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A pseudo-trigonometry related to Ptolemy’s theorem
and the hyperbolic geometry of punctured spheres

by Joachim A. Hempel (Sydney)

Abstract. A hyperbolic geodesic joining two punctures on a Riemann surface has
infinite length. To obtain a useful distance-like quantity we define a finite pseudo-length of
such a geodesic in terms of the hyperbolic length of its surrounding geodesic loop. There
is a well defined angle between two geodesics meeting at a puncture, and our pseudo-
trigonometry connects these angles with pseudo-lengths. We state and prove a theorem
resembling Ptolemy’s classical theorem on cyclic quadrilaterals and three general lemmas
on intersections of shortest (in the sense of pseudo-length) geodesic joins. These ideas
are then applied to the description of an optimal fundamental region for the covering
Fuchsian group of a five-punctured sphere, effectively also giving a fundamental region for
the modular group M(0, 5).

1. Introduction. Suppose that G is a torsion-free Fuchsian group of
genus zero acting on the upper half-plane H, and having at least three
distinct conjugacy classes of parabolic elements. Since the genus is zero,
the field of functions automorphic with respect to G is the field of rational
functions of just one such function λ, determined to within composition
with a Möbius transformation. The range of λ is a Riemann surface which
in this case is a region Ω in the extended complex plane, whose boundary
∂Ω has at least three single-point components (punctures). We say that λ
is a conformal universal covering map of Ω. The group G is a free group
freely generated by those parabolic elements which correspond to simple
loops in π1(Ω) each surrounding just one puncture. The reader is referred
to the author’s survey paper [5] for a treatment of the background here,
which goes back in its elements to the work of Poincaré [7]. See also [9].

Let 4(α1, α2, α3) be a zero-angle hyperbolic triangle in H, with vertices
αi which are fixed points of parabolic elements Ti ofG, and with the property
that no two points in its interior are equivalent. Then λ maps 4(α1, α2, α3)
onto a curvilinear triangle 4(p1, p2, p3) in Ω, whose sides are geodesic arcs.
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These arcs meet at the vertices pi at interior angles φi which, unlike the
angles in 4(α1, α2, α3), are not zero.

To the side pjpk of our triangle we assign not its hyperbolic length,
which is infinite, but a finite pseudo-length ψjk related to (but not equal to)
the hyperbolic length of the geodesic loop surrounding pjpk. Our pseudo-
trigonometry is based on the relation

(1.1) φ1 =
ψ23

ψ12ψ13
.

This will be developed in Section 3. In Section 4 we deduce the equality for
quadrilaterals

(1.2) ψ13ψ24 = ψ12ψ34 + ψ14ψ23,

which resembles the well-known theorem of Ptolemy ([8, p. 50]) on cyclic
quadrilaterals.

Our principal application is to n-punctured spheres. An n-punctured
sphere is an open set C∗ \ {p1, . . . , pn}. When we do not need to specify
the punctures we shall denote an n-punctured sphere simply by Ωn.

Since punctures are removable singularities, two n-punctured spheres are
conformally equivalent if and only if there exists a Möbius transformation
which maps the punctures of one onto the punctures of the other. Thus, for
n ≥ 4, two n-punctured spheres are unlikely to be conformally equivalent,
whereas for n ≤ 3 they are always equivalent. In this paper we consider only
the cases n ≥ 3, since Ωn has no hyperbolic structure when n < 3.

The space Tn of conformal equivalence classes of n-punctured spheres can
be regarded as an (n − 3)-dimensional complex manifold. In rough terms,
three of the punctures can be fixed at 0, 1, and ∞, and the remaining n− 3
serve as local complex coordinates.

We can also regard Tn as a (2n − 6)-dimensional real manifold with
local coordinates chosen from the parameters involved in the uniformization
of the n-punctured sphere. These parameters are intimately related to the
hyperbolic structure of Ωn.

In Section 2 we present the Poincaré construction [7] of a fundamental
domain for the Fuchsian group of covering transformations. The real bound-
ary points of this domain are parabolic cusp points for the covering group.
They are convenient real coordinates for the space of n-punctured spheres.

In Section 5 we introduce the concept of shortest geodesic join, which
will play a major role in what follows, and we prove three key lemmas about
the intersections of these shortest geodesic joins.

In Sections 6 and 7 we consider the problem of normalizing our choice of
group parameters, or equivalently, of coordinates for the space of conformal
equivalence classes. For a given Ωn there are infinitely many equivalence
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classes of Poincaré fundamental regions and it is desirable to have a deci-
sion process of selection, based on “sensible” criteria. We present solutions
to this problem in the cases n = 4, 5. In the simpler case n = 4 we relate our
normalization to the configuration of the punctures and their shortest geo-
desic joins. In the case n = 5 this relationship is only partially understood.
The problem here is part of a larger one, namely, that of finding the cov-
ering group when the punctures are known. The paper [5] contains further
discussion of this and related problems.

The three-punctured sphere is the subject of an extensive classical liter-
ature, the essentials of which are very lucidly presented in L. V. Ahlfors [1].
In [4] the author established some monotonicity properties of the hyper-
bolic density function for Ω3 and used these to obtain sharp bounds in two
classical theorems.

The theory in the present paper does not add to what is known in the
case n = 3. The reason for this is that the ambient geodesic of every simple
geodesic join collapses to the remaining puncture. The space T3 reduces to
a singleton, since all three-punctured spheres are conformally equivalent.
The covering group G is (conjugate to) the modular subgroup Γ2, and the
conformal universal covering map λ is the classical Legendre elliptic modular
function.

