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Existence of classical solutions for parabolic
functional differential equations with

initial boundary conditions of Robin type

by Milena Matusik (Gdańsk)

Abstract. The paper deals with the initial boundary value problem of Robin type for
parabolic functional differential equations. The unknown function is the functional variable
in the equation and the partial derivatives appear in the classical sense. A theorem on the
existence of a classical solution is proved. Our formulation and results cover differential
equations with deviated variables and differential integral problems.

1. Introduction. For any metric spaces X and Y we denote by C(X,Y )
the class of all continuous functions defined on X and taking values in Y .
We will use vectorial inequalities with the understanding that the same in-
equalities hold between their corresponding components. Let S ⊂ Rn be a
bounded domain with boundary ∂S of class C1. Write

Q0 = [−b0, 0]× S̄, Q = (0, a]× S̄, Ω = Q0∪Q̄, ∂0Q = Q0∪([0, a]×∂S)

where a > 0, b0 ∈ R+ = [0,+∞) and S̄ is the closure of S. For each (t, x) ∈
[0, a]× S̄ we define

D[t, x] = {(τ, y) ∈ Rn+1 : τ ≤ 0, (t+ τ, x+ y) ∈ Q0 ∪Q}.
There is [c, d]n ⊂ Rn such that

D[t, x] ⊂ [−b0 − a, 0]× [c, d]n for (t, x) ∈ [0, a)× S̄.
Write I = [−b0 − a, 0] and B = I × [c, d]n. For a function z : Q0 ∪ Q → R
and a point (t, x) ∈ [0, a)× S̄ we define z(t,x) : D[t, x]→ R by

z(t,x)(τ, y) = z(t+ τ, x+ y), (τ, y) ∈ D[t, x].

That is, z(t,x) is the restriction of z to the set (Q0 ∪ Q) ∩ ([−b0, t] × Rn)
shifted to the set D[t, x]. Suppose that φ0 : [0, a)→ R and φ = (φ1, . . . , φn) :
Q → Rn are given functions. Write ϕ(t, x) = (φ0(t), φ(t, x)) for (t, x) ∈ Q.
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We assume that 0 ≤ φ0(t) ≤ t and φ(t, x) ∈ S for (t, x) ∈ Q. Put Ξ =
Q×R×C(B,R)×Rn and suppose that ψ : Q0 → R, β, γ, Ψ : [0, a]×∂S → R
are given functions. Write

Λ[z](t, x) = β(t, x)z(t, x) + γ(t, x)
∂z(t, x)

∂n(x)
,

where n(x) is the unit outward normal on ∂S at x ∈ ∂S. We write ∂n
instead of ∂n(x). We assume that the functions β : [0, a]× ∂S → (0,∞) and
γ : [0, a]× ∂S → R+ are continuous and let B̃ = inf(x,t)∈[0,a]×∂S β(t, x).

Suppose that F : Ξ → R, aij , bi : Q̄ → R, i, j = 1, . . . , n, are given
functions. We assume that F satisfies the condition (V ) i.e. if for each
(t, x, p, w, q) ∈ Ξ and w̃ ∈ C(B,R) such that w(τ, y) = w̃(τ, y) for (τ, y) ∈
D[t, x] we have F (t, x, p, w, q) = F (t, x, p, w̃, q). Note that the condition (V )
means that the value of F at (t, x, p, w, q) ∈ Ξ depends on (t, x, p, q) and on
the restriction of w to the set D[t, x] only. Write

L[z](t, x) = ∂tz(t, x)−
n∑

i,j=1

aij(t, x)∂xixjz(t, x) +
n∑
i=1

bi(t, x)∂xiz(t, x).

We assume that L is strictly uniformly parabolic in Q, i.e. there exists some
positive constant k such that

k−1|ξ|2 ≤
n∑

i,j=1

aij(t, x)ξiξj ≤ k|ξ|2.

We consider the problem consisting of the functional differential equation
(1.1) L[z](t, x) = F (t, x, z(t, x), zϕ(t,x), ∂xz(t, x))

and the initial boundary conditions
(1.2) Λ[z](t, x) = Ψ(t, x) on [0, a]× ∂S, z(t, x) = ψ(t, x) on Q0.

The aim of this paper is to give sufficient conditions for the existence of
classical solutions to (1.1), (1.2).

