⌊x⌋ denotes the integer

part of x, which yields a slightly different class of polynomials. However,
the results in [2] can be verified for the new definition with essentially the
same proofs. The new definition is convenient for the purpose of this paper
because we would like the function n−1 log |P | to be in Lθ when P ∈ πn,θ.
Also, under the new definition the class of θ-incomplete polynomials is closed
under multiplication.

By the Weierstrass approximation theorem we know that every contin-
uous function on the closed interval [0, 1] can be approximated uniformly
by polynomials. The following result of Lorentz, Saff, von Golitschek and
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Kuijlaars ([7], [9], [4], [6]) gives a version of the Weierstrass theorem for
θ-incomplete polynomials.

Theorem 1.2. For the interval [0, 1] ⊂ C and f ∈ C[0, 1] there exists

Pn ∈ πn,θ with Pn → f uniformly as n → ∞ if and only if f ≡ 0 on [0, θ2].

In other words, on the interval [0, 1], uniform limits of θ-incomplete poly-
nomials (in the above sense) are precisely the continuous functions that van-
ish on the subinterval [0, θ2]. Given a compact set K ⊂ R

N , let C(K) be
the Banach algebra of all continuous functions on K with the supremum
norm. Let Cθ(K) be the subalgebra consisting of all functions f ∈ C(K)
admitting uniform approximation Pn → f as n → ∞ on K by a sequence of
θ-incomplete polynomials Pn ∈ πn,θ. Let Zθ = {x ∈ K : f(x) = 0 for all f ∈
Cθ(K)}. The following result is a consequence of the Stone–Weierstrass the-
orem.

Theorem 1.3 ([2]). For every compact set K ⊂ R
N ⊂ C

N we have

Cθ(K) = {f ∈ C(K) : f ≡ 0 on Zθ}.

For certain sets K ⊂ R
N that generalize the interval [0, 1], the set Zθ

can be determined explicitly to be θ2K (see [2]).
We make the following definitions, analogous to the Lelong classes L

and L+ and the Siciak extremal function VK (see [10]).

Definition 1.4. For θ ∈ R and K ⊂ C
N , we let

Lθ := {u ∈ L : u(z) ≤ θ log |z| + Cu on B(0, 1)},

L+
θ := {u ∈ Lθ : max{θ log |z|, log |z|} + Cu ≤ u(z) for all z ∈ C

N},

VK,θ(z) := sup{u(z) : u ≤ 0 on K, u ∈ Lθ}.

Here the constant Cu depends on the function u. Observe that if P ∈ πn,θ

then n−1 log |P | ∈ Lθ. The main purpose of this paper will be to establish the
basic properties of VK,θ analogous to those of VK . In particular we prove a
version of Siciak’s theorem for θ-incomplete polynomials. Then we establish:

Theorem 1.5. If K ⊂ R
N is a regular compact set , then K \ Sθ ⊂ Zθ.

Here Sθ = supp (ddcVK,θ)
N . We will conclude by using this result to

compute Sθ for certain subsets of R
n. The second section of the paper will

review some basic facts from pluripotential theory and weighted pluripo-
tential theory. Many of the results in the third section are similar to results
about VK which can be found in [5]. Finally, I would like to thank the referee,
who suggested the general statement of Theorem 4.13 and whose comments
have improved the overall coherence and quality of this exposition.

2. Background material. We let C
N denote complex N -space and we

will write z = (z1, . . . , zN ) where zi ∈ C for elements of C
N . An N -multi-
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index is an N -tuple of non-negative integers α = (α1, . . . , αN ). We will use
the multi-index notation zα to denote the monomial zα1

1 · · · zαN

N . The degree
of this monomial is |α| = α1 + · · · + αN . The open unit ball in C

N is de-
noted by B(0, 1). The Lelong class, the class of logarithmically homogeneous
plurisubharmonic functions and the pluricomplex Green function for K are
defined respectively as (see [10])

L := {u ∈ PSH(CN ) : u(z) ≤ log |z| + Cu on C
N \ B(0, 1)},

H := {u ∈ PSH(CN ) : u(λz) = u(z)+log |λ| for all λ ∈ C and z ∈ C
N},

VK(z) := sup{u(z) : u ≤ 0 on K, u ∈ L}.

For every function f on an open set U ∈ C
N , the upper semicontinuous

regularization of f is defined as f∗(z) := lim supw→z f(w). A set P is called
pluripolar if for every x ∈ P there is a neighbourhood U of x and v ∈ PSH(U)
with v = −∞ on U∩P . A set P is called L-polar if P ⊂ {x ∈ C

N : v = −∞}
for some v ∈ L. It is known from [5] that a set P is pluripolar if and only
if it is L-polar. A property is said to hold quasi-everywhere (q.e.) if it holds
everywhere except possibly on a pluripolar set. A subset K ⊂ C

N is said to
be non-pluripolar in a neighbourhood of any of its points if for every x ∈ K
and for every neighbourhood U of x the intersection K∩U is non-pluripolar.
Let ‖f‖∗K := inf{‖f‖K\P : P a pluripolar subset of K}. Note that if f is a
continuous function on K and K is non-pluripolar in a neighbourhood of
any of its points then ‖f‖∗K = ‖f‖K . A compact set K ⊂ C

N is said to be
regular if V ∗

K = 0 on K. We will need the following comparison theorem.

