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Modularity of a nonrigid Calabi�Yau manifoldwith bad redu
tion at 13by Grzegorz Kapustka and Michał Kapustka (Kraków)Abstra
t. We identify the weight four newform of a modular Calabi�Yau manifoldstudied by Hulek and Verrill. The main obsta
le is that this Calabi�Yau manifold is notrigid and has bad redu
tion at prime 13. Repla
ing the original �ber produ
t of ellipti
�brations with a �berwise Kummer 
onstru
tion we redu
e the problem to studying themodularity of a rigid Calabi�Yau manifold with good redu
tion at primes p ≥ 5.1. Introdu
tion. Consider the following ellipti
 �brations:
E(Γ (3)) := {((t0, t1), (x, y, z)) ∈ P

1 × P
2 : (x3 + y3 + z3)t0 = 3xyzt1},

E(1:−3:−3) := {((t0, t1), (x, y, z)) ∈ P
1 × P

2 :

(x + y + z)(xy − 3(xz + yz))t0 = xyzt1}.By the results of S
hoen ([S℄), the �ber produ
t
Y := E(1:−3:−3) × EMt(Γ (3)),where EMt(Γ (3)) is the twist of E(Γ (3)) by the automorphism Mt =

(t+7)/8, has nodes as only singularities and its small resolution Ŷ is a (non-proje
tive) Calabi�Yau manifold with h12(Ŷ ) = 1. Hulek and Verrill [HV℄gave a method to prove the modularity of nonrigid Calabi�Yau manifoldsbased on the existen
e of many ellipti
 ruled surfa
es. Using this methodthey proved the modularity of Ŷ . More pre
isely, they showed that the
L-series of Ŷ has the form

L(Ŷ , s) = L(g4, s)L(g2, s − 1),where g2 is the unique newform of weight 2 and level 13, and g4 is somenewform of weight 4. They also gave numeri
al eviden
e that g4 is a newformof level 27 (27k4B in Stein's notation [St℄). Let us point out that 13 is a2000 Mathemati
s Subje
t Classi�
ation: 14G10, 14J32.Key words and phrases: Calabi�Yau, modular forms, double 
overings.The proje
t is 
o-�nan
ed from the European Union funds and national budget.[89℄
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tion for Ŷ , but it does not divide the level of the weight 4newform.Our main goal is to prove that g4 is the predi
ted newform. In fa
t,we shall 
onsider an auxiliary Calabi�Yau manifold 
onstru
ted by taking�berwise the quotient by the natural involution. We 
an easily 
he
k thatthe resulting Kummer �bration is birational to the double 
over X of P
3(with 
oordinates x, y, z, t) bran
hed along the o
ti
 surfa
e

−3y(8z + y − 8t)(x + t)(y2 − 4yz − 8ty − 12z2)(x3 − 3tx2 + 4z3) = 0.In Se
tion 2, we shall prove that X admits a nonproje
tive smooth model
X̂, whi
h is a rigid Calabi�Yau manifold. Using the Faltings�Serre�Livnémethod we prove in Se
tion 3 that X̂ is modular with the newform 27k4B.Sin
e there is a generi
ally 2:1 
orresponden
e Ŷ 99K X̂, this proves thepredi
ted form of the L-series of Ŷ (see Corollary 3.3). The advantage ofrepla
ing the �ber produ
t by the Kummer �bration is that, after takingthe quotient by the involution, 13 be
omes a prime of good redu
tion, whi
hdrasti
ally simpli�es the 
omputations.A
knowledgements. We would like to express our gratitude to Sªa-womir Cynk for introdu
ing us to the subje
t and for his enormous help inea
h aspe
t of the work on this paper.2. Double o
ti
. In this se
tion, we shall study the smooth model ofthe double 
over of P