Problems of the existence of solutions to parabolic functional differential
equations have been considered by many authors under various assumptions.
The paper [14] deals with weakly coupled parabolic systems with time delays.
It is shown by using upper and lower solutions and by monotone iterative
techniques that the corresponding sequences of approximate solutions con-
verge monotonically to a unique solution of the original problem. The given
functions in the nonlinear parts of the systems satisfy the Lipschitz condition
with respect to the unknown functions and have a mixed quasimonotonicity
property. The main difficulty in using monotone iterative methods is to con-
struct lower and upper functions. There is not much literature on general
methods for finding such functions. This method also requires assumptions
on monotonicity of given functions with respect to functional variables. In
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our paper we do not need this restriction. Nor do we need assumptions on
lower and upper functions. In contrast to many papers ([4], [6], [14], [15]),
in our considerations it is important that F depends on ∂xz.

Monotone iterative methods have been applied in [5], [3], [6] to studying
the existence of solutions to parabolic functional differential problems. The
results presented in those papers can be characterized as follows: theorems
have simple assumptions and their proofs are very natural; unfortunately, the
class of functional differential equations covered is rather small. The results
given in [5], [3], [6] are not applicable to differential integral equations of
Volterra type or to equations with deviated variables.

Initial boundary value problems for parabolic functional differential equa-
tions lead to integral functional equations. Classical solutions of the latter
are considered to be generalized solutions of the original problems. The pa-
per [16] gives sufficient conditions for the existence of generalized solutions
of the Cauchy problem for semilinear parabolic systems with functionals.

Classical solutions of initial boundary value problem of the Dirichlet type
have been considered in [17].

The present paper is a continuation of [5], [17] and generalizes some
results presented in those papers.

We now give examples of equations which can be obtained from (1.1) by
specializing F .

Example 1.1. Suppose that f : Q × R2 × Rn → R is a given function.
Write

F (t, x, p, w, q) = f
(
t, x, p,

�

D[t,x]

w(τ, y) dy dτ, q
)

on Ξ.

Then (1.1) reduces to the differential integral equation

L[z](t, x) = f(t, x, z(t, x),
�

D[t,x]

z(φ0(t) + τ, φ(t, x) + y) dy dτ, ∂xz(t, x)).

Example 1.2. For the above f we put

(1.3) F (t, x, p, w, q) = f(t, x, p, w(0, 0[n]), q) on Ξ,

where 0[n] = (0, . . . , 0) ∈ Rn. Then (1.1) reduces to the equation with devi-
ated variables

(1.4) L[z](t, x) = f(t, x, z(t, x), z(ϕ(t, x)), ∂xz(t, x)).

We will write CLS(F, Ψ, ψ) for the set of classical solutions of (1.1), (1.2).
A function % ∈ C(R+,R+) is called a modulus if % is nondecreasing and
%(0+) = 0. Let C(B,R, r) = {w ∈ C(B,R) : ‖w‖B ≤ r} where ‖ · ‖B is
the supremum norm in the space C(B,R). For any A ⊂ R1+n we write
At = {(s, x) ∈ A : −b0 ≤ s ≤ t}.
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Let the ordinary differential equation

(1.5) ω′(t) = σ(t, ω(t))

be defined in a region D and let (t0, η) ∈ D. A solution ω of (1.5), passing
through the point (t0, η) and defined in some interval ∆+ = [t0, a1), is called
a right-hand maximum (resp. minimum) solution of (1.5) in ∆+ passing
through (t0, η) if for every solution ω̃ of (1.5) passing through (t0, η) and
defined in an interval ∆̃+ = [t0, a2), we have

ω̃(t) ≤ ω(t) (resp. ω̃(t) ≥ ω(t)) for t ∈ ∆+ ∩ ∆̃+.

Let η ≥ 0. We will write σ ∈ Oη if σ : [0, a]×R+ → R+ is continuous and
nondecreasing with respect to both variables and the right-hand maximum
solution of the problem

(1.6) ω′(t) = σ(t, ω(t)), ω(0) = η,

exists in [0, a]. We will denote this solution by ω(·, η).
For σ ∈ Oη, we will denote by Xσ the set of all functions F : Ξ → R

such that

(i) for every (t, x, u, w) ∈ Q× R× C(B,R)

F (t, x, u, w, 0[n]) sgn(u) ≤ σ(t,max{|u|, ‖w‖B});
(ii) for every r > 0 there exists a modulus %r such that

|F (t, x, u, w, p)− F (t, x, u, w, 0[n])| ≤ %r(‖p‖)
in Q× [−r, r]× C(B,R, r)× Rn.