Theorem 2.1 ([5]). Let G ⊂ C
N be a bounded open set. Suppose that u

and v are bounded plurisubharmonic functions on G such that

lim inf
z→w, z∈G

(u(z) − v(z)) ≥ 0 for all w ∈ ∂G.

Then \
{u<v}

(ddcv)N ≤
\

{u<v}

(ddcu)N .

We will also need the following result of Siciak [10].

Theorem 2.2. If u ∈ L then there exists a sequence nj ր ∞, polynomi-

als Pk,j with deg Pk,j ≤nj and integers tj such that n−1
j max1≤k≤tj log|Pk,j(z)|

decreases to u(z) as j → ∞.

We state the following definitions and results from weighted pluripoten-
tial theory for reference, as they are similar to the definitions and results in
this paper. A good introduction to weighted pluripotential theory is given
in Appendix B of [8].

Definition 2.3. If K ⊂ C
N is a closed set and w is a non-negative real-

valued function on K then w is called a weight function. A weight function
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w is called admissible if

(i) w is upper semicontinuous,
(ii) the set of points in K where w is strictly greater than zero is non-

pluripolar,
(iii) if K is unbounded then ‖z‖w(z) → 0 as ‖z‖ → ∞ in K.

Define Q(z) = − log w(z). Then the weighted pluricomplex Green func-

tion of K with respect to Q is

VK,Q(z) := sup{u(z) : u ≤ Q on K, u ∈ L}.

Let V ∗
K,Q(z) denote its upper semicontinuous regularization. Let µw :=

(ddcV ∗
K,Q)N and Sw := supp µw.

The following result on weighted approximation appears in [2].

Theorem 2.4. Suppose that K ⊂ R
N ⊂ C

N is closed , and that w is a

continuous admissible weight on K. Then there exists a closed set Zw ⊂ K
such that there exists Pn(z) ∈ πn with wnPn(z) → f uniformly on K as

n → ∞ if and only if f ∈ C(K) and f ≡ 0 on Zw.

The next theorem relates the sets Sw and Zw.

Theorem 2.5. If K ⊂ R
N ⊂ C

N is closed and non-pluripolar in a

neighbourhood of any of its points, and if w is a continuous admissible weight

on K, then K \ Sw ⊂ Zw.

Definition 2.6. If K is a closed set and w is an admissible weight on
K then

S∗
w := {z ∈ K : V ∗

K,Q(z) ≥ Q(z)},

ΦK,Q(z) := sup{|Pn(z)|1/n : ‖wnPn‖K ≤ 1, Pn ∈ πn, n ≥ 1},

ΨK,Q(z) := sup{|Pn(z)|1/n : ‖wnPn‖
∗
K ≤ 1, Pn ∈ πn, n ≥ 1}.

Theorem 2.7 ([8]). If K ⊂ C
N is a closed set and w is an admissible

weight on K then Sw ⊂ S∗
w and Sw is non-pluripolar.

If P ∈ πn and |wnP | ≤ M q.e. on Sw then |P | ≤ MenV ∗

K,Q on C
N .

If P ∈ πn then ‖wnP‖∗K = ‖wnP‖∗Sw
.

If S ⊂ K is closed and ‖wnP‖∗S = ‖wnP‖∗K for all P ∈ πn then Sw ⊂ S.

Finally , VK,Q = log ΦK,Q and V ∗
K,Q = (log ΨK,Q)∗.

Let Γ be a compact subset of a hyperplane L ⊂ R
N \ {0}. The set

K := {tx : 0 ≤ t ≤ 1, x ∈ Γ} is called a compact section if it is non-
pluripolar in a neighbourhood of any of its points. If the hyperplane is given
by the equation

∑N
j=1 cjxj = d then the associated linear form for K is

defined as l(x) = d−1
∑N

j=1 cjxj . For a compact section and an appropriate

weight w, the zero set Zw and the set Sw are known explicitly.
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Theorem 2.8 ([2]). If K ⊂ R
N ⊂ C

N is a compact section and w(x) =
l(x)θ/(1−θ), where l(x) is the linear form associated with K and 0 < θ < 1,

then Zw = θ2K and Sw = K \ θ2K.

