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Modularity of a nonrigid Calabi—Yau manifold
with bad reduction at 13

by GRZEGORZ KAPUSTKA and MICHAL KAPUSTKA (Krakéw)

Abstract. We identify the weight four newform of a modular Calabi—Yau manifold
studied by Hulek and Verrill. The main obstacle is that this Calabi—Yau manifold is not
rigid and has bad reduction at prime 13. Replacing the original fiber product of elliptic
fibrations with a fiberwise Kummer construction we reduce the problem to studying the
modularity of a rigid Calabi—Yau manifold with good reduction at primes p > 5.

1. Introduction. Consider the following elliptic fibrations:
g(F(3)) = {((t()vtl)v (:Ev Y, Z)) € Pl X IPQ: (ZES + y3 + Zg)to = 3$th1})

5(1:_3:_3) = {((toa tl)a (:Ca Y, Z)) € Pl X Pz:
(x+y+2)(xy — 3(xz + yz))to = xyzt1}.
By the results of Schoen ([S]), the fiber product
Y= g(l:—3:—3) X th(F(3)),

where EMY(I'(3)) is the twist of £(I'(3)) by the automorphism Mt =
(t-+7)/8, has nodes as only singularities and its small resolution Y is a (non-
projective) Calabi-Yau manifold with h'2(Y) = 1. Hulek and Verrill [HV]
gave a method to prove the modularity of nonrigid Calabi—Yau manifolds
based on the existence of many elliptic ruled surfaces. Using this method
they proved the modularity of Y. More precisely, they showed that the
L-series of Y has the form

L(Y,s) = L(ga,s)L(g2, s — 1),

where gy is the unique newform of weight 2 and level 13, and g4 is some
newform of weight 4. They also gave numerical evidence that g4 is a newform
of level 27 (27k4B in Stein’s notation [St]). Let us point out that 13 is a
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prime of bad reduction for l/}, but it does not divide the level of the weight 4
newform.

Our main goal is to prove that g4 is the predicted newform. In fact,
we shall consider an auxiliary Calabi—Yau manifold constructed by taking
fiberwise the quotient by the natural involution. We can easily check that
the resulting Kummer fibration is birational to the double cover X of P3
(with coordinates x, y, z, t) branched along the octic surface

—3y(8z +y — 8t)(x +t)(y? — dyz — 8ty — 1222) (a3 — 3tz? + 42%) = 0.

In Section 2, we shall prove that X admits a nonprojective smooth model
X , which is a rigid Calabi-Yau manifold. Using the Faltings—Serre-Livné
method we prove in Section 3 that X is modular with the newform 27k4B.
Since there is a generically 2:1 correspondence Y --+ X, this proves the
predicted form of the L-series of Y (see Corollary 3.3). The advantage of
replacing the fiber product by the Kummer fibration is that, after taking
the quotient by the involution, 13 becomes a prime of good reduction, which
drastically simplifies the computations.

Acknowledgements. We would like to express our gratitude to Sta-
womir Cynk for introducing us to the subject and for his enormous help in
each aspect of the work on this paper.

2. Double octic. In this section, we shall study the smooth model of
the double cover of P3 branched along the octic surface

—3y(8z 4+ y — 8t)(z + t)(y? — dyz — 8ty — 122?)(2® — 3tz? + 423) = 0.

Let us denote the singular double cover by X, and the components of the
branch locus by Hi, Hy, Hs, Co, Cs respectively.

PROPOSITION 2.1. The wvariety X has a nonsingular (nonprojective)
model that is a rigid Calabi—Yau manifold with Euler characteristic 48. More-
over X has a partial resolution which is a nodal projective Calabi—Yau variety
with 10 nodes.

Before the proof, let us study explicitly a suitable resolution of X. Let us
first write down all singularities of X. They all correspond to singularities of
the branch locus. On this branch locus there are 20 double curves, 5 fourfold
points and 18 triple points. Let € and €2 be the two nontrivial complex third
roots of unity.