The remark below is a reformulation of Lemma 4.1 in [13].

Remark 1.3. Suppose that F ∈ Xσ, z ∈ CLS(F, Ψ, ψ) and ‖ψ‖ ≤ η,
‖Ψ‖[0,t]×∂S ≤ B̃ω(t, η). Then

‖z‖Qt ≤ ω(t, η) ≤ r̃ = ω(a, η), t ∈ [0, a].

Let (Y, ‖ · ‖) be a normed space and r ≥ 0. We define Ir : Y → Y by

(1.7) Ir(x) =

{
x if ‖x‖ ≤ r,
x
‖x‖r if ‖x‖ > r.

We see at once that

‖Ir(x)‖ = min{‖x‖, r}, ‖Ir(x)− Ir(y)‖ ≤ 2‖x− y‖ in Y,

which follows from (1.7).
Let I∗r : R → R and Ir : C(B,R) → C(B,R) be defined by (1.7). For a

function F : Ξ → R we define Fr : Ξ → R by

(1.8) Fr(t, x, u, w, p) = F (t, x, I∗r (u), Ir(w), p).

The remark below is a consequence of Remark 1.3 and definition (1.7).
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Remark 1.4. Suppose that F ∈ Xσ, ‖Ψ‖[0,t]×∂S ≤ B̃ω(t, η), ‖ψ‖ ≤ η.
Then

(i) Fr̃ ∈ Xσ;
(ii) CLS(F, Ψ, ψ) = CLS(Fr̃, Ψ, ψ).

Let A ⊂ R1+n be a bounded domain and 0 < α < 1. We will denote by
Cα/2,α(A,R) the space of all continuous functions f : A→ R with the finite
norm

‖f‖Cα/2,α(A,R) = ‖f‖A +H
α/2
t [f ] +Hα

x [f ]

where

H
α/2
t [f ] = sup

{
|f(t, x)− f(t̃, x)|

|t− t̃|
α
2

: (t, x), (t̃, x) ∈ A, t 6= t̃

}
,

Hα
x [f ] = sup

{
|f(t, x)− f(t, x̃)|
‖x− x̃‖α

: (t, x), (t, x̃) ∈ A, x 6= x̃

}
,

and ‖ · ‖ is the Euclidean norm in Rn. Moreover, set

Hα/2,α[f ] = H
α/2
t [f ] +Hα

x [f ].

For A and α as above, let C1+α/2,2+α(A,R) denote the space of all con-
tinuous functions f : A→ R satisfying the conditions:

(i) the partial derivatives ∂xf = (∂x1f, . . . , ∂xnf), ∂xxf = [∂xixjf ]ni,j=1,
∂tf exist on A and are continuous,

(ii) the following norm is finite:

‖f‖C1+α/2,2+α(A,R) = ‖f‖A + ‖∂tf‖A +

n∑
i=1

‖∂xif‖A +

n∑
i,j=1

‖∂xixjf‖A

+Hα/2,α[∂tf ] +
n∑

i,j=1

Hα/2,α[∂xixjf ].

In a similar way we define the space C(1+α)/2,1+α(A,R), 0 < α < 1. Let
C1,2(A,R) be the space of all continuous functions f : A→ R satisfying the
conditions:

(i) ∂tf, ∂xf, ∂xxf exist and are continuous on A,
(ii) the following norm is finite:

‖f‖C1,2(A,R) = ‖f‖A + ‖∂tf‖A +

n∑
i=1

‖∂xif‖A +

n∑
i,j=1

‖∂xixjf‖A.
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Let C0,1
∗ (Ω,R) = C(Ω,R) ∩C0,1(Q̄,R) and ‖f‖0,1∗ = ‖f‖Ω + ‖∂xf‖Q̄. Write

C
(1+α)/2,1+α
µ,µ̃ (Ω,R) = Cµ,µ̃(Ω,R) ∩ C(1+α)/2,1+α(Q̄,R),

C
1+α/2,2+α
µ,µ̃ (Ω,R) = Cµ,µ̃(Ω,R) ∩ C1+α/2,2+α(Q̄,R)

with norms

‖f‖(1+α)/2,1+α
µ,µ̃ = max{‖f‖Cµ,µ̃(Ω,R), ‖f‖C(1+α)/2,1+α(Q̄,R)},

‖f‖1+α/2,2+α
µ,µ̃ = max{‖f‖Cµ,µ̃(Ω,R), ‖f‖C1+α/2,2+α(Q̄,R)}.