3. Basic properties of VK,θ. We will begin by making a simple obser-
vation regarding VK,θ:

VK,θ(z) = sup{u(z) : u ≤ 0 on K, u ∈ Lθ}

= θ log |z|

+ (1 − θ) sup

{

1

1 − θ
(u(z) − θ log |z|) : u ≤ 0 on K, u ∈ Lθ

}

≥ θ log |z| + (1 − θ) sup

{

v(z) : v ∈ L, v(z) ≤
−θ

1 − θ
log |z| on K

}

= θ log |z| + (1 − θ)VK,Q(z)

where Q = − log w and w = |z|θ/(1−θ). The inequality can be seen by tak-
ing u(z) = (1 − θ)v(z) + θ log |z| for a given v. When N = 1 we can take
v = (1 − θ)−1(u(z) − θ log |z|) for a given u, because in one complex vari-
able, the function u(z)−θ log |z| is a subharmonic function with a removable
singularity at the origin. However, for N > 1, this function is not necessar-
ily plurisubharmonic. We summarize the above discussion in the following
theorem.

Theorem 3.1. If K ⊂ C
N is a compact set then VK,θ(z) ≥ θ log |z| +

(1 − θ)VK,Q(z) where Q = − log w and w = |z|θ/(1−θ). If N = 1, that is, if

K ⊂ C, then equality holds.

Hence in one complex variable, the function VK,θ is essentially given by

the weighted pluricomplex Green’s function for the weight w = |z|θ/(1−θ).
For θ ≤ 0, we have L = Lθ because in this case the additional condition

is redundant.

Proposition 3.2. L1 = H.

Proof. First suppose that u ∈ H. Then u(0) = −∞ and for any z ∈
C

N \ {0} we can write u(z) = u(z/|z|) + log |z| ≤ ‖u‖∂B(0,1) + log |z| on C
N .

This shows that u ∈ L1. Conversely, suppose that u ∈ L1. Then on any
C-line through the origin the function v(z) = u(z) − log |z| is subharmonic
on C \ {0} and is bounded from above. From the removable singularity
theorem for subharmonic functions it follows that v extends (on this line) to
an entire subharmonic function that is bounded above. Hence v is constant
on lines through the origin. The last statement is equivalent to saying that
u ∈ H.

Proposition 3.3. For θ > 1, we have Lθ = {−∞}.
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Proof. Let u ∈ Lθ. As in the above proof, the extension of the function
v to any line through the origin must be constant. But clearly, v(0) = −∞.
So, v ≡ −∞. Consequently, u ≡ −∞.

Note that when θ1 ≤ θ2 we have Lθ2
⊂ Lθ1

and consequently VK,θ2
≤

VK,θ1
.

Example 3.4. For the unit ball, V
B(0,1),θ

(z) = max{θ log |z|, log |z|}.

A set P is called Lθ-polar if it is contained in the set {u ≡ −∞} for
some u ∈ Lθ.

Lemma 3.5. For 0 < θ < 1 and P ⊂ C
N , P is Lθ-polar if and only if P

is L-polar.

Proof. Suppose that P is L-polar. Take u ≡ −∞ on P , u ∈ L. Then the
function v(z) = θ log |z|+(1− θ)u(z) ∈ Lθ and v ≡ −∞ on P . The converse
is immediate.

Lemma 3.6. If E ⊂ C
N is pluripolar then V ∗

E,θ ≡ ∞.

Proof. Take w ∈ Lθ, w = −∞ on E. Then w + n ≤ VE,θ for all n. It
follows that VE,θ = ∞ except possibly on the pluripolar set {w = −∞}. So
V ∗

E,θ ≡ ∞.

Lemma 3.7. If E ⊂ C
N is bounded and non-pluripolar then V ∗

E,θ ∈ L+
θ .

Proof. Observe that V ∗
E,θ ≤ V ∗

E . Because E is non-pluripolar we have
V ∗

E ∈ L. Consequently, V ∗
E,θ ∈ L. To show that V ∗

E ∈ Lθ observe that
V ∗

E,θ ≤ M on B(0, 1) for some constant M . Let u be in the defining class

of VE,θ. Then θ−1(u − M) is a non-positive plurisubharmonic function on
B(0, 1) with a logarithmic pole at the origin. Letting gB(0,1)(z, 0) denote
the Green function [5] for the unit ball with logarithmic pole at the origin,
namely log |z|, we conclude that θ−1(u − M) ≤ gB(0,1)(z, 0) on B(0, 1). It
follows that u(z) ≤ θ log |z| + M on B(0, 1). Taking the supremum over all
such u we conclude that V ∗

E,θ ≤ θ log |z| + M on B(0, 1). Thus V ∗
E,θ ∈ Lθ.

Letting |E| := supz∈E |z| we conclude that max{θ log(|z|/|E|), log(|z|/|E|)}
is a candidate for VE,θ. It follows that V ∗

E,θ ∈ L+
θ .

Lemma 3.8. If P ⊂ C
N is pluripolar and E ⊂ C

N is bounded then

V ∗
E\P,θ = V ∗

E,θ.

