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∇-flat functions on manifolds

by Wojciech Kozłowski (Łódź)

Abstract. We investigate ∇-flat and pointwise-∇-flat functions on affine and Rie-
mannian manifolds. We show that the set of all ∇-flat functions on (M,∇) is a ring which
has interesting properties similar to the ring of polynomial functions.

1. Introduction, preliminaries and primary results. This paper
is devoted to some aspects of the connection theory, namely we consider an
affine manifold (M,∇) and investigate the set of ∇-flat and pointwise-∇-flat
functions. Although ∇ is an elliptic operator (see [We] or [Na]), we use only
elementary methods of differential geometry.

In this section we prepare our tools. The major one is Proposition 1.1
which seems to be of independent interest. Moreover, it is shown that if
(M,∇) is real analytic then each flat function on M is also real analytic
(see Corollary 1.1).

The main results are given in Section 2. We prove there (see Theorem 2.1)
that if (M,∇) is real analytic and M is connected then any pointwise-∇-flat
function is ∇-flat and real analytic. We also show that the ring of ∇-flat
functions on any smooth and connected manifold is an integral domain.
Moreover (see Theorem 2.2), it is proved that each ∇-flat and bounded
function on any complete Riemannian manifold is constant. In particular,
if M is connected and compact then each ∇-flat function must be con-
stant.

Let (M,∇) be an affine manifold. For any integer k ≥ 0 put ∇k =
∇ ◦ · · · ◦ ∇ (k times). A function f ∈ C∞(M) is called ∇-flat if ∇kf = 0
for some k ≥ 0. A function f ∈ C∞(M) is called pointwise-∇-flat if for
each x ∈ M there exists k = k(x) ≥ 0 such that (∇kf)(x) = 0. A smooth
function f on a Riemannian manifold (M,g) is called ∇-flat if f is ∇-flat
with respect to Levi-Civita’s connection ∇ on M . Moreover, we will say
that f is k-∇-flat if ∇kf = 0. Obviously, for any k the set Pk(M,∇) of all
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k-∇-flat functions on M is a vector space, whereas the set P(M,∇) of all
∇-flat functions on M is a ring.

Example. Let M be an open subset of Rn and ∇ denote the canonical
connection on M , i.e. ∇∂/∂xi∂/∂xj = 0. Then one can easily verify that f
is k-∇-flat if and only if f is a polynomial function of degree < k (1).

Using the Baire property (cf. [He, Lemma 3.1]) one can prove the fol-
lowing

Lemma 1.1. Consider a smooth function f : I → R, where I ⊂ R is an
open interval. If for each x ∈ I there exists an integer k = k(x) ≥ 0 such
that f (k)(x) = 0 then f is a polynomial function on I. Here f (k) = dkf/dtk.

Let (M,∇) be an affine manifold. Take p ∈ M , and let G be an open
and star-shaped neighbourhood of zero in TpM such that the exponential
mapping exp at p is defined on G. For any v ∈ G let ϕv : I →M denote the
geodesic curve such that ϕv(I) ⊂ exp(G), ϕv(0) = p and ϕ̇v(0) = v.

Proposition 1.1. Let k ≥ 0. Suppose that f is a smooth function on M .
If ϕ?v∇kf = 0 for each v ∈ G, then f ◦ exp is a polynomial function on G of
degree < k.

Proof. If k = 0 then the assertion is obvious. Suppose that k ≥ 1. Set
v ∈ G. Put ϕ = ϕv for simplicity. Take t0 ∈ I. Let I ′ ⊂ I be a neighbourhood
of t0 such that ϕ|I ′ is an embedding. Put I ′′ = ϕ(I ′). Suppose E is a vector
field defined on an open neighbourhood of I ′′ in M such that E ◦ ϕ = ϕ̇.
Define now the affine connection ∇′′ on I ′′ by putting ∇′′EE = 0. Let ∇′
be the canonical connection on I ′. Since ϕ is a geodesic curve, ϕ?∇′′kf =
ϕ?∇kf = 0 on I ′′.

By the definitions of∇′ and∇′′ it follows immediately that ϕ : (I ′,∇′)→
(I ′′,∇′′) is an affine diffeomorphism. Hence ∇′k(f ◦ ϕ) = ϕ?∇′′kf = 0.
Since ∇′ is the canonical connection on I ′ (see Example above), f ◦ ϕ is a
polynomial function on I ′ of degree < k. Since t0 is arbitrary, f ◦ϕ must be
a polynomial function on I.

Consider now an arbitrary v ∈ G and put P = f ◦ exp. Using the chain
rule, we obtain

P (v)− P (0) =
∑

0<|α|<k

1
α!

∂|α|P
∂xα1

1 · · ·∂xαnn
(0)vα1

1 . . . vαnn .

Hence P is a polynomial function of degree < k.