Let Lq(A,R), q ≥ 1, be the Banach space consisting of all equivalence
classes of Lebesgue measurable functions f defined on A into R with the
finite norm

‖f‖Lq(A,R) =
( �

A

|f(τ, y)|q dy dτ
)1/q

.

We denote by W 1,2
q (A,R) the Banach space consisting of all f ∈ Lq(A,R)

having generalized derivatives ∂tf , ∂xf , ∂xxf = [∂xixjf ]ni,j=1 such that the
following norm is finite:

‖f‖
W 1,2
q (A,R)

= ‖f‖Lq(A,R) + ‖∂tf‖Lq(A,R) +
n∑
i=1

‖∂xif‖Lq(A,R) +
n∑

i,j=1

‖∂xixjf‖Lq(A,R).

For nonintegral α, the Banach space Wα/2,α
q (A,R) is defined analogously

(see [11]).
Let S ⊂ Rn be a bounded domain. We will say that ∂S is of class C2+α,

0 < α < 1, if for every x ∈ ∂S there exist a neighborhood Ux of x and
i ∈ {1, . . . , n} such that ∂S ∩ Ux can be represented in the form

xi = h(x1, . . . , xi−1, xi+1, . . . , xn), (x1, . . . , xi−1, xi+1, . . . , xn) ∈ Ũx
where Ũx ⊂ Rn−1 is an open set and h ∈ C2+α(Ũx,R).

2. Existence of solution for mixed problems. We will say that
problem (1.1), (1.2) satisfies the compatibility conditions if

L[Ψ ](0, x) = F (0, x, Ψ(0, x), Ψϕ(0,x), ∂xΨ(0, x)) for x ∈ ∂S,(2.1)

β(0, x)u(0, x) + γ(0, x)
∂u(0, x)

∂n
= Ψ(0, x) for x ∈ ∂S.(2.2)

We give sufficient conditions for the existence of a solution to (1.1), (1.2).

Assumption H[F, Ψ, ψ]. Suppose that 1/2 ≤ µ < (1 + α)/2, α < µ̃ ≤ 1
are given constants and:
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1) there exists σ ∈ Oη such that F ∈ Xσ;
2) there exists a nondecreasing function ρ : R+ → R+ such that

|F (t, x, u, w, p)| ≤ ρ(max{|u|, ‖w‖B})(1 + ‖p‖2) on Ξ;

3) for every r, q, L ≥ 0 there exists a constant C(r, q, L) ≥ 0 such that

|F (t, x, u, w, p)− F (t, x, ū, w̄, p̄)|
≤ C(r, q, L)[|u− ū|α + ‖w − w̄‖αB + ‖p− p̄‖]

on Q× [−r, r]× C(B,R, q)× {p ∈ Rn : ‖p‖ ≤ L};
4) for every r, q, L ≥ 0 there exists a constant H(r, q, L) ≥ 0 such that

(2.3) |F (t, x, u, w, p)− F (t̄, x̄, u, w, p)| ≤ H(r, q, L)[|t− t̄|α/2 + |x− x̄|α]

on Q× [−r, r]× C(B,R, q)× {p ∈ Rn : ‖p‖ ≤ L};
5) Ψ ∈C(1+α)/2,1+α([0, a]×∂S,R), ψ ∈ Cµ,µ̃(Q0,R), ψ(0, ·) ∈ C2+α(S,R)

and ‖Ψ‖[0,t]×∂S ≤ B̃ω(t, η), ‖ψ‖ ≤ η;
6) there exists Ψ̄ ∈ C

1+α/2,2+α
µ,µ̃ (Ω,R) such that Λ[Ψ̄ ]|[0,a)×∂S = Ψ and

Ψ̄|Q0
= ψ.

