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Numerical approximations
of parabolic differential functional equations

with the initial boundary conditions of the Neumann type

by Roman Ciarski (Gdańsk)

Abstract. The aim of this paper is to present a numerical approximation for quasi-
linear parabolic differential functional equations with initial boundary conditions of the
Neumann type. The convergence result is proved for a difference scheme with the prop-
erty that the difference operators approximating mixed derivatives depend on the lo-
cal properties of the coefficients of the differential equation. A numerical example is
given.

1. Introduction. We will denote by C(U, V ) the class of all continuous
functions w: U → V with U and V being any metric spaces. Let Mn×n be
the set of n× n matrices with real elements. For x = (x1, . . . , xn) ∈ Rn and
X ∈Mn×n, X = [Xkj ]nj,k=1, we put

‖x‖ = |x1|+ · · ·+ |xn|, ‖X‖ = max
{ n∑

j=1

|xkj|: 1 ≤ k ≤ n
}
.

Writing a vectorial inequality we mean that the same inequality holds for the
corresponding components. Let a > 0, R+ = [0,+∞), and b = (b1, . . . , bn)
∈ Rn be given, where bk > 0 for 1 ≤ k ≤ n. Define

E = [0, a]× (−b, b), E0 = {0} × [−b, b],
∂0E = ([0, a]× [−b, b]) \E, E∗ = E0 ∪ E ∪ ∂0E.

Assume that

% = [%kj]nj,k=1: E × C(E∗,R)→Mn×n, f : E × C(E∗,R)× Rn → R

are given functions of the variables (t, x, w) and (t, x, w, p) respectively.
We consider a quasilinear differential functional equation with Neumann

initial boundary conditions
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



∂tz(t, x) =
∑n

k,j=1 %kj(t, x, z)∂xkxjz(t, x) + f(t, x, z, ∂xz(t, x)),

z(t, x) = ϕ0(t, x) for (t, x) ∈ E0,

∂xjz(t, x) = ϕj(t, x) for (t, x) ∈ ∂0E and xj = bj or xj = −bj ,
(1)

where ϕ0: E0 → R and ϕj : ∂0E → R, 1 ≤ j ≤ n, are given and ∂xz =
(∂x1z, . . . , ∂xnz).

The difference methods for nonlinear parabolic equations with Neumann
boundary conditions were initiated in the papers by Malec [4]–[6] and Wę-
glowski [8]. In [1], some general difference operators were introduced and
their stability was investigated. The results of [4]–[6] and [8] do not apply
to quasilinear equations. The difference scheme applied in this paper has
the property that the difference operators approximating the mixed deriva-
tives depend on the local properties of the function %. We give sufficient
conditions for convergence of the difference method for problem (1). The
convergence is proved by consistency and stability arguments. We are in-
terested in the numerical approximation of a classical solution of the above
problem.

The norm of any z ∈ C(E∗,R) is defined by

‖z‖E∗ = max{|z(t, x)|: (t, x) ∈ E∗}.
We will need the norm

‖z‖t = max{|z(θ, x)|: 0 ≤ θ ≤ t and (θ, x) ∈ E∗}.
For t ∈ [0, a] we write Ht = [0, t] × [−b, b]. We assume that problem (1) is
of Volterra type, that is, if t ∈ [0, a] and z, z ∈ C(E∗,R) and z(θ) = z(θ)
for θ ∈ Ht then f(t, x, z, q) = f(t, x, z, q) and %kj(t, x, z) = %kj(t, x, z) for
x ∈ [−b, b], q ∈ Rn and j, k = 1, . . . , n.

2. Difference functional equations. Let N and Z be the sets of nat-
ural numbers and integers respectively. For x, x ∈ Rn, x = (x1, . . . , xn),
x = (x1, . . . , xn), we put x ∗ x = (x1x1, . . . , xnxn). We define a mesh on
the set E∗ in the following way. Suppose that h = (h0, h

′) ∈ R1+n
+ , where

h′ = (h1, . . . , hn) are the steps of the mesh. Denote by ∆ the set of all
h = (h0, h

′) such that there exist Nb = (Nb1, . . . , Nbn) ∈ Zn with Nb ∗h′ = b.
For h ∈ ∆ we write ‖h‖ = h0 + h1 + · · ·+ hn and ‖h′‖ = h1 + · · ·+ hn. It is
required that ∆ 6= ∅ and that there exists a sequence {h(j)} in ∆ such that
limj→∞ ‖h(j)‖ = 0.