Proof. If P is pluripolar then P is L-polar and hence Lθ-polar. Take
u ∈ Lθ with u ≤ 0 on E \P . Take v ∈ Lθ with v ≤ 0 on E \P and v ≡ −∞
on P . Then

(1 − ε)u + εv ≤ VE,θ ≤ V ∗
E,θ.
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Letting ε go to zero we conclude that u ≤ V ∗
E,θ q.e., hence everywhere.

Therefore, V ∗
E\P,θ ≤ V ∗

E,θ. The reverse inequality is immediate so the result

follows.

Lemma 3.9. If Kj are compact sets such that Kj ց K then VKj ,θ ր
VK,θ.

Proof. Let u ∈ Lθ, u ≤ 0 on K and ε > 0. Then the set {u < ε} is
a neighbourhood of K, so there exists j0 such that whenever j ≥ j0 we
have Kj ⊂ {u < ε}. In other words, u − ε ≤ 0 on Kj for all j ≥ j0. So,
u − ε ≤ VKj ,θ for all j ≥ j0. It follows that u − ε ≤ limj→∞ VKj ,θ ≤ VK,θ.
The result follows by taking the supremum over all such functions u.

Lemma 3.10. Let E ⊂ C
N be bounded and 0 < θ < 1. Then VE,θ+ε ր

VE,θ as ε ց 0.

Proof. Suppose that u ∈ Lθ, that u ≤ 0 on E and that ε > 0 is so small
that θ + ε < 1. Let

vε(z) :=
1 − θ − ε

1 − θ
u(z) +

ε

1 − θ
log

|z|

|E|
.

Then vε ≤ 0 on E. Furthermore,

vε(z) ≤
1 − θ − ε

1 − θ
(max{θ log |z|, log |z|} + Cu) +

ε

1 − θ
log

|z|

|E|

= max{(θ + ε) log |z|, log |z|} +
1 − θ − ε

1 − θ
Cu −

ε

1 − θ
log |E|.

So, vε(z) ≤ VE,θ+ε(z). Letting ε ց 0, we get u(z) ≤ lim infε→0 VE,θ+ε ≤
lim supε→0 VE,θ+ε ≤ VE,θ. The result follows by taking the supremum over
all such functions u.

Lemma 3.11. If K ⊂ C
N is a regular compact set then V ∗

K,θ = VK,θ.

Proof. Since K is regular it is non-pluripolar, hence V ∗
K,θ ∈ Lθ by Lem-

ma 3.7. Also V ∗
K,θ ≤ V ∗

K = 0 on K. Hence V ∗
K,θ is in the family defining VK,θ.

Consequently, V ∗
K,θ ≤ VK,θ.

We have established that if E is non-pluripolar and bounded then V ∗
E,θ

is in the class L+
θ . Consequently, (ddcV ∗

E,θ)
N is well defined [5].

Theorem 3.12. If E ⊂ C
N is bounded and non-pluripolar then

(ddcV ∗
E,θ)

N ≡ 0 on C
N \ E ∪ {0}.

Proof. Let G ⊂ C
N \ E ∪ {0} be a bounded open set. Let u be a

plurisubharmonic function on G majorized by V ∗
E,θ on ∂G. Then the func-

tion v(z) := max{u(z), V ∗
E,θ(z)} on G and := V ∗

E,θ(z) elsewhere on C
N has

v ∈ Lθ and v ≤ 0 q.e. on E. So, v is non-positive on E except possibly on a
pluripolar set F . Take w ∈ Lθ with w = −∞ on F and w non-positive on E.
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Then (1+ε)−1(v +εw) is a candidate for VE,θ. So, (1+ε)−1(v+εw) ≤ V ∗
E,θ.

Letting ε → 0 we conclude that v ≤ V ∗
E,θ q.e. in G, hence everywhere in G.

So, V ∗
E,θ is a maximal plurisubharmonic function on C

N \ E ∪ {0}. But on

this set, V ∗
E,θ is locally bounded. Hence, (ddcV ∗

E,θ)
N ≡ 0 on C

N \E ∪ {0}.

Theorem 3.13. If E ⊂ C
N is non-pluripolar and bounded then for some

ε > 0 sufficiently small , we have (ddcV ∗
E,θ)

N ≡ 0 on B(0, ε) \ {0}.

Proof. The set E is non-pluripolar, so E \B(0, δ) is non-pluripolar for δ
sufficiently small. Fix such a δ. Then V ∗

E\B(0,δ),θ has a pole at the origin. This

means that there exists ε such that 0 < ε < δ with V ∗
E\B(0,δ),θ ≤ 0 on B(0, ε).

Now fix such an ε. Then V ∗
E\B(0,ε),θ ≤ 0 on B(0, ε). Hence, V ∗

E\B(0,ε),θ ≤ 0

q.e. on E. By the same argument used in the preceding proof we conclude
that V ∗

E\B(0,ε),θ ≤ V ∗
E,θ q.e., hence everywhere. Thus equality holds. So, on

B(0, ε) \ {0}, we have (ddcV ∗
E,θ)

N = (ddcV ∗
E\B(0,ε), θ)

N ≡ 0.

