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Simple onnetion matriesby Piotr Bartłomiejczyk (Gda«sk)
Abstrat. We introdue simple onnetion matries. We prove the existene of simpleonnetion matries for �ltered di�erential vetor spaes and Morse deompositions ofompat metri spaes.Introdution. The idea of the onnetion matrix is due to Charles Con-ley, but its existene in the ase of �ows was �rst established by RobertFranzosa [6℄. Later Robbin and Salamon [9℄ extended the onnetion matrixtheory to the setting of disrete dynamial systems. Connetion matries anbe seen as algebrai representations of the dynamial system. They expressthe relationship between ertain (o)homology groups. Connetion matriesappear in a wide variety of situations. In this paper we study the simplestpossible version of these algebrai tools and for that reason we will all themsimple onnetion matries. We introdue simple onnetion matries for �l-tered di�erential vetor spaes. A �ltered di�erential vetor spae is a �nite�ltration of a given vetor spae together with an endomorphism d suh that

d2 = 0 and d preserves the �ltration. A simple onnetion matrix is a sub-spae of the �ltered di�erential vetor spae whih provides information onsome homology groups assoiated with the �ltered di�erential vetor spae.We prove the existene of suh onnetion matries.It is natural to try to relate this purely algebrai theory to topologialdynamis. An understanding of the above relation is one of the goals of theConley index theory. The standard referenes here are [4℄�[8℄. In this paperwe onsider �ows on ompat metri spaes. We have restrited ourselvesto the ase of �ows to avoid additional ompliations. Our purpose is toinvestigate simple onnetion matries for Morse deompositions.The organization of the paper is as follows. Setion 1 presents some pre-liminaries from the Conley index theory for (ontinuous-time) �ows. In Se-2000 Mathematis Subjet Classi�ation: Primary 37F30.Key words and phrases: �ltered di�erential vetor spae, simple onnetion matrix,Conley index, Morse deomposition. [77℄



78 P. Bartªomiejzyktion 2 we introdue �ltered di�erential vetor spaes and prove the existeneof simple onnetion matries. The proof was motivated by [9℄. In Setion 3we indiate how the algebrai tehniques from the previous setion may beapplied to dynamial systems. For this purpose we introdue the notion ofthe simple onnetion matrix for a Morse deomposition and examine someelementary properties of this onept. Setion 4 ontains an example whih il-lustrates how simple onnetion matries may be omputed and represented.For more referenes on the material presented here, see [1℄�[3℄.1. Preliminaries. We reall brie�y some standard de�nitions from theConley index theory. The ontents of this setion will not be needed untilSetion 3.Throughout this paper X denotes a ompat metri spae and ϕ denotesa �ow on X, i.e. a ontinuous map ϕ : R × X → X satisfying
ϕ(0, x) = x, ϕ(t, ϕ(s, x)) = ϕ(t + s, x).If I ⊂ R and A ⊂ X, then ϕ(I, A) := {ϕ(t, x) | t ∈ I and x ∈ A}. For agiven subset N ⊂ X the set Inv(N) := {x ∈ X | ϕ(R, x) ⊂ N} is alled theinvariant part of N. We say that S ⊂ X is invariant if Inv(S) = S.Reall that given a set Y ⊂ X the positive limit set of Y is given by

ω+(Y ) :=
⋂

t>0

cl(ϕ([t,∞), Y ))and the negative limit set of Y is
ω−(Y ) :=

⋂

t<0

cl(ϕ((−∞, t], Y )).

A ompat set N ⊂ X is alled an isolating neighborhood if Inv(N) ⊂
int(N). A ompat invariant set S ⊂ X is alled an isolated invariant setif S = Inv(N) for some isolating neighborhood N. A subset A ⊂ L isalled positively invariant in L if given x ∈ A and ϕ([0, t], x) ⊂ L, we have
ϕ([0, t], x) ⊂ A. A subset A of L is alled an exit set for L if given x ∈ Lsuh that ϕ([0,∞), x) 6⊂ L, there exists t ≥ 0 suh that ϕ([0, t], x) ⊂ L and
ϕ(t, x) ∈ A.Let S be an isolated invariant set. A pair (N1, N0) of ompat sets isalled an index pair for S if:(i) S = Inv(cl(N1 \ N0)) ⊂ int(N1 \ N0),(ii) N0 is positively invariant in N1,(iii) N0 is an exit set for N1.The homologial Conley index of S is de�ned by