3 bran
hed along the o
ti
 surfa
e
−3y(8z + y − 8t)(x + t)(y2 − 4yz − 8ty − 12z2)(x3 − 3tx2 + 4z3) = 0.Let us denote the singular double 
over by X, and the 
omponents of thebran
h lo
us by H1, H2, H3, C2, C3 respe
tively.Proposition 2.1. The variety X has a nonsingular (nonproje
tive)model that is a rigid Calabi�Yau manifold with Euler 
hara
teristi
 48. More-over X has a partial resolution whi
h is a nodal proje
tive Calabi�Yau varietywith 10 nodes.Before the proof, let us study expli
itly a suitable resolution of X. Let us�rst write down all singularities of X. They all 
orrespond to singularities ofthe bran
h lo
us. On this bran
h lo
us there are 20 double 
urves, 5 fourfoldpoints and 18 triple points. Let ε and ε2 be the two nontrivial 
omplex thirdroots of unity.Fourfold points:

P1 = (1 : 0 : 0 : 0): The vertex of the quadri
 
one. It is a double point of
C2 and lies on the hyperplanes H1 and H2.
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P2 = (0 : 1 : 0 : 0): The vertex of the 
ubi
 
one. It is a triple point of C3and lies on H3.
P3 = (−1 : 0 : 1 : 1): The interse
tion of H1, H2, H3; it lies also on C3.
P4 = (0 : 0 : 0 : 1): The interse
tion of H1, C2 and C3. It is a double pointof C3.
P5 = (0 : 8 : 0 : 1): The interse
tion of H2, C2 and C3. It is a double pointof C3.Double lines:
L1, L2, L3: The lines H1 ∩ H2, H1 ∩ H3, H2 ∩ H3.
LT : The tangen
y line of H1 and C2.
L21a, L21b: The two 
omponents of the interse
tion H2 ∩ C2.
L32: The 
oni
 whi
h is the interse
tion H3 ∩ C2.
L31a, L31b, L31c: The three lines that are 
omponents of the interse
tion

H3 ∩ C3, where we denote by L31c the line passing through P3.
K1: The 
ubi
 H1 ∩ C3. It has a 
usp at P4.
K2: The 
ubi
 H2 ∩ C3. It has a 
usp at P5.
S: The sexti
 C2 ∩C3. It has two 
usps at P4 and P5 and two nodes, whi
hwe denote by N1 and N2.
D: The double line of the 
ubi
 
one C3.Triple points:
H1 ∩ H2 ∩ C3: One triple point, whi
h we denote by Q. It is a tangen
ypoint of the line L1 with C3. It has 
oordinates (2, 0, 1, 1), hen
e is arational point.
H3 ∩ C2 ∩ C3: Four triple points. Two of them are transversal triple pointsand two of them (denoted by M1, M2) are tangen
y points of thelines L31a and L31b with C3. The tangen
y points have 
oordinates

M1 = (−1, 4+2ε, ε, 1) and M2 = (−1, 4+2ε2, ε2, 1), hen
e they lie onthe lines P1N1 and P2N2 respe
tively.
H1 ∩ C2 ∩ C3 and H1 ∩ C2 ∩ H3: Two triple points, whi
h we denote by

T1 and T2, with 
oordinates (−1, 0, 0, 1) and (3, 0, 0, 1). They are nottransversal, sin
e H1 is tangent to C2.
H1 ∩ H3 ∩ C3: Two transversal triple points.
H2 ∩ H3 ∩ C3: Two transversal triple points.
H2 ∩ H3 ∩ C2: Two transversal triple points.
H2 ∩ C2 ∩ C3: Three transversal triple points.To 
onstru
t the resolution of X, we �rst blow up the fourfold pointson the bran
h lo
us. Then we blow up all double 
urves that appeared onthe proper transform of the bran
h lo
us and take the double 
over of theresulting blow up of P

3 bran
hed over the proper transform of the bran
hlo
us. We denote the resulting variety by X̌.