We remark that all the geodesics in Figure 1 of Section 7 are calculated, as
are the coordinates hi. Numerical approximation methods using the Matlab
package were exploited to calculate the accessory parameters and to solve
the Fuchsian differential equations describing the universal covering.

2. Fundamental domains. The Koebe–Poincaré Uniformization The-
orem (see [6]), applied to the n-punctured sphere, has the following con-
sequences. The surface Ωn is conformally equivalent to the quotient of the
upper half-plane H by a Fuchsian group G, generated by n parabolic Möbius
transformations T1, . . . , Tn which satisfy the relation

(2.1) T1 · · ·Tn = I.

To be more specific, though informal, we connect p1, . . . , pn, in this
order, by a Jordan arc Γ . Then the complement in C∗ of Γ is the con-
formal image by the mapping λ of a subregion P of H, whose boundary
meets the extended real line at 2n − 2 points α1, . . . , α2n−2, corresponding
respectively to p1, . . . , pn−1, pn, followed by pn−1, . . . , p3, p2. Now we replace
the boundary segments of P by hyperbolic lines, or Euclidean semicircles
in H, orthogonal to the real line and meeting it at the same points. We
continue to call the modified region P . We replace Γ by the image of the
boundary of the new region P , to obtain another Jordan arc, which we con-
tinue to call Γ . Chapter 1 of the classic text [6] by R. Nevanlinna has a
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detailed treatment of this construction. Such an arc Γ will be referred to as
a marking for Ωn.

Equipping Ωn with a marking is equivalent to a choice of generators for
its fundamental group. Let z0 be a point not on Γ , and let τ0 be its unique
preimage in P . Then π1(Ωn, z0) is generated by the equivalence classes of
positively oriented loops γi surrounding pi and crossing Γ at most twice, in
the subarcs pi−1pi and pipi+1 if they exist, in this order. The γi satisfy the
relation γ1 . . . γn = id. Analytic continuation of λ−1 around γi results in τ0

being replaced by Ti(τ0), where Ti is a parabolic transformation with fixed
point αi.

Here and subsequently, when there is no risk of ambiguity, we shall denote
by (α, β) the hyperbolic line with ideal end-points α and β.

For k = 1, . . . , n − 1 the transformation Sk = T1 · · ·Tk maps the side
(αk, αk+1) of P onto the side (α2n−k, α2n−k−1). Here, and later, we adopt
the convention that α2n−1 = α1. The following lemma is stated several times,
but without proof, by H. Poincaré in [7].

Lemma 2.1. The points αk satisfy the relationship
n−1∏

k=1

α2k+1 − α2k

α2k − α2k−1
= −1,

where we assume the usual limiting value to be taken when any of the αi is
infinite.

We present a proof at the end of the next section.
If M is any Möbius transformation of H onto itself, then the composite

map λ ◦ M is also a universal covering map, and all conformal universal
covering maps of Ωn by H are obtained in this way. This enables us to fix
three of the αk. We frequently find it convenient to do so by setting

(2.2) α1 =∞; α2 = 0; α2n−2 = 1.

Then we have
0 < α3 < · · · < αn < · · · < α2n−3 < 1,

and, when we take account of the relationship between the cusp points αk,
described in Lemma 2.1, we have essentially 2n− 6 real coordinates for the
space of marked n-punctured spheres.

For 1 ≤ k ≤ n, the cusp αk is the unique fixed point of the Möbius trans-
formation Tk. With our normalization (2.2) we have the following formulae
for the Tk:

T1τ = τ + 1,

and, for k > 1,

(2.3)
1

Tkτ − αk
=

1

τ − αk
− ck



A hyperbolic pseudo-trigonometry 151

for some positive numbers ck. Instead of working with the αk, we shall often
prefer to work with what we call the angle coordinates hk, defined by

(2.4) hk = αk+2 − αk+1

for k = 1, . . . , 2n− 4. See Remark 3.4 in the next section for the reason for
the name. For future reference we note the relations

2n−4∑

k=1

hk = 1,(2.5)

n−2∏

k=1

h2k

h2k−1
= 1,(2.6)

the second of which is a restatement of Lemma 2.1.
The reader is referred to Figures 1 and 2 in Section 7 for an example of

a marking and a corresponding fundamental domain.

Remark 2.2. If all the punctures are replaced by their complex con-
jugates, we obtain an n-punctured sphere whose angle coordinates hk are
simply related to those of the original n-punctured sphere. The correspon-
dence is given by

hk 7→ h2n−3−k.

In particular, if hk = h2n−3−k for all k, then the punctures are concyclic,
and the marking consists of the obvious consecutive arcs of the circle.

Remark 2.3. Different markings for the same n-punctured sphere, or,
equivalently, different choices of parabolic generators Ti satisfying (2.1), are
related to each other through braid transformations. We refer the interested
reader to J. Birman’s book [3]. Braid transformations can be described trans-
parently and simply in terms of the pseudo-lengths of the consecutive joins
of a marking, to be defined in the next section. However the description in
terms of the angle coordinates hi is not lucid.

3. The pseudo-trigonometry. In this section we describe pseudo-
lengths and angles and the relationships between them, and then we use
these to prove Lemma 2.1.

As in Section 1, we consider a hyperbolic triangle 4(p1, p2, p3) with
vertices which are punctures, on a general hyperbolic Riemann surface Ω.
We assume vertices of triangles to be described anticlockwise.

Let λ : H → Ω be a universal covering map, and let 4(α1, α2, α3)
be a zero-angle hyperbolic triangle mapping onto 4(p1, p2, p3). If G is the
automorphism group of λ, there exist well defined parabolic elements Tk∈G,
with fixed points αk, corresponding to homotopy classes of positive simple
loops around pk (see [6, p. 16]). If αk is finite, then Tk is given by (2.3) and
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lifts to the matrix T̃k ∈ SL2(C) given by

(3.1) T̃k = I − ck
(
αk −α2

k

1 −αk

)
.