CH∗(S) := H∗(N
1/N0, [N0]) ≈ H∗(N

1, N0),



Simple onnetion matries 79where (N1, N0) is any index pair for S and H∗ stands for the singular ho-mology with �eld oe�ients. Unfortunately, it is not true that for any indexpair H∗(N
1/N0, [N0]) ≈ H∗(N

1, N0). However, this isomorphism holds forregular index pairs (see Salamon [10, Se. 5℄ for the de�nition and more de-tails). For that reason we will assume that we are working with regular indexpairs and index �ltrations. Another way to overome this problem is to usethe Alexander�Spanier ohomology funtor instead of the usual homology.We give two more de�nitions from the Conley index theory. Let S be anisolated invariant set.Definition 1.1. A olletion {Mi}
n
i=1 of mutually disjoint ompat in-variant subsets of S is aMorse deomposition of S if for every x ∈ S\

⋃n
i=1

Mithere are indies i < j suh that ω+(x) ⊂ Mi and ω−(x) ⊂ Mj .The sets Mi are alled Morse sets. Moreover, we de�ne generalized Morsesets for i ≤ j:
Mji :=

{
x ∈ S

∣∣∣ ω+(x) ∪ ω−(x) ⊂

j⋃

k=i

Mk

}
.In partiular, Mjj = Mj . It is easy to hek that all Mji are isolated invariantsets.Definition 1.2. An index �ltration for the Morse deomposition

{Mi}
n
i=1 is a olletion {N i}n

i=0 of ompat sets suh that(1) N0 ⊂ N1 ⊂ · · · ⊂ Nn,(2) for any i ≤ j, (N j , N i−1) is an index pair for Mji.Let us formulate the naturalTheorem 1.3. For any given Morse deomposition there exists an index�ltration.This was proved by Salamon [10℄.The simplest nontrivial ase of a Morse deomposition of an isolatedinvariant set S is one onsisting of two elements {M1, M2}. It is alled anattrator-repeller pair in S. The set of onneting orbits from M2 to M1 in
S is

C(M2, M1; S) := {x ∈ S | ω+(x) ⊂ M1, ω−(x) ⊂ M2}.An index �ltration for an attrator-repeller pair {M1, M2} is redued to anindex triple N0 ⊂ N1 ⊂ N2, where
• (N2, N0) is an index pair for S,
• (N2, N1) is an index pair for M2,
• (N1, N0) is an index pair for M1.



80 P. BartªomiejzykLet ∂ denote the boundary map in a long exat homology sequene:
· · · → Hk(N

1, N0) → Hk(N
2, N0) → Hk(N

2, N1)
∂
→ Hk−1(N

1, N0) → · · ·The importane of the boundary map ∂ is re�eted in the followingTheorem 1.4. If ∂ 6= 0, then C(M2, M1; S) 6= ∅.Proof. If C(M2, M1; S) = ∅, then S = M1 ∪ M2, so
H∗(N

2, N0) = CH∗(S) ≈ CH∗(M1) ⊕ CH∗(M2)

= H∗(N
1, N0) ⊕ H∗(N

2, N1)and onsequently ∂ = 0.2. Simple onnetion matries. Reall that a �ltration of a vetorspae A is a sequene {Ai}n
i=0 of subspaes of A suh that

0 = A0 ⊂ A1 ⊂ · · · ⊂ An = A.A pair onsisting of a vetor spae and its �ltration is alled a �ltered vetorspae. Similarly, a graded vetor spae is a vetor spae A with a sequene
{Ai}

n
i=1 of subspaes of A suh that

A =

n⊕

i=1

Ai.Moreover, a grading {Ai}
n
i=1 of A is alled a splitting for the �ltration {Ai}n

i=0of A if
Ai =

i⊕

k=1

Akfor any 1 ≤ i ≤ n. Of ourse, the splitting is not unique.Definition 2.1. A �ltered di�erential vetor spae is a �ltered vetorspae A together with an endomorphism d suh that d2 = 0 and d preservesthe �ltration, i.e. dAi ⊂ Ai.If {Ai}
n
i=1 is a splitting of a �ltered di�erential vetor spae, then theondition that d is �ltration preserving is equivalent to the fat that theomponents of d in the diret sum deomposition dp,q : Aq → Ap satisfy

dp,q = 0 for eah p > q, whih means that the di�erential d written in theform of a usual matrix is triangular.A homomorphism of �ltered di�erential vetor spaes is any homomor-phism of vetor spaes h : A → Â suh that d̂h = hd and h preserves the�ltration, i.e. hAi ⊂ Âi. It is easy to see that �ltered di�erential vetor spaesand their homomorphisms form a ategory. Of ourse, if h : A → Â is a ho-momorphism of �ltered di�erential vetor spaes, then h indues homology