Theorem 3.14. If E ⊂ C
N is non-pluripolar and bounded then in some

neighbourhood of the origin, (ddcV ∗
E,θ)

N ≡ (2πθ)Nδ0 where δ0 is the Dirac

delta measure.

Proof. By Theorem 3.9 in [3] or Theorem 6.3.5 in [5] we know that
(ddcV ∗

E,θ)
N = (2πθ)Nδ0 at the origin. By the previous theorem we know

that (ddcV ∗
E,θ)

N = 0 elsewhere near the origin.

The following theorem and proof are exact counterparts of Lemma 6.5
in [1].

Theorem 3.15. If u ∈ Lθ, v ∈ Lθ
+, and u ≤ v holds (ddcv)N -almost

everywhere, then u ≤ v.

Proof. Without loss of generality, we can make the following two as-
sumptions:

(1) v(z) ≥ θ log |z| + ((1 − θ)/2) log 3 on B(0, 1).
(2) v(z) ≥ 1

2 log(2 + |z|2) on C
N \ B(0, 1).

Also, because max{θ log |z|, log |z|}+C ≤ v(z) on C
N , we can replace u with

max{u(z), θ log |z| + C, log |z| + C}. Now suppose that u > v at some point
in C

N (note that this point is not the origin).
Select ε, δ, η in such a way that εθ < ηθ < ηθ + δ(1 − θ) < ε, δ < ε and

Sε,δ,η :=

{

z ∈ C
N : u(z) + ηθ log |z| + δ

1 − θ

2
log(2 + |z|2) > (1 + ε)v(z)

}

is non-empty. Then this set must have positive Lebesgue measure. For |z|
large enough, we have

u(z) + ηθ log |z|+ δ
1 − θ

2
log(2 + |z|2) < (1 + ε)

1

2
log(2 + |z|2) ≤ (1 + ε)v(z).
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For |z| small enough, we have

u(z) + ηθ log |z| + δ
1 − θ

2
log(2 + |z|2)

< (1 + ε)

[

θ log |z| +
1 − θ

2
log 3

]

≤ (1 + ε)v(z).

It follows that Sε,δ,η is a bounded set that is also bounded away from
zero. In other words, Sε,δ,η ⊂ A for some set A of the form A = {z ∈ C

N :
r < |z| < R}. The functions u(z) + ηθ log |z| + δ((1 − θ)/2) log(2 + |z|2)
and (1+ ε)v(z) are bounded plurisubharmonic functions on A, and we have
verified that on the boundary of A the condition necessary to apply Theorem
2.1 is satisfied. So,

0 <
\

Sε,δ,η

(

ddc

(

δ
1 − θ

2
log(2 + |z|2)

))N

≤
\

Sε,δ,η

(

ddc

(

u(z) + ηθ log |z| + δ
1 − θ

2
log(2 + |z|2)

))N

≤
\

Sε,δ,η

(1 + ε)N (ddcv)N .

On Sε,δ,η , we have

(1 + ε)v(z) < u(z) + ηθ log |z| + δ
1 − θ

2
log(2 + |z|2)

≤ v(z) + ηθ log |z| + δ
1 − θ

2
log(2 + |z|2)

(ddcv)N -almost everywhere. This implies that on Sε,δ,η, we have

v(z) <
ηθ

ε
log |z| +

δ

ε

1 − θ

2
log(2 + |z|2)

(ddcv)N -almost everywhere. But on the unit ball,

v(z) ≥ θ log |z| +
1 − θ

2
log 3 ≥

ηθ

ε
log |z| +

δ

ε

1 − θ

2
log(2 + |z|2),

while on the complement of the unit ball we have

v(z) ≥
1

2
log(2 + |z|2) ≥

ηθ

ε
log |z| +

δ

ε

1 − θ

2
log(2 + |z|2).

Consequently, Sε,δ,η is a set of (ddcv)N measure zero.
This contradicts the integral inequality derived earlier. Thus, u ≤ v

on C
N .

Definition 3.16. Let K ⊂ C
N be non-pluripolar and bounded. Let

µθ := (ddcV ∗
K,θ)

N , Sθ := suppµθ and S∗
θ := {z ∈ K : V ∗

K,θ ≥ 0}.
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Lemma 3.17. If K ⊂ C
N is a non-pluripolar compact set then Sθ \ {0}

⊂ S∗
θ , and the set Sθ \ {0} is non-pluripolar in a neighbourhood of any of its

points.

Proof. We will prove the first assertion by contradiction so suppose that
x0 /∈ S∗

θ and x0 ∈ Sθ \ {0}. Then V ∗
K,θ(x0) < 0. Next, V ∗

K,θ = V ∗
K\{x0},θ

.