Fourfold points:

P, =(1:0:0:0): The vertex of the quadric cone. It is a double point of
C5 and lies on the hyperplanes Hi and Hs.
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P, =(0:1:0:0): The vertex of the cubic cone. It is a triple point of Cj
and lies on Hs.

P3=(—1:0:1:1): The intersection of Hy, Hy, Hs; it lies also on Cs.

Py =(0:0:0:1): The intersection of H;, Cy and Cj3. It is a double point
of Cg.

Ps = (0:8:0:1): The intersection of Hy, Cy and Cj3. It is a double point
of Cj.

Double lines:

Ly, Lo, L3: The lines H; N Hy, Hy N H3, Hy N Hs.

Lp: The tangency line of H; and Cs.

Lo1a, Lo1p: The two components of the intersection Ho N Ch.

Lso: The conic which is the intersection Hz N Cs.

L31a, L31p, L31e: The three lines that are components of the intersection
Hj3 N C3, where we denote by L3j. the line passing through Ps.

Ky: The cubic Hy N C5. It has a cusp at Pjy.

K5: The cubic Hy N (5. It has a cusp at Ps.

S: The sextic Cy N C3. It has two cusps at P4 and P5 and two nodes, which
we denote by N1 and Ns.

D: The double line of the cubic cone Cj.

Triple points:

Hy N Hs N Cs: One triple point, which we denote by Q. It is a tangency
point of the line Ly with C5. It has coordinates (2,0,1,1), hence is a
rational point.

Hs; N CyNCs: Four triple points. Two of them are transversal triple points
and two of them (denoted by Mj, Ms) are tangency points of the
lines Ls1, and Lgip with Cs. The tangency points have coordinates
My = (—1,4+2¢,6,1) and Mo = (—1,4+2¢2,£2,1), hence they lie on
the lines P N1 and P> Ns respectively.

HiNnCyNCs and Hy N Cy N Hs: Two triple points, which we denote by
Ty and T, with coordinates (—1,0,0,1) and (3,0,0,1). They are not
transversal, since H; is tangent to Cj.

Hi N Hy N C5: Two transversal triple points.

Hy N H3N C3: Two transversal triple points.

Hs N H3NCy: Two transversal triple points.

Ho N CyN Cs: Three transversal triple points.

To construct the resolution of X, we first blow up the fourfold points
on the branch locus. Then we blow up all double curves that appeared on
the proper transform of the branch locus and take the double cover of the
resulting blow up of P3 branched over the proper transform of the branch
locus. We denote the resulting variety by X.
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Let us look at the resolution of the singular points of the branch locus.
We first blow up the fourfold points:

Py: After blowing up P;, the proper transforms of the branch divisor
intersect the exceptional divisor in two lines meeting in a point and
a conic tangent to one of these lines at another point and inter-
secting the second line transversely. In particular the double curves
of the proper transform of the branch divisor do not meet on the
exceptional divisor.

P;,: After blowing up Ps, the proper transforms of the branch divisor in-
tersect the exceptional divisor in a line and a cuspidal conic meeting
in three points. Here the double curves of the proper transform of
the branch divisor also do not meet on the exceptional divisor.

P3: After blowing up P53, the proper transforms of the branch divisor
intersect the exceptional divisor in four lines no three meeting in
a point. As before, the double curves of the proper transform of
the branch locus are disjoint in a neighborhood of the exceptional
divisor.

Py: After blowing up Ps, the proper transform of the cubic cone is tan-
gent to the exceptional divisor along a line. The proper transforms of
the remaining two components of the branch locus passing through
P5 meet each other transversely in another line on the exceptional
divisor. Hence we obtain a new double curve on the branch locus,
and we denote it by B.

Ps5: After blowing up Py, the proper transform of the cubic cone is tan-
gent to the exceptional divisor along a line. The proper transforms of
the remaining two components of the branch locus passing through
P, meet the exceptional divisor in two more lines.