92 G. Kapustka and M. KapustkaLet us look at the resolution of the singular points of the bran
h lo
us.We �rst blow up the fourfold points:
P1: After blowing up P1, the proper transforms of the bran
h divisorinterse
t the ex
eptional divisor in two lines meeting in a point anda 
oni
 tangent to one of these lines at another point and inter-se
ting the se
ond line transversely. In parti
ular the double 
urvesof the proper transform of the bran
h divisor do not meet on theex
eptional divisor.
P2: After blowing up P2, the proper transforms of the bran
h divisor in-terse
t the ex
eptional divisor in a line and a 
uspidal 
oni
 meetingin three points. Here the double 
urves of the proper transform ofthe bran
h divisor also do not meet on the ex
eptional divisor.
P3: After blowing up P3, the proper transforms of the bran
h divisorinterse
t the ex
eptional divisor in four lines no three meeting ina point. As before, the double 
urves of the proper transform ofthe bran
h lo
us are disjoint in a neighborhood of the ex
eptionaldivisor.
P4: After blowing up P5, the proper transform of the 
ubi
 
one is tan-gent to the ex
eptional divisor along a line. The proper transforms ofthe remaining two 
omponents of the bran
h lo
us passing through

P5 meet ea
h other transversely in another line on the ex
eptionaldivisor. Hen
e we obtain a new double 
urve on the bran
h lo
us,and we denote it by B.
P5: After blowing up P4, the proper transform of the 
ubi
 
one is tan-gent to the ex
eptional divisor along a line. The proper transforms ofthe remaining two 
omponents of the bran
h lo
us passing through

P4 meet the ex
eptional divisor in two more lines.After performing these blowings up, we obtain P
3 blown up at �ve pointsand as the bran
h lo
us a surfa
e without fourfold points. The bran
h lo
usis the union of H1 blown up at three points, H2 blown up at three points,

H3 blown up at two points, C2 blown up at its vertex and two more points,and C3 blown up at its vertex and three more points. Next we blow up alldouble 
urves on this new bran
h lo
us. Note that all of them are rational
urves and all ex
ept S̃, the transform of S, are smooth. There are 15 ofthem in
luding B; however, we will need to blow up LT twi
e (this meansthat after blowing up LT the proper transforms of the 
one C2 and thehyperplane H1 will still interse
t in a line on the ex
eptional divisor). Afterthese blowings up we obtain P
3 blown up at �ve points and transformed bya sequen
e of 15 blowings up of smooth rational 
urves and the blow up ofa rational 
urve with two nodes. Observe that this threefold has two nodeslying outside the bran
h lo
us; these are nodes that appeared after blowing
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 S̃. The proper transform of the bran
h lo
us by thistransformation is a surfa
e without double 
urves and triple points. On theproper transform of C3, when blowing up B, one node appears, while blowingup the proper transform of D yields two nodes. After the �rst blowings upof lines passing through Q, M1 and M2, three more nodes appear. Hen
e X̌is a nodal variety with ten nodes. We take the small resolution of the nodesand denote the resulting manifold (it is no more proje
tive) by X̂.Proof of Proposition 2.1. As in the above resolution of singularities weused only blowings up of fourfold points, double 
urves and a small resolutionof nodes, the resolution X̂ 7→ X is 
repant. From the adjun
tion formula,we dedu
e that X̂ is a Calabi�Yau variety.To 
ompute the Euler 
hara
teristi
 we follow the above 
onstru
tion.The Euler 
hara
teristi
 of the transformed P
3 is

χ(P̃3) = 4 + 5 · 2 + 15 · 2 + 1 · 0 = 44.To 
ompute the Euler 
hara
teristi
 of the bran
h lo
us we need only observethat ea
h blown up 
urve di�erent from B blows up one 
omponent of thebran
h lo
us at ea
h triple point through whi
h it passes. The number ofblowings up at triple points is 19, moreover the ex
eptional divisor on C3after blowing up B is also a line. This shows that the Euler 
hara
teristi
of the bran
h lo
us is 15 + (3 + 3 + 2 + 3 + 4) + 19 + 1 = 50. The Euler
hara
teristi
 of X̌ is thus 2 ∗ 44 − 50 = 38. Taking a small resolution ofthe 10 nodes on the double 
over X̌ we obtain a smooth variety X̂ with
χ(X̂) = 48.The Hodge number h12 of the Calabi�Yau manifold X̂ equals the dimen-sion of the spa
e of in�nitesimal deformations. By [CvS℄ it is the dimensionof the spa
e of equisingular deformations of the bran
h lo
us in P