If αk =∞, then Tk lifts to T̃k ∈ SL2(C) given by

(3.2) T̃k = I + ck

(
0 1

0 0

)
.

In both cases ck is positive. Replacing ck by −ck gives the inverse transfor-
mation or matrix.

Let J be a hyperbolic geodesic connecting two punctures, not neces-
sarily distinct. The ambient geodesic loop γ of J is the unique geodesic in
the homotopy class of closed curves surrounding J once. Let L(γ) be the
hyperbolic length of γ.

Definition 3.1. The pseudo-length ψ(J) of a geodesic joinJ is defined by

(3.3) ψ(J) = 2 cosh

(
L(γ)

4

)
.

It follows that a pseudo-length is greater than or equal to two, with
equality in the limiting case where J collapses to one puncture.

Suppose J joins pi to pj , and a preimage of J under λ is the hyperbolic
line (αi, αj). These points are the fixed points of elements Ti, Tj of G with
descriptions given by (3.1) or (3.2). We relate pseudo-length to the group
parameters through the following lemma.

Lemma 3.2. In the situation described above we have the conjugacy-
invariant relation

(3.4) ψ(J) =
√
cicj |αi − αj |

if both αi, αj are finite, and

(3.5) ψ(J) =
√
cicj

if one of the fixed points is infinite.

Proof. The length of the ambient geodesic loop γ around J is the trans-
lation length of the hyperbolic transformation TiTj . The formula (see [2,
p. 173]) connecting this to trace is

2 cosh(L(γ)/2) = |trace(T̃iTj)|.
From (3.1) and (3.2) we calculate that

trace(T̃iTj) = 2− cicj(αi − αj)2

if both αi, αj are finite, and

trace(T̃iTj) = 2− cicj
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if one of the fixed points is infinite. Since |trace(T̃iTj)| > 2 it follows, when
both fixed points are finite, that

2 cosh(L(γ)/2) = cicj(αi − αj)2 − 2,

and (3.4) follows from the duplication formula for cosh. Similarly we have
(3.5) when one fixed point is infinite. This completes the proof.

We remark that, if we keep αi fixed and let αj go through all possible
transforms Tαj for T ∈ G, we actually go through all possible geodesic joins
J of pi to pj . Nevertheless we shall frequently write ψij instead of ψ(J) in
order to specify the points pi and pj which are being joined, but, for the
sake of economy in notation, allowing the particular join from pi to pj to be
determined by the context.

We next consider the angles at pi made by the geodesic joins which meet
there. For the sake of convenience we measure these not in radians but in
revolutions. Thus our angle of measure 1/2 is the usual π radians. In our
next lemma we establish (1.1).

Lemma 3.3. Let p1, p2, p3 be the vertices of a simple geodesic triangle,
and let φ1 be the interior angle at p1, measured in revolutions. Then

φ1 =
ψ23

ψ12ψ13
,

where ψij is the pseudo-length of the side joining pi to pj .

Proof. We assume for simplicity that the punctures pi and their preim-
ages αi are finite. From (2.3) it follows that the function λ has an expansion
of the following form near α1:

λ(τ) = p1 +
∞∑

k=1

ak exp

[ −2kπi

c1(τ − α1)

]
,

where, by local univalence, a1 6= 0. For τ on (α1,α2), we have

Im

[ −2πi

c1(τ − α1)

]
=

−2π

c1(α2 − α1)
,

and we deduce that for such τ ,

lim
τ→α1

arg(λ(τ)− p1) = arg a1 −
2π

c1(α2 − α1)
.

It follows that the angle φ1 at p1 (measured in revolutions) between the
images of (α1, α2) and (α1, α3) is given by

φ1 =

∣∣∣∣
1

c1(α2 − α1)
− 1

c1(α3 − α1)

∣∣∣∣ =

∣∣∣∣
α3 − α2

c1(α2 − α1)(α3 − α1)

∣∣∣∣.

Now according to Lemma 3.2, ψjk =
√
cjck |αk − αj |; the result follows.
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Remark 3.4. If α1 =∞ the above expression for φ1 is replaced by

φ1 =

∣∣∣∣
α3 − α2

c1

∣∣∣∣,

and the lemma also holds in this case. If p1 = ∞ we interpret the angle φ1

in the usual inversive way. In a normalization described in Section 2, we had
c1 = 1, and this explains why we referred to the hk (defined to be equal to
αk+2 − αk+1) of that section as angle coordinates.

Corollary 3.5. In the situation of the lemma, let φi, i = 1, 2, be the
interior angles at pi, i = 1, 2, respectively. Then

ψ2
23 = φ2φ3.

Proof. This follows immediately from the two equations obtained by
cyclic reordering from (1.1).

We remark that knowledge of φ2, φ3, and ψ23 does not enable us to solve
the triangle, as in ordinary trigonometry.

Corollary 3.6. In the situation of the lemma, let ψ∗23 be the pseudo-
length of the join γ∗23 of p2 to p3, obtained by “flipping” γ23 over p1. Then

ψ∗23 = ψ12ψ13 − ψ23.

Furthermore, ψ23 < ψ∗23 if and only if φ1 < 1/2.

Proof. Corresponding to (1.1), there is the equality

φ∗1 =
ψ∗23

ψ12ψ13
,

with φ∗1 = 1− φ1, and the corollary follows.

We conclude this account of our pseudo-trigonometry with an application
to conformal universal coverings of n-punctured spheres.