Simple onnetion matries 81homomorphisms
h : H(Ai/Aj) → H(Âi/Âj)for any j ≤ i. Furthermore, it follows from the �ve lemma that if h : H(A) →

H(Â) is an isomorphism, then so are all h : H(Ai/Aj) → H(Âi/Âj).It is high time to introdue the ruial de�nition of this paper.Definition 2.2. A �ltered di�erential vetor spae C is alled a simpleonnetion matrix if dCi ⊂ Ci−1.The requirement in the above de�nition onstitutes a signi�ant strength-ening of the ondition that d preserves the �ltration. Here are some elemen-tary properties of simple onnetion matries. For example, if {Ci}
n
i=1 is asplitting of the �ltered di�erential vetor spae C, then C is a simple onne-tion matrix if and only if the omponents of the di�erential d in the diretsum deomposition satisfy dp,q = 0 for eah p ≥ q, whih means that dtreated as a matrix is stritly triangular. Another onsequene of the lastde�nition is stated below.Proposition 2.3. If C is a simple onnetion matrix , then H(Ci/Ci−1)

= Ci/Ci−1 for eah 1 ≤ i ≤ n.Proof. Let d : Ci/Ci−1 → Ci/Ci−1 be the di�erential on the quotient.Sine dCi ⊂ Ci−1, we have ker d = Ci/Ci−1 and Im d = 0. Therefore
H(Ci/Ci−1) = ker d/Im d = Ci/Ci−1.Let us formulate the main result of this setion. This lemma states thatany �ltered di�erential vetor spae deomposes as A = B⊕C⊕dB, where Cis a simple onnetion matrix and the omponents Ci of C may be identi�edwith the relative homology H(Ai/Ai−1). Observe that assertions (1) and (4)below are nothing but the statements that {Ai}

n
i=1 is a splitting of A andthat C =

⊕n
i=1

Ci is a simple onnetion matrix respetively.Lemma 2.4 (Deomposition Lemma). For any �ltered di�erential vetorspae A there are graded vetor spaes {Ai}
n
i=1, {Bi}

n
i=1, {Ci}

n
i=1 suh thatfor eah 1 ≤ i ≤ n:(1) Ai = Ai−1 ⊕ Ai,(2) Ai = Bi ⊕ Ci ⊕ dBi,(3) the di�erential d maps Bi isomorphially onto dBi, i.e. Bi∩d−10 = 0,(4) dCi ⊂ Ci−1, where Ci−1 =

⊕i−1

k=1
Ck.Proof. Assume by indution that vetor spaes Ak, Bk, Ck exist for k ≤ iand satisfy onditions (1)�(4). The proof will be ompleted by onstrutingspaes Ai+1, Bi+1, Ci+1 satisfying (1)�(4).The diagram in Figure 1 shows the main idea of the onstrution. Theonstrution will be divided into three steps.
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Ai

dBi+1

Ci+1

Bi+1

-�
?

6

Ai+1

d−1Ai

Fig. 1. The idea of the proof of Lemma 2.4
Step 1. We �rst hoose Bi+1 to be any omplement to Ai+1 ∩ d−1Ai in

Ai+1, i.e.
Ai+1 = Bi+1 ⊕ (Ai+1 ∩ d−1Ai).By the de�nition of Bi+1:(i) Bi+1 ∩ d−10 = 0, i.e. d|Bi+1

is a monomorphism,(ii) dBi+1 ⊂ dAi+1 ∩ d−10 ⊂ Ai+1 ∩ d−1Ai,(iii) Ai ∩ dBi+1 = 0.