After performing these blowings up, we obtain P3 blown up at five points
and as the branch locus a surface without fourfold points. The branch locus
is the union of H; blown up at three points, Hy blown up at three points,
Hj3 blown up at two points, Cy blown up at its vertex and two more points,
and C3 blown up at its vertex and three more points. Next we blow up all
double curves on this new branch locus. Note that all of them are rational
curves and all except S, the transform of S, are smooth. There are 15 of
them including B; however, we will need to blow up Ly twice (this means
that after blowing up Lp the proper transforms of the cone C3 and the
hyperplane H; will still intersect in a line on the exceptional divisor). After
these blowings up we obtain P2 blown up at five points and transformed by
a sequence of 15 blowings up of smooth rational curves and the blow up of
a rational curve with two nodes. Observe that this threefold has two nodes
lying outside the branch locus; these are nodes that appeared after blowing
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up the nodal sextic S. The proper transform of the branch locus by this
transformation is a surface without double curves and triple points. On the
proper transform of C'3, when blowing up B, one node appears, while blowing
up the proper transform of D yields two nodes. After the first blowings up
of lines passing through @, M; and M,, three more nodes appear. Hence X
is a nodal variety with ten nodes. We take the small resolution of the nodes
and denote the resulting manifold (it is no more projective) by X.

Proof of Proposition 2.1. As in the above resolution of singularities we
used only blowings up of fourfold points, double curves and a small resolution
of nodes, the resolution X — X is crepant. From the adjunction formula,
we deduce that X is a Calabi-Yau variety.

To compute the Euler characteristic we follow the above construction.
The Euler characteristic of the transformed P?3 is

X(P3) =4+45-2415-241-0 = 44.

To compute the Euler characteristic of the branch locus we need only observe
that each blown up curve different from B blows up one component of the
branch locus at each triple point through which it passes. The number of
blowings up at triple points is 19, moreover the exceptional divisor on Cj
after blowing up B is also a line. This shows that the Euler characteristic
of the branch locus is 154+ (3+3+2+3+4) 4+ 19+ 1 = 50. The Euler
characteristic of X is thus 2 % 44 — 50 = 38. Taking a small resolution of
the 10 nodes on the double cover X we obtain a smooth variety X with
X(X) = 48.

The Hodge number h'2 of the Calabi-Yau manifold X equals the dimen-
sion of the space of infinitesimal deformations. By [CvS] it is the dimension
of the space of equisingular deformations of the branch locus in P3. We will
prove that this space has dimension 0, hence X is rigid. Let us choose a coor-
dinate system on P2 such that the points P, P, P3, Ps and M; correspond
t0o(1:0:0:0),(0:1:0:0),(0:0:1:0),(0:0:0:1),(L:1:1:1).

The incidence and tangency conditions for the components of the branch
locus yield a system of equations in the coefficients. Direct computations with
SINGULAR (|GPS]) show that the system has a finite number of solutions. =

3. Modularity. In this section, we shall prove the modularity of the
Calabi-Yau manifold X. Since X is not projective, the modulo p reductions
are not algebraic varieties. We can instead study the Galois action on the
middle cohomology of the big resolution X of X as this cohomology group
can be naturally identified with H3(X).

THEOREM 3.1. The Calabi—Yau manifold X is modular with cusp form
of weight 4 and level 27.
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We will use the method of Faltings—Serre-Livné. First we compute the
bad primes for our variety. Observe that the only candidates are 2, 3 and 13.

LEMMA 3.2. The reduction of)A(: modulo 13 is smooth.

Proof. Reduction modulo 13 of the plane Hs passes through the points
M; =(-1,-3,3,1) and N; = (2,-3,3,1). The branch locus around M is

(82 4+ 1y — 8t)(x +t)(x® — 32°t + 42%) (y* — dyz — Syt — 122%) = 0,

hence it is a fourfold point.
Changing coordinates, the branch locus takes the form

yr(y® + 6yz + 622 + 52)(a + 42° — 622 — 322 — 4o + 42) = 0.

After blowing up the line {x = 0,y = 0} we have two affine charts. In one
of them the branch locus is

y(x?y? 4 6xyz + 622 + 52) (2 + 423 — 62% — 322 — 4z + 42) = 0.