Proof of Lemma 2.1. The equality we have to establish is

(3.6)

n−1∏

k=1

α2k+1 − α2k

α2k − α2k−1
= −1,

where, for the sake of uniformity, we can assume all the 2n− 2 fixed points
αi are finite. In any case, the expression on the left is invariant under the
simultaneous action of Möbius transformations. This follows easily from the
fact, to be used again shortly, that if

(3.7) Mτ =
aτ + b

cτ + d
with ad− bc = 1, then

(3.8) Mτ1 −Mτ2 =
τ1 − τ2

Q(τ1)Q(τ2)
,

where Q(τ) = cτ + d.
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We can arrange that α1, . . . , α2n−2 is an increasing sequence, so, since
α2n−1 = α1, (3.6) is equivalent to

n−1∏

k=1

|α2k+1 − α2k|
|α2k − α2k−1|

= 1,

or, with deliberate obfuscation,

n−1∏

k=1

√
c2k+1c2k |α2k+1 − α2k|√
c2kc2k−1 |α2k − α2k−1|

= 1,

where c2n−1 = c1. We use Lemma 3.2 and recall the fact that the sides
(αk, αk+1) of P are mapped onto the sides (α2n−k, α2n−k−1) by the trans-
formation Sk = T1 · · ·Tk. It follows that

√
ck+1ck |αk+1 − αk| =

√
c2n−kc2n−k−1 |α2n−k − α2n−k−1|,

and the expressions on the left in the previous display cancel in pairs. Thus
Lemma 2.1 is established.

4. A theorem like that of Ptolemy. The next theorem bears an
uncanny similarity to Ptolemy’s famous theorem on cyclic quadrilaterals.
A simple proof makes use of Lemma 3.3, and we leave this to the reader.
However we give another proof, which more clearly exhibits the similarity
to Ptolemy’s Theorem.

Theorem 4.1. Let pi, i = 1, . . . , 4, be the vertices, in order , of a simple
geodesic quadrilateral , and let ψij be the pseudo-lengths of the sides and
diagonals. Then

ψ12ψ34 + ψ23ψ14 = ψ13ψ24.

Proof. The following identity is central to the proofs of both theorems:

(4.1) (x4 − x3)(x2 − x1) + (x4 − x1)(x3 − x2) = (x4 − x2)(x3 − x1).

(Quick check: both sides are affine functions of x4 which agree when x4 = x3

and when x4 = x1.)
Suppose now that xi = αi, where the αi are finite fixed points of para-

bolic transformations Ti ∈ G, as defined by (2.3), or (3.1), with αi increasing
and having the property that the geodesic quadrilateral is the conformal im-
age under λ of the zero-angle hyperbolic quadrilateral with the αi as vertices.
Then we deduce, from (4.1),

|α4 − α3| |α2 − α1|+ |α4 − α1| |α3 − α2| = |α4 − α2| |α3 − α1|.
On multiplying both sides by

√
c1c2c3c4 and referring to (3.4), we obtain

the theorem.

We make the important remark, which we will refer to later.
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Remark 4.2. The assumption that the original quadrilateral with ver-
tices pi is simple, that is, has sides and diagonals that do not intersect,
except for the two diagonals, is unnecessary. The preimage quadrilateral is
simple, but may contain pairs of points in its interior equivalent under G,
and some of the vertices αi, though distinct, may themselves be equivalent,
that is, map to the same puncture.

For the sake of completeness of our presentation, we give a proof of the
original Ptolemy Theorem.

Theorem 4.3 (Ptolemy). For i = 1, . . . , 4, let βi be points on a circle,
following each other in cyclic numerical order. Then

|β4 − β3| |β2 − β1|+ |β4 − β1| |β3 − β2| = |β4 − β2| |β3 − β1|.
Proof. Let M be a Möbius transformation which takes the unit circle

onto the real line, in such a way that αi = Mβi form an increasing sequence.
Using (3.7) and (3.8), we see that the statement of the theorem follows from

|α4 − α3| |α2 − α1|+ |α4 − α1| |α3 − α2| − |α4 − α2| |α3 − α1| = 0,

where we can clearly omit the absolute value signs. The theorem thus again
follows from (4.1).

A better-known statement and proof are essentially the same as Ptolemy’s
original ones in [8, p. 50], and of course different from the above.

5. Shortest geodesic joins. As we remarked earlier, for a fixed pair
of punctures pi, pj , there are infinitely many geodesic joins γij . In the case
of a finitely generated group, it is well known (see [2, p. 265]) that there are
finitely many geodesics of any given maximum length. It follows that there
exists at least one geodesic join γ∗ij whose pseudo-length ψ∗ij has the least
possible value. Such a geodesic join will be called a shortest geodesic join.

The following three lemmas will be used in Sections 6 and 7.

Lemma 5.1. Every shortest geodesic join is simple.

Proof. Suppose a certain shortest geodesic join of p1 to p3 has a point of
self-intersection z0, and that λ(τ0) = z0. Then τ0 is the point of intersection
of two hyperbolic lines (α1, α3) and (α2, α4), where α2 = M(α1) and α4 =
M(α3) for some M ∈ G. Then, by Theorem 4.1 and Remark 4.2, we have,
since ψ13 = ψ24,

ψ2
13 = ψ12ψ34 + ψ23ψ14 > 4 + ψ23ψ14.

But then min(ψ23, ψ14) < ψ13. Since both (α2, α3) and (α1, α4) are preim-
ages under λ of geodesics joining p1 to p3 this contradicts the assumption
made at the beginning of this proof. Thus the lemma is proved.
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In a similar vein, we have the following lemma. We use the term “inter-
nal” for points of geodesic joins other than the end-point punctures.

Lemma 5.2. Two shortest geodesic joins having a common end-point
puncture have no internal point in common.