Assumption H[ϕ]. Suppose that:

1) φ0 ∈ C([0, a],R+), φ ∈ C(Q̄,Rn) and φ0(t) ≤ t for t ∈ [0, a], φ(t, x) ∈
S̄ for (t, x) ∈ Q̄;

2) there is C0 ≥ 0 such that

|φ0(t)− φ0(t̄)| ≤ C0|t− t̄|, t, t̄ ∈ [0, a],

‖φ(t, x)− φ(t̄, x̄)‖ ≤ C0[|t− t̄|+ ‖x− x̄‖], (t, x), (t̄, x̄) ∈ Q̄.
Define

FΨ̄ (t, x, u, w, p) = F (t, x, u+ Ψ̄(t, x), w + Ψ̄ϕ(t,x), p+ ∂xΨ̄(t, x))− L[Ψ̄ ](t, x),

where Ψ̄ is given by condition 6) of Assumption H[F, Ψ, ψ].

Remark 2.1. Suppose that Assumption H[F, Ψ, ψ] is satisfied and aij , bi
∈ Cα/2,α(Q̄,R), 1 ≤ i, j ≤ n. Then z ∈ CLS(F, Ψ, ψ) if and only if z − Ψ̄ ∈
CLS(FΨ̄ , 0, 0).

We define the Nemytskĭı operator for problem (1.1), (1.2). Put

F[z](t, x) = F (t, x, z(t, x), zϕ(t,x), ∂xz(t, x)), (t, x) ∈ Q,

where z ∈ C0,1
∗ (Ω,R).

We will need the following lemmas.

Lemma 2.2. Suppose that Assumptions H[F, Ψ, ψ], H[ϕ] are satisfied and
let F be the Nemytskĭı operator for (1.1), (1.2). Then

(i) F : C0,1
∗ (Ω,R)→ C(Q̄,R) is continuous and bounded;

(ii) F(C
(1+α)/2,1+α
µ,µ̃ (Ω,R)) ⊆ Cα/2,α(Q̄,R).
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Proof. (i) Let ‖u− ū‖0,1∗ ≤ 1. Then

|F[u](t, x)− F[ū](t, x)|
= |F (t, x, u(t, x), uϕ(t,x), ∂xu(t, x))− F (t, x, ū(t, x), ūϕ(t,x), ∂xū(t, x))|
≤ C(r, q, L)[|u(t, x)− ū(t, x)|α+‖uϕ(t,x)−ūϕ(t,x)‖αB+‖∂xu(t, x)− ∂xū(t, x)‖],

which shows that F is continuous. Let ‖u‖0,1∗ ≤ r. Since

|F[u](t, x)| = |F (t, x, u(t, x), uϕ(t,x), ∂xu(t, x))|
≤ |F (t, x, u(t, x), uϕ(t,x), ∂xu(t, x))− F (t, x, 0, 0, 0[n])|+ |F (t, x, 0, 0, 0[n])|

≤ C(r, L)[‖u‖αΩ + ‖uϕ(t,x)‖αB + ‖∂xu‖Q] + ‖F (·, ·, 0, 0, 0[n])‖Q,

F is bounded.
(ii) Let u ∈ C(1+α)/2,1+α

µ,µ̃ (Ω,R). We claim that F[u] is Hölder continuous
of exponent α with respect to x and is Hölder continuous of exponent α/2
with respect to t. Indeed, put r = ‖u‖(1+α)/2,1+α

µ,µ̃ . Note that the functions
uϕ(t,x) and uϕ(t,x̄), where (t, x), (t, x̄) ∈ Q, have different domains. There-
fore we need the following construction. Write Y = [−b0, a] × [c̃, d̃] where
c̃ = (c̃1, . . . , c̃n), d̃ = (d̃1, . . . , d̃n), c̃i = ci − |di − ci|, d̃i = di + |di − ci|
for i = 1, . . . , n. There is ũ : Y → R such that ũ ∈ C

(1+α)/2,1+α
µ,µ̃ (Y,R)

and ũ(t, x) = u(t, x) for (t, x) ∈ Q0 ∪ Q̄. Then the function ũϕ(t,x) is de-
fined on B for (t, x) ∈ Q̄. It follows from Assumptions H[F, Ψ, ψ] and H[ϕ]
that

|F[u](t, x)− F[u](t, x̄)|
= |F (t, x, u(t, x), uϕ(t,x), ∂xu(t, x))− F (t, x̄, u(t, x̄), uϕ(t,x̄), ∂xu(t, x̄))|
≤ |F (t, x, u(t, x), ũϕ(t,x), ∂xu(t, x))− F (t, x, u(t, x̄), ũϕ(t,x̄), ∂xu(t, x̄))|