Let v = limε→0 V ∗
K\B(x0,ε),θ. It is easy to see that Lθ is closed under limits

of decreasing sequences, so v ∈ Lθ. Furthermore, v ≤ 0 q.e. on K \ {x0}.
So by the standard argument, V ∗

K\{x0},θ
≥ v. For each ε > 0, we have

V ∗
K\B(x0,ε),θ ≥ V ∗

K,θ. Hence v ≥ V ∗
K,θ. So, v = V ∗

K,θ. So V ∗
K\B(0,ε),θ(x0) < 0 for

some ε > 0. It follows that V ∗
K\B(x0,ε),θ < 0 on some B(x0, δ) where 0 < δ <

ε. Then V ∗
K\B(x0,δ),θ < 0 on B(x0, δ). We conclude that V ∗

K,θ ≥ V ∗
K\B(x0,δ),θ.

The opposite inequality is immediate so it follows that V ∗
K,θ = V ∗

K\B(x0,δ),θ.

Hence, (ddcV ∗
K,θ)

N ≡ 0 on B(x0, δ). Therefore, x0 is not contained in Sθ. To

see the second assertion, note that on C
N \ {0}, V ∗

K,θ is a locally bounded
plurisubharmonic function. Hence, µθ places no mass on pluripolar subsets
of C

N \{0}. By the definition of support of a measure, µθ must have positive
mass in any neighbourhood of any point of Sθ.

Remark 3.18. Because VK,θ = V ∗
K,θ q.e. on C

N it follows that V ∗
K,θ ≤ 0

q.e. on K and that VK,θ = 0 q.e. on S∗
θ .

4. Incomplete polynomials and approximation

Theorem 4.1. If P (z) =
∑n

|α|=⌈nθ⌉ cα,nzα is a θ-incomplete polynomial

and |P (z)| ≤ M q.e. on Sθ then |P (z)| ≤ MenV ∗

K,θ on C
N .

Proof. Observe that

1

n
log

|P (z)|

M
≤ 0 q.e. on Sθ.

Consequently,

1

n
log

|P (z)|

M
≤ V ∗

K,θ q.e. on Sθ.

By Theorem 3.15, this inequality must hold on all of C
N .

Theorem 4.2. If P (z) =
∑n

|α|=⌈nθ⌉ cα,nzα is a θ-incomplete polynomial

then ‖P‖∗K = ‖P‖∗Sθ
.

Proof. We have |P (z)| ≤ ‖P‖∗Sθ
q.e. on Sθ. Therefore, |P (z)| ≤

‖P‖∗Sθ
enV ∗

K,θ on C
N . Consequently, |P (z)| ≤ ‖P‖∗Sθ

q.e. on K. Hence,
‖P‖∗K ≤ ‖P‖∗Sθ

. So equality holds.
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Definition 4.3. For K ⊂ C
N a compact set, let

ΦK,θ(z) := sup{|Pn(z)|1/n : ‖Pn‖K ≤ 1, n ≥ 1, Pn ∈ πn,θ},(1)

ΨK,θ(z) := sup{|Pn(z)|1/n : ‖Pn‖
∗
K ≤ 1, n ≥ 1, Pn ∈ πn,θ}.(2)

The cases θ = 0 and θ = 1 of the following theorem are proved in [10].

Theorem 4.4. For K ⊂ C
N compact , we have VK,θ = log φK,θ.

Proof. Let ε > 0. Suppose that u ∈ Lθ+ε and that u ≤ 0 on K. By
Theorem 2.2 we have

u(z) = lim
j→∞

1

nj
max

1≤k≤tj
log |Pk,j(z)|,

where the sequence is decreasing and each Pk,j is a polynomial of degree at
most nj .

Write Pk,j(z) :=
∑nj

|α|=0
cα,k,jz

α and let P ′
k,j(z) :=

∑⌊njθ⌋

|α|=0
cα,k,jz

α, where

⌊x⌋ is the greatest integer that is less than or equal to x. That is, P ′
k,j(z) is

the part of Pk,j(z) consisting of monomials of degree smaller than or equal
to ⌊njθ⌋. Now,

‖P ′
k,j(z)‖ ≤

(

nj + N

N

)

( max
0≤|α|≤⌊njθ⌋

|cα,k,j|)( max
0≤|α|≤nj

|z1|
α1 · · · |zN |αN )

≤

(

nj + N

N

)

( max
0≤|α|≤⌊njθ⌋

|cα,k,j|)(max{1, |z1|, . . . , |zN |})nj .

By Cauchy’s estimate, for any R < 1 we have

max
0≤|α|≤⌊njθ⌋

|cα,k,j| ≤ max
0≤|α|≤⌊njθ⌋

‖Pk,j‖P (0,R)

R|α|
≤

‖Pk,j‖P (0,R)

R⌊njθ⌋
.