Step 2. Then we hoose Ci+1 to be a omplement to Ai ⊕ dBi+1 in
Ai+1 ∩ d−1Ai satisfying

dCi+1 ⊂ Ci.The existene of suh a omplement is equivalent to
Ai+1 ∩ d−1Ai = Ai + (Ai+1 ∩ d−1Ci).It is obvious that the right-hand side is a subset of the left-hand side. Thereverse inlusion may be dedued from the inlusion
Ai+1 ∩ d−1Ai ⊂ Bi + (Ai+1 ∩ d−1Ci),whih is justi�ed below. Let a ∈ Ai+1∩d−1Ai. By the indution assumption,there are b, e ∈ Bi and c ∈ Ci suh that

da = b + c + de.Hene
dBi ∋ db = d(−c) ∈ dCi ⊂ Ci.Sine Ci ∩ dBi = 0, we have db = 0, and onsequently b = 0, beause d|Biis a monomorphism. Then d(a − e) = c ∈ Ci, i.e. a − e ∈ Ai+1 ∩ d−1Ci. Wethus get

a = e + (a − e) ∈ Bi + (Ai+1 ∩ d−1Ci),whih ompletes the proof of the desired inlusion.
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Step 3. Finally, we de�ne

Ai+1 = Bi+1 ⊕ Ci+1 ⊕ dBi+1.It is easy to hek that Ai+1, Bi+1 and Ci+1 satisfy onditions (1)�(4).Definition 2.5. A subspae C of the �ltered di�erential vetor spae Ais alled a simple onnetion matrix for A if(1) C is a simple onnetion matrix,(2) the map i : H(C) → H(A) indued by the inlusion C ⊂ A isan isomorphism.It may be worth pointing out that in our ategory, C is a subspae of
A if the inlusion C ⊂ A preserves the �ltration, i.e. Cp ⊂ Ap. Moreover,from (2) and the �ve lemma, we see at one that if C is a simple onnetionmatrix for A, then i : H(Cp/Cq) → H(Ap/Aq) are isomorphisms for any
q ≤ p. In partiular,

H(Ap/Ap−1) = H(Cp/Cp−1) = Cp/Cp−1 = Cp.The following result is the most important onsequene of the abovedeomposition lemma.Theorem 2.6. There is a simple onnetion matrix for any �ltered dif-ferential vetor spae.Proof. Let A be a �ltered di�erential vetor spae and C =
⊕n

i=1
Ci beas in the assertion of the previous lemma, so C is a simple onnetion matrix.Sine A = B ⊕ C ⊕ dB and

H(A) =
ker d

Im d
=

(ker d|C) ⊕ dB

(Im d|C) ⊕ dB
=

ker d|C
Im d|C

= H(C),we see that the inlusion C ⊂ A indues an isomorphism i : H(C) → H(A)in homology, whih ompletes the proof.3. Appliations to dynamial systems. Let ∅ = N0 ⊂ N1 ⊂ · · · ⊂
Nn = N be a topologial �ltration. Let C(Nk) be the vetor spae of singularhains in Nk and ik : C(Nk) → C(N) be the homomorphism indued by theinlusion Nk ⊂ N.Definition 3.1. A simple onnetion matrix for the topologial �ltration
{Nk}n

i=0 is a simple onnetion matrix for the �ltered di�erential vetor spae
({ik(C(Nk))}n

i=0, d), where d is the boundary map on singular hains.Let X be a ompat metri spae.Definition 3.2. A simple onnetion matrix for a Morse deomposition
{Mi}

n
i=1 of X is a simple onnetion matrix for any index �ltration for thisMorse deomposition.



84 P. BartªomiejzykWe an now formulate two results onerning simple onnetion matriesfor Morse deompositions. The �rst one ensures their existene.Theorem 3.3. For any Morse deomposition of a ompat metri spae
X there exists a simple onnetion matrix.Proof. By Theorem 1.3, there is an index �ltration suh that N0 = ∅ and
Nn = X for any Morse deomposition of X. Hene the onstrution of thesimple onnetion matrix, as presented in this setion, poses no problem.It is easily seen that the simple onnetion matrix expresses the relation-ship between loal Conley indies of the Morse sets and the total Conleyindex of the whole isolated invariant set. A similar relationship is given byso-alled Morse inequalities (see for instane [11℄).The next result states that some information on the Morse deompositionmay be found using its simple onnetion matrix. Let C be a simple onne-tion matrix for the Morse deomposition and let {Ci}

n
i=1 be a splitting of C.As previously, let dp,q : Cq → Cp denote a omponent of the di�erential d.Theorem 3.4. If dp−1,p 6= 0, then C(Mp, Mp−1; X) 6= ∅.Proof. From the de�nition of the simple onnetion matrix for the Morsedeomposition {Mi}

n
i=1, we obtain the following ommutative diagram:

Cp
dp−1,p
−−−−→ Cp−1y

y

H∗(N
p, Np−1)

∂
−−−−→ H∗(N

p−1, Np−2)in whih the vertial maps are the anonial isomorphisms. Observe that
Np−2 ⊂ Np−1 ⊂ Np is an index triple for the attrator-repeller pair
(Mp−1, Mp) in Mp,p−1 and ∂ 6= 0, sine dp−1,p 6= 0. By Theorem 1.4 theset C(Mp, Mp−1; X) is nonempty.4. An example. It is not surprising that the simple onnetion matrixmay be represented geometrially in the plane using the so-alled Zeemandiagram ∆ (see Figure 4). This diagram was de�ned by E. C. Zeeman tostudy the information ontained in �ltered di�erential groups (see [12℄ formore details).The Zeeman diagram ∆ is the union of a olletion of unit squares in theplane. The number of these squares depends only on the length of the �ltra-tion. The union of any subolletion of squares in ∆ is alled a region of ∆.For example, the region to the left of the vertial line labeled Ai representsthe vetor subspae Ai in the �ltration. Similarly, the regions below the hori-zontal lines represent the vetor spaes dAi or d−1Ai. Sine the di�erential dis �ltration preserving, some squares in the diagram represent trivial spaes.



Simple onnetion matries 85In the original Zeeman diagram the regions represent the quotients of somegroups assoiated with the �ltered di�erential group, but in our diagram theregions represent the omponents in the diret sum deompositions of somevetor spaes.Sine the diagram o�ers a graphi and intuitive approah to simple on-netion matries, we will use it in the desription of the simple onnetionmatrix in our example. We emphasize that our goal is to present the form ofthe simple onnetion matrix for a well known dynamial system, and notto give any relevant appliations of the theory.
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Fig. 2. The dynamis of ϕ

Let ϕ be a �ow on the losed unit ball D2 in R2 with the dynamis as inFigure 2. Assume that X = D2 is an isolated invariant set and that
M1 = (0, 1), M2 = (0,−1), M3 = (1, 0), M4 = (−1, 0), M5 = (0, 0)form a Morse deomposition M of X. The index �ltration {N i}5

i=0 for M

P1

P2

P5

P3P4

6

-

c
c

Fig. 3. The index �ltration for Mmay be easily onstruted from the sets Pi shown in Figure 3 using theformula N i =
⋃i

k=0
Pk. It is understood that P0 = ∅. Moreover, a simple



86 P. Bartªomiejzykomputation shows that the loal Conley indies of the Morse sets are
CHk(M1) = CHk(M2) =

{
Q if k = 0,

0 otherwise,
CHk(M3) = CHk(M4) =

{
Q if k = 1,

0 otherwise,
CHk(M5) =

{
Q if k = 2,

0 otherwise,and the total Conley index of the whole set is
CHk(X) =

{
Q if k = 0,

0 otherwise.
6

-

B5

B4

B3

B2

B1

dB1

dB2

dB3

dB4

dB5

C5

C4

C3

C2

C1

A

d−1A4

d−1A3

d−1A2

d−1A1

d−1
0

dA

dA4

dA3

dA2

dA1

0
AA4A3A2A10

�

�

Fig. 4. The simple onnetion matrix for MFinally, an easy omparison of the above Conley indies shows that theZeeman diagram ∆ of the simple onnetion matrix for M is as in Figure 4.It is worth pointing out that our piture shows in fat not only the simpleonnetion matrix C =
⊕

5

i=1
Ci, but muh more, namely, the full deompo-sition of the �ltered di�erential vetor spae in the notation of 2.4. Observethat the arrows represent the only nonzero omponents of the di�erential d,i.e. the maps d4,5 and d2,3. The important point to note here is the form of the



Simple onnetion matries 87relation between the loal indies represented as the olumns Ci = CH∗(Mi)and the total index CH∗(X) represented as the row just below the x-axis.
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