Proof. Suppose that shortest geodesic joins of p1 to p2 and p3 have a
point of intersection z0, and that λ(τ0) = z0. Then τ0 is the point of inter-
section of two hyperbolic lines (α1, α3) and (α2, α4), where pi = λ(αi) for
i = 1, 2, 3, and p1 = λ(α4). Then, from Theorem 4.1 and Remark 4.2, we
obtain

ψ13ψ24 = ψ12ψ34 + ψ23ψ14 > ψ12ψ34 + 4.

But then we must have either ψ12 < ψ24 or ψ34 < ψ13. This contradicts the
minimality of at least one of the geodesics described at the beginning of this
proof. Thus Lemma 5.2 is established.

Our next lemma goes further:

Lemma 5.3. Two shortest geodesic joins have at most one internal point
in common.

Proof. Suppose that γ12 and γ34 are shortest geodesic joins p1 to p2

and p3 to p4 respectively which have consecutive points of intersection z1

and z2, which on γ12 appear in the order p1, z1, z2, p2. There are two cases
to consider:

Case (i): On each geodesic join the crossings at z1, z2 are in opposite
directions.

Case (ii): On each geodesic join the crossings at z1, z2 are in the same
direction.

Though similar, the proofs in the two cases are different and need to
be presented separately. We emphasize that in neither case do we a priori
exclude the possibility of more than two intersections. This exclusion follows
from the present proof: if there are no consecutive intersections, there is no
more than one intersection.

Case (i): Suppose that on γ34 the points z1, z2 appear in the order
p3, z2, z1, p4 and that the loop consisting of the segments z1 to z2 along γ12

and then z2 to z1 along γ34 is described anticlockwise. All other subcases of
Case (i) can be reduced to this by relabelling.

Let γ′12 be the geodesic join in the homotopy class of the arc consisting
of the segments p1 to z1 along γ12, z1 to z2 along γ43, and z2 to p2 along γ12.
Let γ′23 be the geodesic join in the homotopy class of the arc consisting of
the segments p2 to z1 along γ21, and z2 to p3 along γ43. Let γ′34 be the
geodesic join in the homotopy class of the arc consisting of the segments p3
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to z2 along γ34, z2 to z1 along γ21, and z1 to p4 along γ34. Let γ′41 be the
geodesic join in the homotopy class of the arc consisting of the segments p4

to z1 along γ43, and z1 to p3 along γ21.
Our proof in Case (i) consists in proving that either ψ(γ12) > ψ(γ′12),

or ψ(γ34) > ψ(γ′34), thus showing that γ12 and γ34 cannot both be shortest
geodesic joins. As before, we go to the conformal universal cover.

There is a sequence of real points α1, α2, α3, α4, α
′
1 such that λ maps

the hyperbolic lines (α1, α2), (α2, α3), (α3, α4) onto γ′12, γ
′
23, γ

′
34 respectively,

and the line (α4, α
′
1) onto γ′41. Since λ(α′1) = λ(α1) = p1 there is an element

M ∈ G such that α′1 = Mα1. In fact M corresponds to the element of the
fundamental group π1(Ωn) represented by the closed loop z1 to z2 along γ12

followed by z2 to z1 along γ34.
The hyperbolic line (Mα1, α2) is a preimage under λ of γ12, and the

hyperbolic line (Mα3, α4) is a preimage under λ of γ34.
By replacing G by a conjugate subgroup of PSL(2,R) we can arrange

that 0 < α1 < α2 < α3 < α4 < α′1, and that M is given by Mτ = m2τ
for some m > 1 if M is hyperbolic, or that Mτ = τ + 1 if M is para-
bolic.

We calculate ψ(γ12) using (2.3) and (3.4). If T1 is the parabolic trans-
formation in G with fixed point α1 then the conjugate transformation T ′1 =
MT1M

−1 has fixed point Mα1.
In the case where M is hyperbolic and Mτ = m2τ we write (2.3) for T1

and T ′1:

1

T1τ − α1
=

1

τ − α1
− c1,

and

(5.1)
1

MT1M−1τ −m2α1
=

1

τ −m2α1
− c′1,

from which we see that c′1 = c1m
−2. Formula (3.4) then gives

ψ(γ12) =
√
c′1c2 (m2α1 − α2) =

√
c1c2 (mα1 −m−1α2).

Similarly ψ(γ34) =
√
c3c4 (mα3 −m−1α4). Since ψ(γ′12) =

√
c1c2 (α2 − α1)

and ψ(γ′34) =
√
c3c4 (α4−α3), the assumption that γ12 and γ34 are shortest

geodesic joins is thus equivalent to the pair of inequalities

mα1 −m−1α2 < α2 − α1,

mα3 −m−1α4 < α4 − α3,

which reduce to mα1 < α2 and mα3 < α4. But then we have the impossible
inequality sequence

m2α1 < mα2 < mα3 < α4 < m2α1.
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We still have to consider Case (i) in the subcase where M is parabolic.
Since this corresponds to the loop z1 to z2 to z1 surrounding just one punc-
ture, the result is a simple consequence of Corollary 3.6, but we complete
the proof with the present method. With Mτ = τ + 1, and α′1 = α1 + 1,
(5.1) now reads

1

MT1M−1τ − α1 − 1
=

1

τ − α1 − 1
− c′1,

which means that c′1 = c1, and ψ(γ12) =
√
c1c2 (α1 + 1 − α2). In a similar

way ψ(γ34) =
√
c3c4 (α3 + 1 − α4), so the assumption that γ12 and γ34 are

shortest geodesic joins leads to the pair of inequalities

α1 + 1− α2 < α2 − α1,

α3 + 1− α4 < α4 − α3,

or 2α1 + 1 < 2α2 and 2α3 + 1 < 2α4. This leads to the contradiction

2α1 < 2α2 − 1 < 2α3 − 1 < 2α4 − 2 < 2α1.