+ |F (t, x, u(t, x̄), ũϕ(t,x̄), ∂xu(t, x̄))− F (t, x̄, u(t, x̄), ũϕ(t,x̄), ∂xu(t, x̄))|
≤ C(r, L)[|u(t, x)−u(t, x̄)|α+‖ũϕ(t,x)−ũϕ(t,x̄)‖αB+‖∂xu(t, x)−∂xu(t, x̄)‖]

+H(r, L)‖x− x̄‖α

≤ C(r, L)[‖∂xu‖αQ‖x−x̄‖α+[H µ̃
x [ũ]]α‖φ(t, x)−φ(t, x̄)‖µ̃α+Hα

x [∂xu]‖x−x̄‖α]

+H(r, L)‖x− x̄‖α

≤ C(r, L)[‖∂xu‖αQ‖x− x̄‖α + 2[H µ̃
x [ũ]]αC µ̃α0 ‖x− x̄‖

µ̃α +Hα
x [∂xu]‖x− x̄‖α]

+H(r, L)‖x− x̄‖α,

where Hα
x [∂xu] =

∑n
i=1H

α
x [∂xiu]. Hence F[u] is Hölder continuous of expo-

nent α with respect to x. We proceed to show that F[u] is Hölder continuous
of exponent α/2 with respect to t:
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|F[u](t, x)− F[u](t̄, x)|
= |F (t, x, u(t, x), uϕ(t,x), ∂xu(t, x))− F (t̄, x, u(t̄, x), uϕ(t̄,x), ∂xu(t̄, x))|
≤ |F (t, x, u(t, x), ũϕ(t,x), ∂xu(t, x))− F (t, x, u(t̄, x), ũϕ(t̄,x), ∂xu(t̄, x))|

+ |F (t, x, u(t̄, x), ũϕ(t̄,x), ∂xu(t̄, x))− F (t̄, x, u(t̄, x), ũϕ(t̄,x), ∂xu(t̄, x))|
≤ C(r, L)[|u(t, x)−u(t̄, x)|α+‖ũϕ(t,x)− ũϕ(t̄,x)‖αB +‖∂xu(t, x)−∂xu(t̄, x)‖]

+H(r, L)|t− t̄|α/2

≤ C(r, L)[[H
(1+α)/2
t [u]]α|t− t̄|(1+α)/2α+[Hµ

t [ũ]Cµ0 |t− t̄|
µ+H µ̃

x [ũ]C µ̃0 |t− t̄|]
µ̃

+H
(1+α)/2
t [∂xu]|t− t̄|(1+α)/2] +H(r, L)|t− t̄|α/2.

This finishes the proof.

Lemma 2.3. Suppose that Assumptions H[F, Ψ, ψ], H[ϕ] are satisfied and
z ∈ C1,2

∗ (Ω,R) is a solution of (1.1), (1.2). Then there exists a constant L̃
such that

(2.4) ‖∂xz‖Q̄ ≤ L̃.

Proof. Without loss of generality we can assume that Ψ(t, x) = 0 for
(t, x) ∈ [0, a]× ∂S and ψ(t, x) = 0 for (t, x) ∈ Q0. Put F̃ : Q×R×Rn → R,
F̃ (t, x, u, p) = F (t, x, u, zϕ(t,x), p). Consider the problem

L[u](t, x) = F̃ (t, x, u(t, x), ∂xu(t, x)), (t, x) ∈ Q,(2.5)
Λ[u](t, x) = 0, (t, x) ∈ [0, a]× ∂S, u(t, x) = 0, (t, x) ∈ Q0.(2.6)

Then z is a solution of (2.5), (2.6). It follows from Assumption H[F, Ψ, ψ]
that F̃ satisfies the hypotheses of [2, Theorem 2.2]. Hence (2.4) is proved.

We can now formulate our main results.

Theorem 2.4. Suppose that Assumptions H[F, Ψ, ψ], H[ϕ] are satisfied
and:

1) aij , bi ∈ Cα/2,α(Q̄,R),
2) S ⊂ Rn is a bounded domain and ∂S is of class C2+α,
3) problem (1.1), (1.2) satisfies the compatibility conditions (2.1), (2.2).

Then problem (1.1), (1.2) has a solution z ∈ C1+α/2,2+α(Ω,R).