Nodal points are defined by:

t(i) = ih0, x(m) = m ∗ h = (m1h1, . . . ,mnhn) = (x(m1)
1 , . . . , x(mn)

n ),

where (i,m) ∈ Z1+n. Obviously there exists Na ∈ N such that Nah0 ≤ a
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< (Na + 1)h0. Let

R1+n
h = {(t(i), x(m)): (i,m) ∈ Z1+n}

and

Eh = E ∩R1+n
h , ∂0Eh = ∂0E ∩R1+n

h ,

E0·h = E0 ∩R1+n
h , E∗h = Eh ∪ E0·h ∪ ∂0Eh.

For z: E∗h → R we write

z(i,m) = z(t(i), x(m)).

The norm of any z: E∗h → R is defined by

‖z‖h = max{|z(i,m)|: (t(i), x(m)) ∈ E∗h}.
For any t(i) we will need the norm

‖z‖h·i = max{|z(r,m)|: 0 ≤ r ≤ i and (t(r), x(m)) ∈ E∗h}.
Let

E′h = {(t(i), x(m)) ∈ Eh: 0 ≤ i ≤ Na − 1}
and denote by F(E∗h,R) the set of all functions w: E∗h → R. Suppose that

%h = [%h·kj ]nj,k=1: E′h × F(E∗h,R)→Mn×n, fh: E′h × F(E∗h,R)× Rn → R,
ϕ0·h: E0·h → R, ϕj·h: ∂0Eh → R, j = 1, . . . , n,

are given functions. We will approximate solutions of problem (1) by means
of solutions of a difference equation with initial boundary condition of Neu-
mann type. To do that, for every (t(i), x(m)) ∈ ∂0Eh we define

A(m) = {α = (α1, . . . , αn): αj ∈ {0, 1} if x(mj)
j = bj ,

αj ∈ {0,−1} if x(mj)
j = −bj ,

αj = 0 if − bj < x
(mj)
j < bj ,

and ‖α‖ = 1 or ‖α‖ = 2, 1 ≤ j ≤ n},
where ‖α‖ = |α1|+ · · ·+ |αn|, and

∂E+1
h = {(t(i), x(m+α)): 0 ≤ i ≤ Na, (t(i), x(m)) ∈ ∂0Eh and α ∈ A(m)},

E+1
h = ∂E+1

h ∪ Eh.
Now we consider the difference problem

δ0z
(i,m) =

n∑

k,j=1

%h·kj(t(i), x(m), z)δ(2)
kj z

(i,m) + fh(t(i), x(m), z, δz(i,m))(2)
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with Neumann boundary conditions

(3) z(i,m) = ϕ
(i,m)
0·h on E0·h,

(4) z
(i,m+α)
h − z(i,m−α)

h = 2
n∑

j=1

αjhjϕ
(i,m)
j·h on ∂0Eh for α ∈ A(m).

Let us notice that (t(i), x(m+α)) ∈ ∂E+1
h and (t(i), x(m−α)) ∈ Eh.

Let ej ∈ Rn be the standard unit vectors. The difference operators δ0,
δ = (δ1, . . . , δn), δα and δ(2) = [δkj]nj,k=1 are defined in the following way:

δ0z
(i,m) =

1
h0

[z(i+1,m) − z(i,m)],(5)

δjz
(i,m) =

1
2hj

[z(i,m+ej) − z(i,m−ej)], 1 ≤ j ≤ n,(6)

δ
(2)
kk z

(i,m) = δ+
k δ
−
k z

(i,m),(7)

δ
(2)
kj z

(i,m) =
1
2

[δ+
k δ

+
j z

(i,m) + δ−k δ
−
j z

(i,m)] if %h·kj(t(i), x(m), z) ≥ 0,(8)

δ
(2)
kj z

(i,m) =
1
2

[δ+
k δ
−
j z

(i,m) + δ−k δ
+
j z

(i,m)] if %h·kj(t(i), x(m), z) < 0,(9)

where

δ+
k z

(i,m) =
1
hk

[z(i,m+ek) − z(i,m)], δ−k z
(i,m) =

1
hk

[z(i,m) − z(i,m−ek)].

There exists exactly one solution uh: E∗ → R of problem (2)–(4). Let the
operator Fh be defined by

Fh[z](i,m) =
n∑

k,j=1

%h·kj(t(i), x(m), z)δkjz(i,m) +fh(t(i), x(m), z, δz(i,m)).(10)

Our purpose is to examine the relation between the solution uh of (2)–(4)
and a function vh: E+1

h → R satisfying the condition

|δ0v
(i,m)
h − Fh[vh](i,m)| ≤ γ(h) on E′h,(11)

|v(i,m)
h − ϕ(i,m)

0·h | ≤ γ0(h) on E0·h,(12)
∣∣∣v(i,m+α)
h − v(i,m−α)

h − 2
n∑

j=1

αjhjϕ
(i,m)
j·h

∣∣∣ ≤ Cϕ‖h′‖3 on ∂0Eh,(13)

where

γ, γ0: ∆→ R+, lim
h→0

γ0(h) = 0, lim
h→0

γ(h) = 0, Cϕ ∈ R+, α ∈ A(m).