This completes the proof of the lemma in Case (i).

Case (ii). Suppose that on γ34 the points z1, z2 appear in the order
p3, z1, z2, p4 and that, to a traveller along γ12, the geodesic join γ34 appears
to cross from right to left firstly at z1 and then at z2. All other subcases of
Case (ii) can be reduced to this.

Let γ′12 be the geodesic join in the homotopy class of the arc consisting
of the segments p1 to z1 along γ12, z1 to z2 along γ34, and z2 to p2 along γ12.
Let γ′34 be the geodesic join in the homotopy class of the arc consisting of
the segments p3 to z1 along γ34, z1 to z2 along γ12, and z2 to p4 along γ34.

As in Case (i), our proof in Case (ii) will be accomplished by proving
that either ψ(γ12) > ψ(γ′12), or ψ(γ34) > ψ(γ′34).

Suppose the hyperbolic line (α1, α2) is a preimage under λ of γ12. There
are two hyperbolic lines (α′3, α

′
4) and (α3, α4) which are preimages un-

der λ of γ34, crossing (α1, α2) at preimages of z1 and z2. By Lemma 5.1,
(α′3, α

′
4) and (α3, α4) do not intersect. Hence the αi appear in the cyclic

order (α1, α
′
3, α3, α2, α4, α

′
4).

There is an element M ∈ G such that α′3 = Mα3 and α′4 = Mα4. Since
M has fixed points between α3 and α4 and between α′4 and α′3 in the above
cyclic order, M is hyperbolic. Therefore we can arrange that M is given by
Mτ = m2τ for some m > 1. In this situation we have the inequalities

α1 < m2α3 < α3 < 0 < α2 < α4 < m2α2.
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Denoting by ψ(αi, αj) the pseudo-length of (αi, αj), we find that, as in the
proof of Case (i),

ψ(γ12) = ψ(α1, α2)
√
c1c2 (α2 − α1),

ψ(γ34) = ψ(α3, α4)
√
c3c4 (α4 − α3),

ψ(γ′12) = ψ(α1,m
2α2) =

√
c1c2 (mα2 −m−1α1),

ψ(γ′34) = ψ(m2α3, α4) =
√
c3c4 (m−1α4 −mα3).

The assumption that the first two of the above quantities are respectively
smaller than the second two simplifies to the pair of inequalities mα2 > −α1

and −mα3 > α4. But then we have the chain of inequalities

−m2α3 > mα4 > mα2 > −α1,

which is inconsistent with the beginning of the previous chain. Thus γ12 and
γ34 cannot both be shortest geodesic joins.

This completes the proof of Case (ii), and thus of Lemma 5.3.

6. The four-punctured sphere. In the case n = 4 we prove the fol-
lowing theorem for the angle coordinates hi, introduced in Section 2. Since
h1 + h2 + h3 + h4 = 1, and h1h3 = h2h4, it is easiest to work in terms of h1

and h2 alone.

Theorem 6.1. The angle coordinates h1, h2 for the space of 4-punctured
spheres can be chosen so that they satisfy the inequalities

2h1 + h2 ≤ 1,(6.1)

h1 + 2h2 ≤ 1,(6.2)

2h1 + 2h2 ≥ 1.(6.3)

Two distinct points (h1, h2) and (h′1, h
′
2) in this triangle represent the same

element of T4 if and only if equality holds for (h1, h2) in at least one of the
inequalities (6.1), (6.2), and (6.3), and then h1 = h′2 and h2 = h′1.

Proof. Consider the six shortest geodesic joins γij , 1 ≤ i < j ≤ 4, joining
the punctures pi to pj respectively. We assume, for the moment, that these
are uniquely determined. According to Lemma 5.1 they are all simple, and,
according to Lemma 5.2, no two with a common end-point puncture intersect
again.

Every 4-punctured sphere has a non-trivial group of conformal auto-
morphisms, isomorphic to the Klein 4-group (see [9, p. 150]). The ambient
geodesic loop (Definition 3.1) of γ12 is also the ambient geodesic loop for
a geodesic join γ∗34 joining p3 and p4. By minimality, we have γ∗34 = γ34.
Similarly for the other pairs. Thus the six joins form a tetrahedral pat-
tern, without any intersections except at the end-point punctures, and with
opposite edges equal in pseudo-length.
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We set ψij = ψ(γij), and suppose, after possible relabelling, that
ψ13 > ψ12 and ψ13 > ψ14, and that the triangle 4(p2, p3, p4) has its ver-
tices described in the negative (clockwise) direction. Select as marking Γ
the succession of edges γ12, γ23, γ34. We assert that the coordinates hi asso-
ciated with this marking through the construction of Section 2 satisfy the
conditions of the theorem.

To see this, we let h = 1−h1−h2 be the angle at p1 in 4(p1, p2, p4). We
remark that in terms of the construction of Section 2, h = h3 +h4. Then by
Lemma 3.3,

h =
ψ24

ψ12ψ14
=

ψ13

ψ12ψ14
.

Since also

h1 =
ψ23

ψ12ψ13
=

ψ14

ψ12ψ13
, h2 =

ψ34

ψ13ψ14
=

ψ12

ψ13ψ14
,

we have h > h1, which implies strict inequality in (6.1), and h > h2, which
implies the same in (6.2). To see that (6.3) also holds strictly, we apply
Corollary 3.6 to 4(p2, p3, p4). Since ψ(γ24) < ψ(γ∗24) it follows that h < 1/2,
which is equivalent to the strict case of (6.3).