This is the equation of a transversal triple point at (0,0,0), thus the sin-
gularity is resolved by further blowings up. In the second affine chart the
branch locus is

z(y? + 6yz 4 62° + 52)(23y> + 423 — 622y% — 322 — day + 42) = 0.
Observe that the intersection
{z =0} N {a3y3 + 423 — 62%9* — 32% — day + 42 = 0}

splits into smooth and disjoint pieces. Only one of them needs to be consid-
ered more throughly. Blowing up the line { = 0,z = 0} we get one affine
piece of the branch locus given by

(y? 4 6zyz + 62222 + 52) (22y® + 42223 — 62y® — 3222 — 4y + 42) = 0,

the other affine piece contains only normal crossings. If we blow up the
intersection of the above parts over (0,0, 0) we obtain a node on P? incident
with a node on the corresponding component of the branch locus. Taking a
double cover we obtain a singularity that is not a node, but it is resolved
by blowing up the point. Hence over the field Fi3 the singularity over M is
also resolved.

Over Ni the situation is similar. After blowing up the line M1N; C
Hy N Cy and the remaining singular intersection we obtain a node on P3
lying on the branch locus. We blow up the point and take the double cover
obtaining a smooth surface. m

Proof of Theorem 3.1. Since the reduction of X modulo p is smooth
for any prime p > 5, it remains to compute the number of points on the
reductions X, of X to F, for primes p € {5,7,11,13,17,19,23}. In these
cases we can compute the number of points on X, using a C++ program,
then compute the number of points added during the resolution. For p =
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13 the situation is different than in other cases. However, in the method
of Faltings—Serre-Livné we can replace 13 by 37, hence from now on we
assume p # 13. We will count separately the number of points added on the
exceptional locus of each blowing up.

We first count the number of points added when blowing up the fourfold
points. The method is to look at the number of points on proper transforms
of lines lying on the exceptional divisors and passing through a chosen point.
They are all double coverings of lines, hence have 1, p + 1 or 2p + 1 points
depending on the induced equations of the branch loci. Explicit computations
yield

((p—2)p+1)+2(p+1)+2p+1=p*+2p+1
4B if —3 is a square mod p,
P pr—
' (p—2)p+1)+2(p+1)+1=p>+1
if —3 is not a square mod p,
(p—2)(p+1)+32p+1)—2p=p>+3p+1
4B if —3 is a square modulo p,
P pr—
T e+ D)+ (2p+ 1) -2p=p*+p+1
. if —3 is not a square modulo p,
tEp, =p(p+ 1) +2p+1-p=p>+2p+1,
ﬁEP4 :2p2+17
-1 —
4Ep, 22(p+1)+(2p+1)p—2 i p=pAptL

In addition to the above, we also need to count the points on the excep-
tional loci of the blowings up of all curves.

If we blow up a transversal double curve, we produce a conic bundle over
some P!, where the fibers over triple points are lines. This gives p? + p new
points for 13 transversal blowings up, together 13(p? 4+ p) new points.

If we blow up the tangency line, we get a double cover of P! x P! with
coordinates ((a : b),(c: d)) branched over the curve

—3c%(a —b)(a — 3b) = 0.

This adds p? + p points. The next blow up will be transversal.

On the blow up of D we have p? 4+ p new points, since the equation of the
branch locus on the exceptional locus of the blow up is given by the product
of two lines and the square of the section.

On the blow up of S the number of added points is p times the number
of points on the curve S. We know that resolving the singularities on S we
get a smooth rational curve, hence consisting of p + 1 points. However, by
resolving a nodal curve over [}, we meet two possibilities. Either there appear
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two new points over the node or there are no points over it (i.e. we have lost
one point by taking the resolution).

We have several possibilities:

e There were no nodes on S. This happens if —3 is not a square mod p.
Then the number of points is the same as the number of points on the
resolution, thus equals p + 1.

e There were two nodes on S and after blowing them up we get two
points over each. This happens when both € —1 and €2 — 1 are squares.
Then the number of points on S is p — 1.

e There were two nodes on S and after blowing them up we loose the
two points. This happens when neither € — 1 nor €2 — 1 is a square. In
this case the number of points on S is p + 3.

e There were two nodes, one of which vanished after the resolution and
the other has been replaced by two points. This happens when exactly
one of ¢ — 1, €2 — 1 is a square. The number of points on S in this case
isp+1.