The function vh satisfying the above relations is considered to be an approx-
imate solution of problem (2)–(4).
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Assumption H[%h, fh]. The functions %h: E′h × F(E∗h,R) → Mn×n and
fh: E′h × F(E∗h,R)× Rn → R satisfy the following conditions:

(i) there exists L ∈ R+ such that

‖%h(t(i), x(m), w)− %h(t(i), x(m), w)‖ ≤ L‖w − w‖h·i,
|fh(t(i), x(m), w, p)− fh(t(i), x(m), w, p)| ≤ L‖w − w‖h·i,

(ii) the derivative ∂pfh = (∂p1fh, . . . , ∂pnfh) exists on E′h×F(E∗h,R)×Rn
and ∂pfh(t, x, w, ·) ∈ C(Rn,Rn).

Theorem 1. Suppose that Assumption H[%h, fh] holds and

(i) h ∈ ∆ and

(14) 1− 2h0

n∑

k=1

1
h2
k

%h·kk(Q) + h0

n∑

k,j=1
j 6=k

1
hkhj

|%h·kj(Q)| ≥ 0,

(15)
1
hk
%h·kk(Q)−

n∑

j=1
j 6=k

1
hj
|%h·kj(Q)| − 1

2
|∂pkfh(P )| ≥ 0, 1 ≤ k ≤ n,

where Q= (t, x, w)∈E′h×F(E∗h,R) and P = (t, x, w, p)∈E′h×F(E∗h,R)×Rn,
(ii) uh: E+1

h → R is the solution of problem (2)–(4),
(iii) vh: E+1

h → R satisfies relations (11)–(13),
(iv) there exists c0 ∈ R+ such that

|δ(2)
kj v

(i,m)
h | ≤ c0 on Eh for 1 ≤ k, j ≤ n,

(v) there exists C̃ ∈ R+ such that ‖h′‖2 ≤ C̃h0.

Under these assumptions we have

|u(i,m)
h − v(i,m)

h | ≤ γ0(h)eL̃a + β(h)
eL̃a − 1

L̃
on Eh(16)

if L > 0, and

|u(i,m)
h − v(i,m)

h | ≤ γ0(h) + aγ(h) on Eh(17)

if L = 0, where L̃ = L(1 + nc0) and

β: ∆→ R+, lim
h→0

β(h) = 0.

Proof. Let Γ : E′h → R, Γ0·h: E0·h → R and Γ∂·h: ∂0Eh → R be defined
by

δ0v
(i,m)
h = Fh[vh](i,m) + Γ

(i,m)
h on E′h,

v
(i,m)
h = ϕ

(i,m)
0·h + Γ

(i,m)
0·h on E0·h,

v
(i,m+α)
h − v(i,m−α)

h = 2
n∑

j=1

αjhjϕ
(i,m)
j·h + Γ

(i,m)
∂·h on ∂0Eh for α ∈ A(m).
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Then

|Γ (i,m)
h | ≤ γ(h) on E′h with lim

h→0
γ(h) = 0,

|Γ (i,m)
0·h | ≤ γ0(h) on E0·h with lim

h→0
γ0(h) = 0,

|Γ (i,m)
∂·h | ≤ Cϕ‖h′‖

3 on ∂0Eh.

The function εh = uh − vh satisfies the difference functional equation

(18) δ0ε
(i,m)
h =

n∑

k,j=1

%h·kj(t
(i), x(m), uh)δ(2)

kj ε
(i,m)
h

+ fh(t(i), x(m), vh, δuh
(i,m))− fh(t(i), x(m), vh, δvh

(i,m)) + Λ
(i,m)
h ,

where

(19) Λ
(i,m)
h =

n∑

k,j=1

[%h·kj(t(i), x(m), uh)− %h·kj(t(i), x(m), vh)]δ(2)
kj v

(i,m)
h

+ fh(t(i), x(m), uh, δuh
(i,m))− fh(t(i), x(m), vh, δuh

(i,m))− Γ (i,m)
h

on E′h and

ε
(i,m+α)
h = ε

(i,m−α)
h + Γ

(i,m)
∂·h(20)

on ∂0E
′
h. Let us deal with εh on E′h first. Write

I
(i,m)
+ = {(k, j): 1 ≤ k, j ≤ n, k 6= j, %h·kj(t(i), x(m), uh) ≥ 0},

I
(i,m)
− = {(k, j): 1 ≤ k, j ≤ n, k 6= j, %h·kj(t(i), x(m), uh) < 0}.