The limiting case of equality in (6.1) corresponds to ψ13 = ψ14 and, after
permuting p2, p3, p4 to p3, p4, p2, or equivalently h1, h2, h to h2, h, h1, we see
that this corresponds to the limiting case of equality in (6.2), with h1 and
h2 interchanged.

The limiting case of equality in (6.3) corresponds to non-uniqueness in
the choice of γ13 as shortest join. In this case, in terms of Corollary 3.6,
γ24 can be replaced by its “flipped-over” counterpart γ∗24, which is equivalent
to interchanging h1 and h2, as before.

This completes the proof of Theorem 6.1.

It is interesting to describe the configuration of Theorem 6.1 in the fur-
ther normalized situation p1 = ∞, p2 = 0, p4 = 1. Then p3 = p is confined
to the curvilinear triangle described by Im(p) ≥ 0, |p| ≤ 1, |p − 1| ≤ 1.
Equality in (6.1) holds on the boundary segment |p| = 1, equality in (6.2)
holds on the boundary segment |p − 1| = 1, and equality in (6.3) holds on
the boundary segment Im(p) = 0. The marking Γ is the most natural se-
quence of geodesic joins of the points in their numerical order. Thus, even
though we cannot solve the deeper problem: given the punctures find the
angle coordinates, we can at least find the setwise image of the boundary
given in Theorem 6.1.

In the next section we present a theorem similar to Theorem 6.1 for the
case of five punctures, but the corresponding configurations on the sphere
are not easy to obtain.
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7. The five-punctured sphere. The reader will find it convenient
to refer to the following figures throughout this section. The angles hi are
angles at the puncture at infinity.

h1

h2

h3

h4

h5

h6
p2

p3

p4

p5

p1 =∞

Fig. 1. A marking in the case n = 5

In the next figure, we show part of the tessellation of the upper half-plane
by fundamental domains, associated with the above marking.

h1 h2 h3 h4 h5 h6

α1 =∞

α2 = 0 α3 α4 α5 α6α7 α8 = 1

Fig. 2. A fundamental domain with neighbours

Of central importance here is the following lemma, special to the case
n = 5.
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Lemma 7.1. Let Γ be any marking (sequence of geodesic joins, not nec-
essarily shortest) on Ω5, and suppose that the angles made by the segments
of Γ at three consecutive punctures, and on the same side, have measures
all less than or equal to 1/2. Then these measures are in fact all equal to
1/2, and the punctures are concyclic.

Proof. Referring to Figure 1 for convenience, we take the three punctures
at p5, p1, and p2, modifying the marking shown in bold type by including
the join form p5 to p1 and removing the join form p3 to p4. The marking Γ
joins p4, p5, p1, p2, p3 in this order.

Let us denote by k5 and k2 the angles at the punctures p5 and p2 on the
left side of the marking just referred to. Then the assumption of the lemma
is that

k5 ≤ 1/2,(7.1)

h1 + h2 + h3 ≤ 1/2,(7.2)

k2 ≤ 1/2.(7.3)

A simple exercise in the pseudo-trigonometry of Section 3 yields the values

k5 =
h4

h3 + h4
, k2 =

h6

h1 + h6
.

The inequalities (7.1) and (7.3) can therefore be replaced by

(7.4) h4 ≤ h3, h6 ≤ h1

respectively. In the case n = 5, (2.5) and (2.6) state that

(7.5) h1 + h2 + h3 + h4 + h5 + h6 = 1,

and that

(7.6) h1h3h5 = h2h4h6.

From (7.4) and (7.6), we deduce that h5 ≤ h2. Using (7.2) and (7.5), we
obtain

1/2 ≤ h4 + h5 + h6 ≤ h1 + h2 + h3 ≤ 1/2.

We deduce that all of the inequalities appearing in this proof are equal-
ities, and hence that h1 + h2 + h3 = k2 = k5 = 1/2.

Now we apply what we have so far to the consecutive angles at p1, p2

and p3 and see that the angle at p3 is also equal to 1/2. Similarly the angle
at p4 is also equal to 1/2.

Thus the lemma is established.

To prove our theorem concerning normalizations of the coordinates for
the space of 5-punctured spheres, we need the following corollary.
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Corollary 7.2. Three shortest geodesic joins involving all five punc-
tures cannot form a crossed V pattern, except when the punctures are con-
cyclic. To explain this, suppose that a geodesic join from p2 to p4 crosses
the shortest geodesic join from p1 to p3, and then, in the same direction, the
shortest geodesic join from p5 to p3. Then the geodesic join from p2 to p4

is not shortest , unless the pi are concyclic (in the numerical order of their
labelling).

Proof. Suppose that the join p2 to p4 is shortest. Then, by Corollary 3.6,
the marking obtained by joining p1 to p2 to p3 to p4 to p5 without crossing
any of the three given joins has three consecutive angles on the same side
less than 1/2. This contradicts Lemma 7.1.

We are now ready to state and prove

Theorem 7.3. The angle coordinates hi, i = 1, . . . , 6, for the space of
5-punctured spheres, which we know are positive and satisfy (7.5) and (7.6),
can be chosen so that they also satisfy

h1 + h2 ≤ 1/2,(7.7)

h2 + h3 ≤ 1/2,(7.8)

h3(h5 + h6) ≤ h4(h1 + h2),(7.9)

h1(h4 + h5) ≤ h6(h2 + h3).(7.10)

If two distinct sets of coordinates [hi] and [h′i] represent conformally equiv-
alent 5-punctured spheres and satisfy the above inequalities then in the case
of both sets equality holds in at least one of the inequalities. More precisely
if equality holds for [hi] in (7.7), then equality holds for [h′i] in (7.8), and
vice versa. If equality holds for [hi] in (7.9), then equality holds for [h′i] in
either (7.9) or (7.10). If equality holds for [hi] in (7.10), then equality holds
for [h′i] in either (7.9) or (7.10).