Proof. In view of Remark 2.1 we may assume that Ψ(t, x) = 0 for (t, x) ∈
[0, a] × ∂S and ψ(t, x) = 0 for (t, x) ∈ Q0. Hence condition (2.1) takes the
form

(2.7) F (0, x, 0, 0, 0[n]) = 0 for x ∈ ∂S.
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Set

C
α/2,α
0 (Q̄,R) = {g ∈ Cα/2,α(Q̄,R) : g(0, x) = 0 for x ∈ ∂S},

C l/2,l(Q̄,R, 0) = {g ∈ C l/2,l(Q̄,R) : g(0, x) = 0, x ∈ S ∧ Λ[g]|[0,a]×∂S = 0},

C l/2,l(Ω,R, 0) = {g ∈ C l/2,l(Q̄,R) : g(t, x) = 0 on Q0 ∧ Λ[g]|[0,a]×∂S = 0},

where l = 1 + α, 2 + α. Let us define an operator V : C
α/2,α
0 (Q̄,R) →

C1+α/2,2+α(Q̄,R, 0). For g ∈ Cα/2,α0 (Q̄,R) we denote by V g a solution of the
problem

L[z](t, x) = g(t, x), (t, x) ∈ Q,(2.8)
Λ[z](t, x) = 0, (t, x) ∈ [0, a]× ∂S, z(t, x) = 0, (t, x) ∈ Q0.(2.9)

It follows from [10, Ch. IV, Th. 5.3] that there is exactly one solution V g of
problem (2.8), (2.9) and V g ∈ C1+α/2,2+α(Q̄,R, 0). Moreover

‖V g‖C1+α/2,2+α(Q̄,R) ≤ c‖g‖Cα/2,α(Q̄,R)

for some c ≥ 0, which implies that V is continuous. Now we will construct a
bounded linear extension of V onto the space Lq(Q̄,R) for some q > 1. Since
C
α/2,α
0 (Q̄,R) is dense in Lq(Q̄,R) for g ∈ Lq(Q̄,R) there exists a sequence
{gi}∞i=0 ⊂ C

α/2,α
0 (Q̄,R) such that ‖gi − g‖Lq(Q̄,R) → 0 as i→∞.

Consider problem (2.8), (2.9) with g = gi in Q, i = 0, 1, . . . . It follows
from [10, Ch. IV, Th. 5.3] that there is exactly one solution V gi of problem
(2.8), (2.9) and V gi ∈ C1+α/2,2+α(Q̄,R, 0). Since classical solutions of (2.8),
(2.9) are also generalized solutions of (2.8), (2.9), we have V gi ∈W 1,2

q (Q̄,R)
and

‖V gi − V gj‖W 1,2
q (Q̄,R)

≤ c1‖gi − gj‖Lq(Q̄,R)

(see [11, Theorem A.3.3]), which shows that {V gi}∞i=0 is a Cauchy sequence in
W 1,2
q (Q̄,R). SinceW 1,2

q (Q̄,R) is a Banach space, there exists z̃ ∈W 1,2
q (Q̄,R)

such that
lim
i→∞
‖z̃ − V gi‖W 1,2

q (Q̄,R)
= 0.

Put V ∗g = z̃. We see at once that z̃ is independent of the choice of {gi}∞i=0.

We claim that V ∗ : Lq(Q̄,R) → W 1,2
q (Q̄,R) is bounded and continuous.

Indeed,
‖V ∗g − V ∗ḡ‖

W 1,2
q (Q̄,R)

≤ ‖g − ḡ‖Lq(Q̄,R)

and
‖V gi‖W 1,2

q (Q̄,R)
≤ c1‖gi‖Lq(Q̄,R).

Put q = (n+ 2)/(1− α) and Σ = ({0}×S)∪ ([0, a]×∂S). Since W 1,2
q (Q̄,R)
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is imbedded in C(1+α)/2,1+α(Q̄,R) (see [1]), we have

‖z̃‖C0,1([0,a]×∂S,R) ≤ ‖z̃ − V gi‖C0,1([0,a]×∂S,R)

≤ ‖z̃ − V gi‖C(1+α)/2,1+α(Q̄,R) ≤ c2‖z̃ − V gi‖W 1,2
q (Q̄,R)

and

‖z̃‖C({0}×S,R) ≤ ‖z̃ − V gi‖C({0}×S,R)

≤ ‖z̃ − V gi‖C(1+α)/2,1+α(Q̄,R) ≤ c2‖z̃ − V gi‖W 1,2
q (Q̄,R)

,

for some c2 ≥ 0. Hence z̃|([0,a]×∂S) = 0, ∂xz̃|([0,a]×∂S) = 0 and z̃(0, x) = 0 for
x ∈ S. Therefore z̃ satisfies (2.9).