From (5) and the mean value theorem, we can rewrite (18) as

ε
(i+1,m)
h = ε

(i,m)
h + h0

n∑

k=1

%h·kk(t(i), x(m), uh)δ(2)
kk ε

(i,m)
h

+ h0

∑

(k,j)∈I(i,m)
+

%h·kj(t(i), x(m), uh)δ(2)
kj ε

(i,m)
h

+ h0

∑

(k,j)∈I(i,m)
−

%h·kj(t(i), x(m), uh)δ(2)
kj ε

(i,m)
h

+ h0

n∑

k=1

∂pkfh(P )
ε

(i,m+ek)
h − ε(i,m−ek)

h

2hk
+ h0Λ

(i,m)
h .

By (7)–(9) and regrouping terms, the function εh satisfies on E′h the recursive
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equation

ε
(i+1,m)
h = ε

(i,m)
h A(i,m) + h0

n∑

k=1

ε
(i,m+ek)
h B

(i,m)
k + h0

n∑

k=1

ε
(i,m−ek)
h C

(i,m)
k (21)

+ h0

∑

(k,j)∈I(i,m)
+

[ε(i,m+ek+ej)
h + ε

(i,m−ek−ej)
h ]D(i,m)

k,j

+ h0

∑

(k,j)∈I(i,m)
−

[ε(i,m+ek−ej)
h + ε

(i,m−ek+ej)
h ]D(i,m)

k,j + h0Λ
(i,m)
h ,

where

A(i,m) = 1− 2h0

n∑

k=1

1
h2
k

%h·kk(t(i), x(m), uh)

+ h0

n∑

k,j=1
j 6=k

1
hkhj

|%h·kj(t(i), x(m), uh)|,

B
(i,m)
k =

1
h2
k

%h·kk(t(i), x(m), uh)

−
n∑

j=1
j 6=k

1
hkhj

|%h·kj(t(i), x(m), uh)|+ 1
2hk

∂pkfh(P ),

C
(i,m)
k =

1
h2
k

%h·kk(t(i), x(m), uh)

−
n∑

j=1
j 6=k

1
hkhj

|%h·kj(t(i), x(m), uh)| − 1
2hk

∂pkfh(P ),

D
(i,m)
k,j =

1
2hkhj

|%h·kj(t(i), x(m), uh)|.

Let ωh and ω̃h be given by

(22) ω
(i)
h = max{|ε(r,m)

h |: (t(r), x(m)) ∈ E∗h ∩ ([−τ0, t
(i)]× Rn)},

0 ≤ i ≤ Na,

(23) ω̃
(i)
h = max{|ε(r,m)

h |: (t(r), x(m)) ∈ E+1
h ∩ ([−τ0, t

(i)]× Rn)},
0 ≤ i ≤ Na.

With this notation Λh (see (19)) can be estimated as follows:

|Λ(i,m)
h | ≤ ω̃(i)

h L(1 + nc0) + γ(h) on E′h.(24)
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We conclude from (12), (20), (21) and (24) that the functions ωh and ω̃h
satisfy the recursive inequalities

ω
(i+1)
h ≤ ω̃(i)

h (1 + L̃h0) + h0γ(h),(25)

ω̃
(i)
h ≤ ω

(i)
h +

√
h0h0CϕC̃,(26)

for 0 ≤ i ≤ Na − 1 and

ω
(0)
h ≤ γ0(h).(27)

Consider the difference equations

η
(i+1)
h = η̃

(i)
h (1 + L̃h0) + h0γ(h),

η̃
(i)
h = η

(i)
h +

√
h0h0CϕC̃,

for 0 ≤ i ≤ Na − 1 with the initial condition

η(0) = γ0(h),

and its solutions

η
(0)
h = γ0(h),

η̃
(0)
h = γ0(h) +

√
h0 h0CϕC̃,

η
(i)
h = γ0(h)(1 + L̃h0)i + h0[(1 + L̃h0)

√
h0CϕC̃ + γ(h)]

i−1∑

j=0

(1 + L̃h0)j,

for 1 ≤ i ≤ Na. Thus

η
(i)
h ≤ γ0(h)eL̃a + [(1 + L̃h0)

√
h0CϕC̃ + γ(h)]

eL̃a − 1

L̃
.

It follows from (25)–(27) that

ω
(i)
h ≤ η

(i)
h for 0 ≤ i ≤ Na.

This gives (16), (17) and Theorem 1 is proved.