Moreover, u(z) ≤ (θ+ ε) log |z|+M on B(0, 1). So, u(z) ≤ (θ + ε) log N1/2R
+ M on the Shilov boundary of the polydisc of radius R centered at the
origin denoted by ∂SP (0, R) = {(z1, . . . , zN) : |z1| = · · · = |zN | = R}. By
Dini’s theorem there exists j0 such that whenever j ≥ j0 we have

1

nj
max

1≤k≤tj
log |Pk,j(z)| ≤ (θ + ε) log N1/2R + M + 1 on ∂SP (0, R).

Hence, ‖Pk,j‖
1/nj

P (0,R) = ‖Pk,j‖
1/nj

∂SP (0,R) ≤ (N1/2R)θ+εeM+1. Therefore, for all

z ∈ C
N we have

|P ′
k,j(z)| ≤

(

nj + N

N

)

(max{1, |z1|, . . . , |zN |})nj

R⌊njθ⌋
((N1/2R)θ+εeM+1)nj .

Hence,

lim sup
j→∞

max
1≤k≤tj

|P ′
k,j(z)|1/nj ≤

N1/2R
θ+ε

eM+1(max{1, |z1|, . . . , |zN |})

Rθ
.
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Since this holds for any 1 > R > 0 sufficiently small, we have

lim sup
j→∞

max
1≤k≤tj

|P ′
k,j(z)|1/nj = 0 at every z ∈ C

N .

Applying the triangle inequality repeatedly, we get

lim sup
j→∞

max
1≤k≤tj

|Pk,j(z) − P ′
k,j(z)|1/nj

≤ lim sup
j→∞

max
1≤k≤tj

(|Pk,j| + |P ′
k,j|)

1/nj

≤ lim sup
j→∞

max
1≤k≤tj

(|Pk,j(z)|1/nj + |P ′
k,j(z)|1/nj) = lim

j→∞
max

1≤k≤tj
|Pk,j(z)|1/nj

≤ lim inf
j→∞

max
1≤k≤tj

(|Pk,j(z) − P ′
k,j(z)|1/nj + |P ′

k,j(z)|1/nj)

= lim inf
j→∞

max
1≤k≤tj

|Pk,j(z) − P ′
k,j(z)|1/nj .

This shows that

u(z) = lim
j→∞

1

nj
max

1≤k≤tj
log |Pk,j − P ′

k,j |.

We have expressed u as a pointwise limit using θ-incomplete polynomi-
als. However, unlike the original sequence, this sequence is not necessarily
decreasing. So instead of Dini’s theorem we use Hartogs’ lemma. The new
sequence can readily be seen to be uniformly bounded on any ball centered
at the origin just by applying Cauchy estimates and the fact that the original
sequence is uniformly bounded on P (0, 1).

Hence, Hartogs’ lemma gives us a j1 such that whenever j ≥ j1 we have

1

nj
max

1≤k≤tj
log |Pk,j − P ′

k,j | ≤ ε1 on K.

It follows that
1

nj
max

1≤k≤tj
log |Pk,j − P ′

k,j |e
−ε1nj ≤ log ΦK,θ.

Thus, u(z) − ε1 ≤ log ΦK,θ(z). So, u(z) ≤ log ΦK,θ. Taking the supremum
over all such u, we infer that VK,θ+ε ≤ log ΦK,θ. Letting ε → 0 we obtain
VK,θ ≤ log ΦK,θ. The reverse inequality follows from the definition.

Corollary 4.5. If K ⊂ C
N is a compact set and 0 < θ < 1 then the

function VK,θ is lower semicontinuous on C
N \ {0}.

Proof. We see that ΦK,θ is lower semicontinuous since it is a supremum
over a family of continuous functions. The result follows from the theorem
since the logarithm of a non-negative lower semicontinuous function is lower
semicontinuous wherever the function is non-zero. Now, VK,θ ≥ log(|z|/|K|)
on C

N so ΦK,θ is non-zero on C
N \ {0}.
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Corollary 4.6. If K ⊂ C
N is a regular compact set then VK,θ is a

plurisubharmonic function that is continuous on C
N \ {0}.

Corollary 4.7. For K ⊂ C
N compact , we have (log ΨK,θ)

∗ = V ∗
K,θ.

Proof. By the definitions, ΦK,θ ≤ ΨK,θ. It follows that V ∗
K,θ ≤ (log ΨK,θ)

∗.
For the reverse inequality, let Pn be any polynomial of degree at most n
from the defining family for ΨK,θ. Then, n−1 log |Pn| ≤ 0 q.e. on K. So,
n−1 log |Pn| ≤ V ∗

K,θ q.e. on Sθ. Hence, n−1 log |Pn| ≤ V ∗
K,θ on all of C

N .
Therefore, log ΨK,θ ≤ V ∗

K,θ.

Theorem 4.8. If S ⊂ K ⊂ C
N are compact sets with the property that

‖P‖∗S = ‖P‖∗K for all θ-incomplete polynomials P then Sθ ⊂ S ∪ {0}.