3. We willprove that this spa
e has dimension 0, hen
e X is rigid. Let us 
hoose a 
oor-dinate system on P
3 su
h that the points P1, P2, P3, P5 and M1 
orrespondto (1 : 0 : 0 : 0), (0 : 1 : 0 : 0), (0 : 0 : 1 : 0), (0 : 0 : 0 : 1), (1 : 1 : 1 : 1).The in
iden
e and tangen
y 
onditions for the 
omponents of the bran
hlo
us yield a system of equations in the 
oe�
ients. Dire
t 
omputations withSINGULAR ([GPS℄) show that the system has a �nite number of solutions.3. Modularity. In this se
tion, we shall prove the modularity of theCalabi�Yau manifold X̂. Sin
e X̂ is not proje
tive, the modulo p redu
tionsare not algebrai
 varieties. We 
an instead study the Galois a
tion on themiddle 
ohomology of the big resolution X̃ of X as this 
ohomology group
an be naturally identi�ed with H3(X̂).Theorem 3.1. The Calabi�Yau manifold X̂ is modular with 
usp formof weight 4 and level 27.



94 G. Kapustka and M. KapustkaWe will use the method of Faltings�Serre�Livné. First we 
ompute thebad primes for our variety. Observe that the only 
andidates are 2, 3 and 13.Lemma 3.2. The redu
tion of X̃ modulo 13 is smooth.Proof. Redu
tion modulo 13 of the plane H2 passes through the points
M1 = (−1,−3, 3, 1) and N1 = (2,−3, 3, 1). The bran
h lo
us around M1 is

(8z + y − 8t)(x + t)(x3 − 3x2t + 4z3)(y2 − 4yz − 8yt − 12z2) = 0,hen
e it is a fourfold point.Changing 
oordinates, the bran
h lo
us takes the form
yx(y2 + 6yz + 6z2 + 5z)(x3 + 4z3 − 6x2 − 3z2 − 4x + 4z) = 0.After blowing up the line {x = 0, y = 0} we have two a�ne 
harts. In oneof them the bran
h lo
us is

y(x2y2 + 6xyz + 6z2 + 5z)(x3 + 4z3 − 6x2 − 3z2 − 4x + 4z) = 0.This is the equation of a transversal triple point at (0, 0, 0), thus the sin-gularity is resolved by further blowings up. In the se
ond a�ne 
hart thebran
h lo
us is
x(y2 + 6yz + 6z2 + 5z)(x3y3 + 4z3 − 6x2y2 − 3z2 − 4xy + 4z) = 0.Observe that the interse
tion

{x = 0} ∩ {x3y3 + 4z3 − 6x2y2 − 3z2 − 4xy + 4z = 0}splits into smooth and disjoint pie
es. Only one of them needs to be 
onsid-ered more throughly. Blowing up the line {x = 0, z = 0} we get one a�nepie
e of the bran
h lo
us given by
(y2 + 6xyz + 6x2z2 + 5xz)(x2y3 + 4x2z3 − 6xy2 − 3xz2 − 4y + 4z) = 0,the other a�ne pie
e 
ontains only normal 
rossings. If we blow up theinterse
tion of the above parts over (0, 0, 0) we obtain a node on P

3 in
identwith a node on the 
orresponding 
omponent of the bran
h lo
us. Taking adouble 
over we obtain a singularity that is not a node, but it is resolvedby blowing up the point. Hen
e over the �eld F13 the singularity over M1 isalso resolved.Over N1 the situation is similar. After blowing up the line M1N1 ⊂
H2 ∩ C2 and the remaining singular interse
tion we obtain a node on P