3. Difference method for the mixed problem. We will need an
interpolating operator Th: F(E∗h,R)→ C(E,R). Let

S+ = {ξ = (ξ1, . . . , ξn): ξj = {0, 1} for 0 ≤ j ≤ n}
Let z ∈ F(E∗h,R). For every (t, x) ∈ E there is (t(i), x(m)) ∈ Eh such that
(t(i+1), x(m+1)) ∈ E′h, wherem+1 = (m1+1, . . . ,mn+1) and t(i) ≤ t ≤ t(i+1),
x(m) ≤ x ≤ x(m+1). Set
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(Thz)(t, x) =
t− t(i)
h0

∑

ξ∈S+

z(i+1,m+ξ)
(
x−x(m)

h′

)ξ(
1− x−x(m)

h′

)1−ξ

+
(

1− t− t
(i)

h0

) ∑

ξ∈S+

z(i,m+ξ)
(
x−x(m)

h′

)ξ(
1− x− x

(m)

h′

)1−ξ
,

where
(
x− x(m)

h′

)ξ
=

n∏

j=1

(
xj − x(mj)

j

hj

)ξj
,

(
1− x− x(m)

h′

)1−ξ
=

n∏

j=1

(
1−

xj − x(mj)
j

hj

)1−ξj
.

In the above formulas we adopt the convention that 00 = 1. For h0Na< t≤ a
we put

(Thz)(t, x) = (Thz)(h0Na, x).

Lemma 2. Suppose that

(i) z(t, ·): [−b, b]→ R is of class C2 for t ∈ [0, a] and zh = z|E∗h ,

(ii) d̃2 ∈ R+ is such that on E∗,

|∂xjxkz(t, x)| ≤ d̃2 for j, k = 1, . . . , n,(28)

(iii) there exists c̃ ∈ R+ such that h0 < c̃‖h′‖2,
(iv) there is L ∈ R+ such that

|z(t, x)− z(t, x)| ≤ L|t− t|.(29)

Then

‖Thzh − z‖E∗ ≤ C0‖h′‖2,(30)

where C0 = d̃2 + 2Lc̃ and ‖h′‖ = h1 + · · ·+ hn.

Proof. Let (t, x) ∈ E and (i,m) be such that t(i) ≤ t ≤ t(i+1) and
x(m) ≤ x ≤ x(m+1). Then

(31) (Thz)(t, x)− z(t, x)

=
∑

ξ∈S+

z(i,m+ξ)
(
x− x(m)

h′

)ξ(
1− x− x(m)

h′

)1−ξ
− z(t(i), x)

+
(
t− t(i)
h0

) ∑

ξ∈S+

[z(i+1,m+ξ) − z(i,m+ξ)]
(
x− x(m)

h′

)ξ(
1− x− x(m)

h′

)1−ξ

+ z(t(i), x)− z(t, x).
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It is easy to prove by induction that

∑

ξ∈S+

(
x− x(m)

h′

)ξ(
1− x− x(m)

h′

)1−ξ
= 1(32)

and
∑

ξ∈S+

(
x− x(m)

h′

)ξ(
1− x− x(m)

h′

)1−ξ
ξkhk = xk − x(mk)

k .(33)

Thus, it is easily seen that

(34)

∣∣∣∣
(
t− t(i)
h0

)∑

ξ∈S+

[z(i+1,m+ξ)−z(i,m+ξ)]
(
x−x(m)

h′

)ξ(
1−x−x

(m)

h′

)1−ξ∣∣∣∣

≤ Lc̃‖h′‖2

and

|z(t(i), x)− z(t, x)| ≤ Lc̃‖h′‖2.(35)

Finally, by the Taylor formula, (28), (32) and (33) we obtain
∣∣∣∣
∑

ξ∈S+

z(i,m+ξ)
(
x− x(m)

h′

)ξ(
1−x− x

(m)

h′

)1−ξ
−z(t(i), x)

∣∣∣∣≤ d̃2‖h′‖2.(36)

From (31) and (34)–(36) we get

|(Thz)(t, x)− z(t, x)| ≤ d̃2‖h′‖2 + 2Lc̃‖h′‖2,
which implies assertion (30).

Assumption H[%, f ]. Suppose that

(i) %: E′×C(E,R)→Mn×n and f : E×C(E,R)×Rn → R are contin-
uous,

(ii) there exists L ∈ R+ such that

‖%(t, x, w)− %(t, x, w)‖ ≤ L‖w − w‖t,
|f(t, x, w, p)− f(t, x, w, p)| ≤ L‖w − w‖t,

(iii) ∂pf = (∂p1f, . . . , ∂pnf) exists on E×C(E,R)×Rn and ∂pf(t, x, w, ·)
∈ C(Rn,Rn).