(1) Throughout this paper the degree of the zero polynomial function is −∞.
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A straightforward consequence of Proposition 1.1 is the following

Theorem 1.1. Suppose f is a k-∇-flat function on M . Then for each
point p ∈M , f ◦ exp is a polynomial function on G of degree < k.

Corollary 1.1. Suppose (M,∇) is a real analytic and f ∈ C∞(M). If
f is ∇-flat then f is real analytic.

2. Main results. Let (M,∇) be an affine manifold. Recall (see [KN,
Theorem 8.7(2)]) that each q ∈ M has a neighbourhood W such that any
p ∈W has a normal neighbourhood containing W .

Theorem 2.1. Suppose (M,∇) is real analytic and M is connected. If
a smooth function f on M is pointwise-∇-flat then f is real analytic and
∇-flat.

Proof. Define an open set V ⊂ M as follows: p ∈ V if there exists an
open neighbourhood, say Wp, of p and an integer k ≥ 0 such that ∇kf = 0
on Wp. The Baire property implies that V is dense. Corollary 1.1 implies
that f is real analytic and flat on each connected component of V .

Suppose that E = M\V 6= ∅. Let q ∈ E. Take p such that f is k-∇-flat on
some neighbourhood of p and a normal neighbourhood Ω of p containing q.
We may suppose that Ω = exp(G), where G is as in the previous section.
Since exp : G→ Ω is a real analytic diffeomorphism it suffices to show that
f ◦ exp is a polynomial function on G. Take any v ∈ G and let ϕ : I ′ → Ω
be a geodesic curve such that ϕ(0) = p and ϕ̇(0) = v. Put I ′′ = ϕ(I ′). Let
∇′′ be an affine connection on I ′′ defined as in the proof of Proposition 1.1.
If ∇′ is the canonical connection on I ′ then ϕ : (I ′,∇′) → (I ′′,∇′′) is an
affine diffeomorphism, hence for any r ≥ 0, ∇′r(f ◦ϕ) = ϕ?∇′′rf . Since ϕ is
a geodesic curve, one can easily check that ϕ?∇′′rf = ϕ?∇rf . This implies
that the restriction of f to I ′′ is pointwise-∇′′-flat on I ′′ and ∇′′kf = 0 on
some neighbourhood of p in I ′′, therefore f ◦ ϕ is pointwise-∇′-flat on I ′

and ∇′k(f ◦ ϕ) = 0 on some open interval contained in I ′. Since ∇′ is the
canonical connection on I ′, Lemma 1.1 implies now that ∇′k(f ◦ ϕ) = 0
on I ′. So ϕ?∇kf = ϕ?∇′′kf = ∇′k(f ◦ ϕ) = 0. Since v ∈ G was arbitrary,
Proposition 1.1 implies that f ◦ exp is a polynomial function on G.

Suppose now that both M and ∇ are just smooth. Let P = P(M,∇)
and Pk = Pk(M,∇).

Proposition 2.1 (Identity Principle). Let M be connected and f ∈ P.
If f = 0 on some open subset of M then f = 0 on M .

Proof. Define an open set W ⊂ M as follows: q ∈ W if f = 0 on
some neighbourhood of q. Since W is nonempty and M is connected, it
suffices to show that W is closed. Let p be an accumulation point of W , Ω
a normal neighbourhood of p and G = exp−1(Ω). Theorem 1.1 implies that
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P = f ◦ exp is a polynomial function on G and P = 0 on a nonempty open
subset exp−1(W ) of G. Hence P = 0 on G, so f = 0 on Ω. Thus p ∈W .

Corollary 2.1. If M is connected then P is an integral domain.

Corollary 2.2. If M is connected then dimPk < d(n, k), where d(n, k)
denotes the dimension of the vector space Rk of all polynomial functions on
Rn of degree ≤ k.

Proof. Fix p ∈ M . Let Ω be a normal neighbourhood of p and let
G = exp−1(Ω). Let PΩk denote the vector space of all restrictions of members
of Pk to Ω. Using Theorem 1.1 and identifying the space of all polynomial
functions on G of degrees < k with Rk we see that exp? : PΩk →Rk is a vec-
tor space monomorphism. If f1, . . . , fr is a basis of PΩk then Proposition 2.1
implies that f1, . . . , fr is a basis of Pk. Thus dimPk = r < d(n, k).

Let now (M,g) be a connected Riemannian manifold and let ∇ be Levi-
Civita’s connection on M .

Theorem 2.2 (Liouville type theorem). If (M,g) is complete then each
∇-flat and bounded function f on M is constant. In particular if M is
compact then each ∇-flat function on M is constant.

Proof. Since (M,g) is a complete, the exponential mapping at p is de-
fined on the whole tangent space Tp. Since f is bounded, Theorem 1.1 implies
that f must be constant on some neighbourhood of p. Theorem 2.2 is now
a consequence of Proposition 2.1.
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