Proof. From the previous corollary we conclude that V ∗
S,θ = V ∗

K,θ. So,

Sθ = supp (ddcV ∗
K,θ)

N = supp (ddcV ∗
S,θ)

N ⊂ S ∪ {0}.

Theorem 4.9. Suppose that K is non-pluripolar and bounded and that a

sequence {Pn}∈πn,θ converges uniformly on Sθ as n→∞. Then |Pn(z0)|→0
as n → ∞ for all z0 ∈ {z ∈ C

N : V ∗
K,θ(z) < 0}.

Proof. Let z0 ∈ {V ∗
K,θ < 0}. Then |Pn(z0)| ≤ ‖Pn‖

∗
Sθ

enV ∗

K,θ(z0). Conse-
quently, |Pn(z0)| → 0 as n → ∞.

The following result is a counterpart of Theorem 3.2 in [2]. Its proof will
require the Stone–Weierstrass theorem, in the following form:

Theorem 4.10. Let X be a compact Hausdorff space and let C(X) :=
{f : X → R, f continuous}. Let A ⊂ C(X) and Z(A) := {x ∈ X : f(x) = 0
for all f ∈ A}. Suppose further that A has the following four properties:

(i) closedness under addition and real scalar multiplication,
(ii) closedness under multiplication,
(iii) closedness under uniform limits,
(iv) for all x1 6= x2 in X \ Z(A) there exists f ∈ A with f(x1) 6= f(x2).

Then A = {f ∈ C(X) : f ≡ 0 on Z(A)}.

Theorem 4.11. Let K ⊂ R
N ⊂ C

N be a compact set that is non-

pluripolar in a neighbourhood of any of its points. If a sequence {Pn} with

Pn ∈ πn,θ converges uniformly on Sθ as n → ∞ then {Pn(w)} converges

to 0 for every w ∈ K \ Sθ.

Proof. Suppose that Pn ∈ πn,θ with Pn → f0 uniformly on Sθ as n → ∞
and let w = (w1, . . . , wN ) ∈ K \ Sθ. Define p(z) = p(z1, . . . , zN ) = (z2

1 + · · ·
+ z2

N )γ((z1 −w1)
2 + · · ·+ (zN −wN )2)β where γ and β are positive integers

such that γ/(γ + β) > θ. With this choice, p is a θ-incomplete polynomial.
Furthermore, since K ⊂ R

N , p only vanishes on K at w and at the origin.
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Now, Sθ and

A = {f ∈ C[Sθ] : ∃Qn ∈ πn,θ with Qn → f uniformly as n → ∞

and Qn(w) = 0}

satisfy the hypotheses of the Stone–Weierstrass theorem.
Hence p(z)f0(z) ∈ A iff p(z)f0(z) ≡ 0 on Z(A) iff f0(z) ≡ 0 on Z(A) iff

f0(z) ∈ A.
The second equivalence holds since Z(A) ⊂ Sθ and f0(0) = 0. Hence,

f0 ∈ A. It follows that there exist Qn ∈ πn,θ with Qn → f0 on Sθ uniformly
as n → ∞, with Qn(w) = 0. Thus |Pn(w)| ≤ ‖Qn − Pn‖K = ‖Qn − Pn‖

∗
K =

‖Qn − Pn‖
∗
Sθ

= ‖Qn − Pn‖Sθ
. Letting n → ∞ we get |Pn(w)| → 0.

Corollary 4.12. K \ Sθ ⊂ Zθ.

Proof. Any sequence Pn ∈ πn,θ converging uniformly on K satisfies the
hypotheses of the previous theorem.

Theorem 4.13. If K ⊂ R
N is an intersection of compact sections and

is non-pluripolar in a neighbourhood of any of its points then

Sθ = K \ θ2K ∪ {0}.

Proof. From [2] we have Zθ = θ2K. Moreover the inclusion K \ Sθ ⊂ Zθ

gives K \θ2K ⊂ Sθ. We also know that {0} ⊂ Sθ. Now if ‖P‖∗
K\θ2K

= ‖P‖∗K

for all θ-incomplete polynomials P then by Theorem 4.8, Sθ ⊂ K \ θ2K
∪ {0} and we are done. Otherwise we have ‖P‖∗

K\θ2K
< ‖P‖∗K for some

θ-incomplete polynomial P . Consequently, ‖P‖
K\θ2K

< ‖P‖K . In this case

take q ∈ θ2K with |P (q)| = ‖P‖K . Because K is an intersection of com-
pact sections, it is starlike with respect to the origin, so restricting to the
line through the origin and q we get a one-variable θ-incomplete polyno-
mial p with |p(q)| > ‖p‖[θ2,1], where q < θ2. This contradicts the fact that
‖p‖[θ2,1] = ‖p‖[0,1] for all θ-incomplete polynomials p.
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