Now we will approximate the solution of the functional differential prob-
lem (1) by the solution of the difference problem

(37) δ0z
(i,m)

=
n∑

k,j=1

%h·kj(t(i), x(m), Thz)δ(2)
kj z

(i,m) + fh(t(i), x(m), Thz, δz
(i,m))
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with the initial Neumann boundary conditions

(38) z(i,m) = ϕ
(i,m)
0 on E0·h,

(39) z
(i,m+α)
h − z(i,m−α)

h = 2
n∑

j=1

αjhjϕ
(i,m)
j·h

for (t(i), x(m)) ∈ ∂0Eh and α ∈ A(m).

Let Ω be an open set such that E∗ ⊂ Ω.

Theorem 3. Suppose that assumption H[%, f ] holds and

(i) h ∈ ∆ and

1− 2h0

n∑

k=1

1
h2
k

%kk(t, x, w) + h0

n∑

k,j=1
j 6=k

1
hkhj

|%kj(t, x, w)| ≥ 0,

1
hk

%kk(t, x, w)−
n∑

j=1
j 6=k

1
hj
|%kj(t, x, w)| − 1

2
|∂pkf(t, x, w, p)| ≥ 0,

1 ≤ k ≤ n,

(ii) there exists c? ∈ R+ such that hk ≤ c?hj for 1 ≤ k, j ≤ n,

(iii) there exist C̃, c̃ ∈ R+ such that C̃−1‖h′‖2 ≤ h0 ≤ c̃‖h′‖2,
(iv) uh: E+1

h → R is a solution of (37)–(39),
(v) v: Ω → R is a solution of (1) on E∗ and vh = v|E∗h , ϕj·h = ϕj |∂0Eh ,

1 ≤ j ≤ n,
(vi) there exists γ0: ∆→ R+ such that

|ϕ(i,m)
0 − ϕ(i,m)

0·h | ≤ γ0(h) on E0·h, lim
h→0

γ0(h) = 0,(40)

(vii) v(·, x) is of class C1 and v(t, ·) is of class C3.

Then there is η: ∆→ R+ such that on Eh,

|u(i,m)
h − v(i,m)

h | ≤ η(h), lim
h→0

η(h) = 0.(41)

Proof. We apply Theorem 1. Write

ψ
(i,m)
h = δ0v

(i,m)
h −

n∑

k,j=1

%kj(t(i), x(m), Thvh)δ(2)
kj v

(i,m)
h

− f(t(i), x(m), Thvh, δvh
(i,m)),

ξ
(i,m)
h = v

(i,m+α)
h − v(i,m−α)

h v − 2
n∑

j=1

αjhjϕ
(i,m)
j·h .

(42)
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We see at once that on E ′h,

ψ
(i,m)
h = δ0v

(i,m)
h − ∂tv(t(i), x(m))

+
n∑

k,j=1

[%kj(t(i), x(m), v)− %kj(t(i), x(m), Thvh)]δ(2)
kj v

(i,m)
h

+
n∑

k,j=1

%kj(t(i), x(m), v)[∂(2)
xkxj

v(i,m) − δ(2)
kj v

(i,m)
h ]

+ f(t(i), x(m), v, ∂xv(t(i), x(m)))−f(t(i), x(m), Thvh, ∂xv(t(i), x(m)))

+ f(t(i), x(m), Thvh, ∂xv(t(i), x(m)))− f(t(i), x(m), Thvh, δv
(i,m)
h ).

It is easily seen that there is γ: ∆→ R+ such that

|ψ(i,m)
h | ≤ γ(h on E′h, lim

h→0
γ(h) = 0.

Now on ∂Eh we have

ξ
(i,m)
h = v

(i,m+α)
h − v(i,m−α)

h − 2
n∑

j=1

αjhjϕ
(i,m)
j·h .

By the Taylor formula we get

v(i,m+α) − v(i,m−α) − 2
n∑

j=1

αjhjϕ
(i,m)
j·h

= v(i,m) +
n∑

j=1

αjhj∂xjv
(i,m) +

1
2

n∑

k,j=1

αjαkhjhk∂
(2)
xjxk

v(i,m)

+
1
6

n∑

j,k,l=1

αjαkαlhjhkhl∂
(3)
xjxkxl

v(P )

−
[
v(i,m) −

n∑

j=1

αjhj∂xjv
(i,m) +

1
2

n∑

k,j=1

αjαkhjhk∂
(2)
xjxk

v(i,m)

− 1
6

n∑

j,k,l=1

αjαkαlhjhkhl∂
(3)
xjxkxl

v(Q)
]
− 2

n∑

j=1

αjhjϕ
(i,m)
j·h

=
1
6

n∑

j,k,l=1

αjαkαlhjhkhl
[
∂(3)
xjxkxl

v(P )− ∂(3)
xjxkxl

v(Q)
]

and finally

|ξ(i,m)
h | ≤ d̃3

∣∣∣
n∑

j,k,l=1

αjαkαlhjhkhl

∣∣∣ ≤ d̃3‖h′‖3,
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where d̃3 ∈ R+. Thus, all the assumptions of Theorem 1 are satisfied and
assertion (41) follows from (16), (17).