The reader should recognize here a resemblance to the side-pairing which
occurs for fundamental regions of Fuchsian groups. The group here is the
modular group M(0, 5) acting on the Teichmüller space T (0, 5), and whose
orbits are conformal equivalence classes of 5-punctured spheres.

Proof. We consider the ten shortest geodesic joins in the case where
these are uniquely determined. We first prove that only one pair intersect.
Our proof makes repeated use of Lemmas 5.1–5.3, as well as Corollary 7.2,
but to avoid being tedious we make explicit reference only to the corollary,
leaving the simpler explanations based on the lemmas to the reader.

Fix one puncture, say p1, at infinity. Then the four shortest joins from
p1 are simple, and do not intersect each other. Label the punctures in such
a way that p2, p3, p4, p5 appear in anticlockwise order (relative to p1) as the
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extremities of the four joins, which we conveniently label as γ2, γ3, γ4, γ5

respectively.
If the shortest geodesic join J from p2 to p4 intersects γ3, then it also

intersects γ5 or it does not. We prove that it does not. If it does, then the
trio composed of J , the shortest geodesic join from p2 to p5, and γ3, would
form a crossed V, contradicting Corollary 7.2.

If J intersects γ3 we now show that the shortest geodesic join K from p5

to p3 does not intersect J , γ2, γ3, γ4 or γ5. Certainly K does not intersect
γ3 or γ5. By an application to K of what has already been proved about J ,
K intersects J if and only if it also intersects one of γ2 or γ4. Suppose it
is γ2. Then J , K, and γ3 form a crossed V, contradicting Corollary 7.2.

Still assuming J intersects γ3, we next show that the shortest geodesic
join from p2 to p5 intersects none of the other ones already considered.
Certainly it does not intersect γ2, γ5, J , or K. If it intersects γ3 then together
with J and γ3 it forms a crossed V; if it intersects γ4 then it forms a crossed V
with γ3 and γ4, in either case contradicting Corollary 7.2. Similarly we can
show that the shortest geodesic join from p4 to p5 intersects none of those
already considered. It is now obvious that the shortest geodesic joins from
p3 to p2 and p4 intersect none of the earlier ones.

If we now drop the assumption that J intersects γ3, we are left with
the possibilities that J intersects γ5 or that it does not. In the former
case we repeat the above discussion. In the latter, we consider the similar
three possibilities for the shortest geodesic join from p3 to p5. It is easy to
see that in all cases there is just one pair of intersecting shortest geodesic
joins.

We now map the one puncture that is not involved in either intersecting
pair to infinity, and relabel the punctures so that p2, p3, p4, p5 still appear
in anticlockwise order relative to the point p1 at infinity. In summary, the
ten shortest geodesic joins form an envelope pattern, with a distinguished
quadrilateral whose interior angles are all less than 1/2, its diagonals being
the shortest geodesic joins joining opposite vertices.

Let the angles at p1 between the joins, in order, be h1, h2, h3, and h,
summing to 1. We are still at liberty to choose the labelling in such a way
that the inequalities (7.7) and (7.8) hold. Assume this has been done, and
that h4, h5 and h6 are as in Figure 1.

As simple exercises in pseudo-trigonometry, we can readily obtain the
following expressions for the interior angles at p2, p3, p4, p5 respectively:

angle at p2 =
h1(h4 + h5)

h6(h4 + h5 + h6 + h1) + h1(h4 + h5)
,(7.11)

angle at p3 =
h3(h5 + h6)

h4(h1 + h2) + h3(h5 + h6)
,(7.12)
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angle at p4 =
h1(h4 + h5)

h6(h2 + h3) + h1(h4 + h5)
,(7.13)

angle at p5 =
h3(h5 + h6)

h4(h3 + h4 + h5 + h6) + h3(h5 + h6)
.(7.14)

Since the angles at p3 and p4 are less than 1/2, the stated inequalities (7.9)
and (7.10) follow from (7.12) and (7.13) respectively. The other necessary
conditions, that the angles at p2 and p5 are also less than 1/2, follow from
the above formulas, which, with (7.7) and (7.8), imply that these angles are
smaller than those at p4 and p3 respectively.

It remains to prove the last statement of the theorem. The cases of
equality in (7.7) and (7.8) are ones which allow rotations of the distinguished
quadrilateral. If there is a coordinate set [hi] for which equality holds only
in (7.7), then there is another set [h′i] for a conformally equivalent Ωn for
which equality holds only in (7.8). Equality holds in both (7.7) and (7.8) if
and only if the distinguished quadrilateral is one whose vertices are those of
a Euclidean parallelogram.

The cases of equality in (7.9) and (7.10) are ones which allow replacement
of the distinguished quadrilateral. If equality holds for the set [hi] only
in (7.9) then there is another set [h′i] for a conformally equivalent Ωn for
which equality holds again only in (7.9) or in (7.10). To see this, note that
the distinguished quadrilateral has the angle at p3 equal to 1/2, so can be
replaced by the distinguished quadrilateral which excludes p5. We obtain a
configuration equivalent to the one considered by relabelling p5, p4, p3, p2, p1

as p1, p2, p3, p4, p5 or p5, p1, p4, p3, p2 as p1, p2, p3, p4, p5. The case of equality
in (7.10) is discussed in a similar fashion. Equality holds in both (7.9) and
(7.10) if and only if the punctures are concyclic.

Thus the theorem is proved.
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