Taking all the above into consideration, we can give the number of points
added before the small resolution of nodes:
(22p? +24p if —3 is a square mod p and exactly one of
e —1, €2 —11is a square,
22p% 4+ 22p if —3 is a square mod p and both
1(Xp) — 1(Xp) = e —1, e — 1 are squares,
22p? + 26p if —3 is a square mod p and none of

e —1, €2 —1is asquare,

22p? 4+ 20p if —3 is not a square mod p.

We next need to resolve the nodes that appeared on X. For this purpose,
we perform a straightforward computation of the local equations of the nodes
to decide how many points are added during the resolution.

We first check the complex nodes over the triple point (). In this case we
add

2

{p2 +2p if —1 is a square mod p,
P if —1 is not a square mod p.

Three more nodes appear while blowing up B and D. We can compute
that resolving each of these nodes we always add p? + 2p new points.

Next, we check the nodes over M7 and Ms. The points M; and M, have
rational coordinates depending on the rationality of €. The latter is rational
if and only if —3 is a square in F,,.
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Over T, for which —3 is a square, resolving the nodes M; and M adds
2(p% + 2p) if 3 — ¢, 3 — &2 are squares mod p,
p? +2p+p? if exactly one of 3 — ¢, 3 — 2 is a square mod p,
2p?
We also have four complex nodes that appeared outside the branch locus
when blowing up the curve S. For this case there are three possibilities:

if none of 3 — ¢, 3 — €2 is a square mod p.

e There are no rational nodes; this happens if —3 is not a square or the
value of the polynomial defining the branch locus is not a square at
these points. That occurs when none of 5e — 2, 5¢2 — 2 is a square
mod p.

e There are two rational nodes; this happens if the value of the polyno-
mial defining the branch locus at one of the nodes is a square. That
occurs when exactly one of 5¢ — 2, 5¢2 — 2 is a square mod p.

e There are four rational nodes; this happens if the value of the polyno-
mial defining the branch locus at both nodes is a square. That occurs
when both 5¢ — 2, 52 — 2 are squares mod p.

Moreover, for each of these cases the resolution of the nodes adds either
p? +2p or p® new points. The actual case is determined by the answer to the
question: “Is 1 — € a square mod p7”.

Hence the number of points added by taking the big resolution X of X
depends on p in the following way.

Let

o= (59 + (59 + (1 (52) (59)
() (56 ()

where (%) is the Legendre symbol. Then

(26p% + 28p if —3 is not a square mod p,
28p% +34p+ f(p)p if —3 is a square mod p and none

of 5e — 2, 5e? — 2 is a square mod p,
8(Xp)—8(Xp) =< 30p% +36p+ f(p)p if —3 is a square mod p and one

of 5e — 2, 5e? — 2 is a square mod p,
32p% +38p+ f(p)p if —3 is a square mod p and both

5e — 2, 5e? — 2 are squares mod p.

The following table presents the explicit numbers needed in the method
of Faltings—Serre—Livné:
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p  #(Xp) ﬁ()?p) ap

191 981 —15
7 439 2273 —25
11 1559 5013 15
37 53674 96076 —430
17 5564 13554 72
19 7504 18258 2
23 13340 27738 -—114

Comparing the values of ﬁ()N(p) with the coefficients a, of the cusp form

from [St] we conclude the proof of the modularity of X. m

Using the 2:1 correspondence Y --»> X we obtain the following.

COROLLARY 3.3. The variety Y is a modular Calabi-Yau manifold with
the L-series L(Y,s) = L(ga, s)L(g2,s—1), where g2 is the unique newform of
weight 2 and level 13, and g4 is the newform 27k4B of weight 4 and degree 27.

[CvS]

[GPS]

[HKS]

[HV]

[M]
[S]

[St]
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