Now we give an error estimate for the method (37)–(39).

Theorem 4. Suppose that assumption H[%, f ] holds and

(i) h ∈ ∆ and

1− 2h0

n∑

k=1

1
h2
k

%kk(t, x, w) + h0

n∑

k,j=1
j 6=k

1
hkhj

|%kj(t, x, w)| ≥ 0,

1
hk

%kk(t, x, w)−
n∑

j=1
j 6=k

1
hj
|%kj(t, x, w)| − 1

2
|∂pkf(t, x, w, p)| ≥ 0,

1 ≤ k ≤ n,
(ii) there exists c? ∈ R+ such that hk ≤ c?hj for 1 ≤ k, j ≤ n,

(iii) there exist C̃, c̃ ∈ R+ such that C̃−1‖h′‖2 ≤ h0 ≤ c̃‖h′‖2,
(iv) uh: E+1

h → R is a solution of (37)–(39),
(v) v: Ω → R is a solution of (1) on E∗ and vh = v|E∗h , ϕj·h = ϕj |∂0Eh ,

1 ≤ j ≤ n,
(vi) there exists γ0: ∆→ R+ such that

|ϕ(i,m)
0 − ϕ(i,m)

0·h | ≤ γ0(h) on E0·h, lim
h→0

γ0(h) = 0,(43)

(vii) v|Ω is of class C4,
(viii) there exists d̃ ∈ R+ such that ‖∂pf(t, x, w, p)‖ ≤ d̃,

(ix) there exist d̃2, d̃4 ∈ R+ such that on Ω,

|∂ttv(t, x)|, |∂xjxkv(t, x)| ≤ d̃2, |∂(4)
xixjxkxl

v(t, x)| ≤ d̃4,

1 ≤ i, j, k, l ≤ n.
Then there is A ∈ R+ such that on Eh,

|u(i,m)
h − v(i,m)

h | ≤ γ0(h)eL̃a + A‖h′‖2 e
L̃a − 1

L̃
(44)

if L > 0, and

|u(i,m)
h − v(i,m)

h | ≤ γ0(h) + aA‖h′‖2(45)

if L = 0, where L̃ = L(1 + nd2).

Proof. We apply Theorem 1. Write

ψ
(i,m)
h = δ0v

(i,m)
h −

n∑

k,j=1

%kj(t(i), x(m), Thvh)δ(2)
kj v

(i,m)
h(46)

− f(t(i), x(m), Thvh, δvh
(i,m)).
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As in the proof of Theorem 1 we can rewrite (46) as

ψ
(i,m)
h = δ0v

(i,m)
h − ∂tv(t(i), x(m))

+
n∑

k,j=1

[%kj(t(i), x(m), v)− %kj(t(i), x(m), Thvh)]δ(2)
kj v

(i,m)
h

+
n∑

k,j=1

%kj(t(i), x(m), v)[∂(2)
xkxj

v(i,m) − δ(2)
kj v

(i,m)
h ]

+ f(t(i), x(m), v, ∂xv(t(i), x(m)))−f(t(i), x(m), Thvh, ∂xv(t(i), x(m)))

+ f(t(i), x(m), Thvh, ∂xv(t(i), x(m)))− f(t(i), x(m), Thvh, δv
(i,m)
h ).

There are r̃, d2 ∈ R+ such that

|δ(2)
kj v

(i,m)| ≤ d2 on Eh, 1 ≤ k, j ≤ n,
|%kj(t, x, v)| ≤ r̃ on E × Rn, 1 ≤ k, j ≤ n.

From the Taylor formula we obtain

|∂tv(t(i), x(m))− δ0v
(i,m)
h | ≤ h0

2
d̃2 ≤

1
2
d̃2c̃‖h′‖2

and

|∂xkxjv(t(i), x(m))− δkjv(i,m)
h | ≤ d̃4‖h′‖2

(
7
12

+
1
6
c?

)
for 1 ≤ k, j ≤ n.

The above estimates and Lemma 2 yield

|ψ(i,m)
h | ≤ 1

2
d̃2c̃‖h′‖2 + Ld̃2d2C0‖h′‖2 + r̃d̃4n

2‖h′‖2
(

7
12

+
1
6
c?