3lying on the bran
h lo
us. We blow up the point and take the double 
overobtaining a smooth surfa
e.Proof of Theorem 3.1. Sin
e the redu
tion of X̃ modulo p is smoothfor any prime p ≥ 5, it remains to 
ompute the number of points on theredu
tions X̃p of X̃ to Fp for primes p ∈ {5, 7, 11, 13, 17, 19, 23}. In these
ases we 
an 
ompute the number of points on Xp using a C++ program,then 
ompute the number of points added during the resolution. For p =
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13 the situation is di�erent than in other 
ases. However, in the methodof Faltings�Serre�Livné we 
an repla
e 13 by 37, hen
e from now on weassume p 6= 13. We will 
ount separately the number of points added on theex
eptional lo
us of ea
h blowing up.We �rst 
ount the number of points added when blowing up the fourfoldpoints. The method is to look at the number of points on proper transformsof lines lying on the ex
eptional divisors and passing through a 
hosen point.They are all double 
overings of lines, hen
e have 1, p + 1 or 2p + 1 pointsdepending on the indu
ed equations of the bran
h lo
i. Expli
it 
omputationsyield

♯EP1
=





(p − 2)(p + 1) + 2(p + 1) + 2p + 1 = p2 + 2p + 1if −3 is a square mod p,
(p − 2)(p + 1) + 2(p + 1) + 1 = p2 + 1if −3 is not a square mod p,

♯EP2
=





(p − 2)(p + 1) + 3(2p + 1) − 2p = p2 + 3p + 1if −3 is a square modulo p,

p(p + 1) + (2p + 1) − 2p = p2 + p + 1if −3 is not a square modulo p,

♯EP3
= p(p + 1) + 2p + 1 − p = p2 + 2p + 1,

♯EP4
= 2p2 + 1,

♯EP5
= 2(p + 1) + (2p + 1)

p − 1

2
+

p − 1

2
− p = p2 + p + 1.In addition to the above, we also need to 
ount the points on the ex
ep-tional lo
i of the blowings up of all 
urves.If we blow up a transversal double 
urve, we produ
e a 
oni
 bundle oversome P

1, where the �bers over triple points are lines. This gives p2 + p newpoints for 13 transversal blowings up, together 13(p2 + p) new points.If we blow up the tangen
y line, we get a double 
over of P
1 × P

1 with
oordinates ((a : b), (c : d)) bran
hed over the 
urve
−3c2(a − b)(a − 3b) = 0.This adds p2 + p points. The next blow up will be transversal.On the blow up of D we have p2 +p new points, sin
e the equation of thebran
h lo
us on the ex
eptional lo
us of the blow up is given by the produ
tof two lines and the square of the se
tion.On the blow up of S the number of added points is p times the numberof points on the 
urve S. We know that resolving the singularities on S weget a smooth rational 
urve, hen
e 
onsisting of p + 1 points. However, byresolving a nodal 
urve over Fp we meet two possibilities. Either there appear



96 G. Kapustka and M. Kapustkatwo new points over the node or there are no points over it (i.e. we have lostone point by taking the resolution).We have several possibilities:
• There were no nodes on S. This happens if −3 is not a square mod p.Then the number of points is the same as the number of points on theresolution, thus equals p + 1.
• There were two nodes on S and after blowing them up we get twopoints over ea
h. This happens when both ε−1 and ε2−1 are squares.Then the number of points on S is p − 1.
• There were two nodes on S and after blowing them up we loose thetwo points. This happens when neither ε− 1 nor ε2 − 1 is a square. Inthis 
ase the number of points on S is p + 3.
• There were two nodes, one of whi
h vanished after the resolution andthe other has been repla
ed by two points. This happens when exa
tlyone of ε− 1, ε2 − 1 is a square. The number of points on S in this 
aseis p + 1.Taking all the above into 
onsideration, we 
an give the number of pointsadded before the small resolution of nodes:

♯(X̌p) − ♯(Xp) =





22p2 + 24p if −3 is a square mod p and exa
tly one of
ε − 1, ε2 − 1 is a square,

22p2 + 22p if −3 is a square mod p and both
ε − 1, ε2 − 1 are squares,

22p2 + 26p if −3 is a square mod p and none of
ε − 1, ε2 − 1 is a square,

22p2 + 20p if −3 is not a square mod p.We next need to resolve the nodes that appeared on X̌. For this purpose,we perform a straightforward 
omputation of the lo
al equations of the nodesto de
ide how many points are added during the resolution.We �rst 
he
k the 
omplex nodes over the triple point Q. In this 
ase weadd {
p2 + 2p if −1 is a square mod p,
p2 if −1 is not a square mod p.Three more nodes appear while blowing up B and D. We 
an 
omputethat resolving ea
h of these nodes we always add p2 + 2p new points.Next, we 
he
k the nodes over M1 and M2. The points M1 and M2 haverational 
oordinates depending on the rationality of ε. The latter is rationalif and only if −3 is a square in Fp.
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h −3 is a square, resolving the nodes M1 and M2 adds




2(p2 + 2p) if 3 − ε, 3 − ε2 are squares mod p,
p2 + 2p + p2 if exa
tly one of 3 − ε, 3 − ε2 is a square mod p,
2p2 if none of 3 − ε, 3 − ε2 is a square mod p.We also have four 
omplex nodes that appeared outside the bran
h lo
uswhen blowing up the 
urve S. For this 
ase there are three possibilities:

• There are no rational nodes; this happens if −3 is not a square or thevalue of the polynomial de�ning the bran
h lo
us is not a square atthese points. That o

urs when none of 5ε − 2, 5ε2 − 2 is a squaremod p.
• There are two rational nodes; this happens if the value of the polyno-mial de�ning the bran
h lo
us at one of the nodes is a square. Thato

urs when exa
tly one of 5ε − 2, 5ε2 − 2 is a square mod p.
• There are four rational nodes; this happens if the value of the polyno-mial de�ning the bran
h lo
us at both nodes is a square. That o

urswhen both 5ε − 2, 5ε2 − 2 are squares mod p.Moreover, for ea
h of these 
ases the resolution of the nodes adds either

p2 +2p or p2 new points. The a
tual 
ase is determined by the answer to thequestion: �Is 1 − ε a square mod p ?�.Hen
e the number of points added by taking the big resolution X̃ of Xdepends on p in the following way.Let
f(p) =

(
3 − ε

p

)
+

(
3 − ε2

p

)
+

(
1 +

(
5ε − 2

p

))
·

(
1 − ε

p

)

+

(
1 +

(
5ε2 − 2

p

))
·

(
1 − ε2

p

)
−

(
ε − 1

p

)
−

(
ε2 − 1

p

)
,where (

a
b

) is the Legendre symbol. Then
♯(X̃p)−♯(Xp) =





26p2 + 28p if −3 is not a square mod p,
28p2 +34p+f(p)p if −3 is a square mod p and noneof 5ε − 2, 5ε2 − 2 is a square mod p,
30p2 +36p+f(p)p if −3 is a square mod p and oneof 5ε − 2, 5ε2 − 2 is a square mod p,
32p2 +38p+f(p)p if −3 is a square mod p and both

5ε − 2, 5ε2 − 2 are squares mod p.The following table presents the expli
it numbers needed in the methodof Faltings�Serre�Livné:
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p ♯(Xp) ♯(X̃p) ap5 191 981 −157 439 2273 −2511 1559 5013 1537 53674 96076 −43017 5564 13554 −7219 7504 18258 223 13340 27738 −114Comparing the values of ♯(X̃p) with the 
oe�
ients ap of the 
usp formfrom [St℄ we 
on
lude the proof of the modularity of X̂.Using the 2:1 
orresponden
e Ŷ 99K X̂ we obtain the following.Corollary 3.3. The variety Ŷ is a modular Calabi�Yau manifold withthe L-series L(Ŷ , s) = L(g4, s)L(g2, s−1), where g2 is the unique newform ofweight 2 and level 13, and g4 is the newform 27k4B of weight 4 and degree 27.
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