)

+ Ld2C0‖h′‖2 +
1
6
d̃d̃2‖h′‖2 on E′h.

Thus on E′h,

|ψ(i,m)
h | ≤

[
1
2
d̃2c̃+ Ld2C0(1 + d̃2) + r̃d̃4n

2
(

7
12

+
1
6
c?

)
+

1
6
d̃d̃2

]
‖h′‖2.

On ∂Eh we have
∣∣∣v(i,m+α)
h − v(i,m−α)

h − 2
n∑

j=1

αjhjϕ
(i,m)
j·h

∣∣∣ ≤ d̃3‖h′‖3.

Thus all the assumptions of Theorem 1 are satisfied and assertions (44),
(45) follow from (16), (17).

4. Numerical example. For n = 2 we put

E = [0, 1]× [−1, 1]× [−1, 1],
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Let z be the unknown function of the variables (t, x, y) and consider the
differential integral equation

(47) ∂tz(t, x, y) = 2(x2 + 1)∂xxz(t, x, y) + 2(y2 + 1)∂yyz(t, x, y)

+ ∂xyz(t, x, y)
(x+1)/2�

(x−1)/2

(y+1)/2�

(y−1)/2

z(t, η, ξ) dξ dη

+ 23etx3y3− 9
64
e2tx2y2(x3 + x)(y3 + y)−12etxy(x2 +y2)

with the initial boundary condition

z(t, x, y) = x3y3 for (t, x, y) ∈ E0(48)

and the Neumann boundary conditions

∂xz(t, x, y) = 3etx2y3 for (t, x, y) ∈ ∂0E and x = 1 or x = −1,(49)

∂yz(t, x, y) = 3etx3y2 for (t, x, y) ∈ ∂0E and y = 1 or y = −1,(50)

where
E0 = {0} × [−1, 1]× [−1, 1],

∂0E = (0, 1]× [([−1, 1]× [−1, 1]) \ ((−1, 1)× (−1, 1))].

For the above problem we apply the difference method (37)–(39).
The function v(t, x, y) = etx3y3 is a solution of (47)–(50). Let uh:

E∗h → R be the solution of the corresponding difference equations and
εh = uh−v. The values εh(0.6, x(j), y(k)), εh(0.7, x(j), y(k)), εh(0.8, x(j), y(k)),
εh(0.9, x(j), y(k)) are listed in Table 1 for h0 = 0.00001, h1 = 0.02 and
h2 = 0.02.

Table 1

t(i) = 0.6 t(i) = 0.7 t(i) = 0.8 t(i) = 0.9

x(j), y(k) εh εh εh εh

−0.5 −0.5 6.090 · 10−4 8.905 · 10−4 1.271 · 10−3 1.789 · 10−3

−0.5 0.0 5.040 · 10−4 7.290 · 10−4 1.033 · 10−3 1.445 · 10−3

−0.5 0.5 5.558 · 10−4 7.838 · 10−4 1.094 · 10−3 1.519 · 10−3

0.0 −0.5 8.419 · 10−4 1.149 · 10−3 1.553 · 10−3 2.091 · 10−3

0.0 0.0 5.684 · 10−4 8.048 · 10−4 1.120 · 10−3 1.544 · 10−3

0.0 0.5 4.275 · 10−4 6.337 · 10−4 9.139 · 10−4 1.297 · 10−3

0.5 −0.5 1.425 · 10−3 1.864 · 10−3 2.436 · 10−3 3.188 · 10−3

0.5 0.0 7.067 · 10−4 9.815 · 10−4 1.347 · 10−3 1.835 · 10−3

0.5 0.5 3.678 · 10−4 5.905 · 10−4 8.982 · 10−4 1.326 · 10−3
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Let εmax be the largest and εmean the mean value of all εh for a given t(i).
The values are listed in Table 2.

Table 2

t(i) εmax εmean

0.0 1.157 · 10−3 6.815 · 10−5

0.1 1.465 · 10−3 1.127 · 10−4

0.2 1.957 · 10−3 1.843 · 10−4

0.3 2.471 · 10−3 2.705 · 10−4

0.4 3.075 · 10−3 3.903 · 10−4

0.5 3.816 · 10−3 5.549 · 10−4

0.6 4.738 · 10−3 7.784 · 10−4

0.7 5.896 · 10−3 1.080 · 10−3

0.8 7.364 · 10−3 1.485 · 10−3

0.9 9.240 · 10−3 2.032 · 10−3

1.0 1.166 · 10−2 2.777 · 10−3

The computation was performed on a PC computer.
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d’équations paraboliques aux dérivées mixtes et avec des conditions aux limites du
type de Neumann, Ann. Polon. Math. 32 (1976), 33–42.
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