We proceed to show that z̃ is a classical solution of (1.1), (1.2) if and
only if z̃ is a solution of

(2.10) z = (V ∗F )z.

Suppose that z̃ ∈ C1+α/2,2+α(Ω,R, 0) is a classical solution of (1.1), (1.2).
Put z∗ = (V ∗F)z̃. It follows from Lemma 2.2 and from (2.7) that F[z̃] ∈
C
α/2,α
0 (Q̄,R). Hence z∗ = (V F)z̃ and z∗ is a solution of

(2.11)


L[z](t, x) = F[z̃](t, x), (t, x) ∈ Q,
Λ[z](t, x) = 0, (t, x) ∈ [0, a]× ∂S,
z(t, x) = 0, (t, x) ∈ Q0.

But z̃ also satisfies (2.11). Therefore z̃ = z∗ by uniqueness. Suppose now
that z∗ satisfies (2.10). Since I : C(Q̄,R)→ Lq(Q̄,R) defined by Iz = z for
z ∈ C(Q̄,R) is continuous, and Ĩ : W 1,2

q (Q̄,R)→ C(1+α)/2,1+α(Q̄,R) defined
by Ĩz = z for z ∈W 1,2

q (Q̄,R) is continuous, we deduce from Lemma 2.2 that

V ∗F : C0,1
∗ (Ω,R)→ C

(1+α)/2,1+α
µ,µ̃ (Ω,R)

is also continuous. Since z∗ = (V ∗F)z∗, z∗ ∈ C(1+α)/2,1+α(Ω,R, 0) and in
view of Lemma 2.2, Fz∗ ∈ Cα/2,α0 (Q̄,R). Therefore

z∗ = (V ∗F)z∗ = (V F)z∗ ∈ C1+α/2,2+α(Ω,R, 0)

and z∗ satisfies (1.1), (1.2). Let C0,1
∗ (Ω,R, 0) = {z ∈ C0,1

∗ (Ω,R) : z|Q0
= 0

and Λ[z]|[0,a]×∂S = 0}. The operator G = V ∗F is completely continuous from
C0,1
∗ (Ω,R, 0) into itself, which is clear from Lemma 2.2 and the fact that

C
(1+α)/2,1+α
µ,µ̃ (Ω,R) is compactly imbedded in C0,1

∗ (Ω,R) (see [1]).
Let

U = {u ∈ C0,1
∗ (Ω,R, 0) : ‖u‖Ω < r̃ + 1, ‖∂xu‖Q̄ < L̃+ 1}

where r̃ = ω(a, η) is defined in Remark 1.3 and L̃ in Lemma 2.3. We see at
once that 0 ∈ U and U is bounded, open subset of C0,1

∗ (Ω,R, 0). We will
show that u 6= λGu for every u ∈ ∂U , λ ∈ (0, 1). On the contrary, suppose
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that λGu = u for some u ∈ ∂U , λ ∈ (0, 1). Then λ(V ∗F)u = (V ∗λF)u = u
is a solution of

L[z](t, x) = λF[z̃](t, x), (t, x) ∈ Q,
Λ[z](t, x) = 0, (t, x) ∈ [0, a]× ∂S,
z(t, x) = 0, (t, x) ∈ Q0.

Applying Lemma 2.3 (with λF instead of F) we find that ‖u‖Ω ≤ r̃ and
‖∂xu‖Q̄ < L̃ as λ ∈ (0, 1). This contradicts the fact that u ∈ ∂U . We
conclude from the Leray–Schauder theorem that G has a fixed point, which
in view of the first part of the proof is the desired conclusion.

Remark 2.5. Let us consider the functional differential equation

(2.12) L[z](t, x) = F (t, x, z(t, x), z(t,x), ∂xz(t, x))

which is a particular case of (1.1).
Let us note some differences between problems (1.1), (1.2) and (2.12),

(1.2). Differential equations with deviated variables are obtained from (2.12)
in the following way. Suppose that f : Q×R2×Rn → R is a given function.
Write

(2.13) F (t, x, u, w, p) = f(t, x, u, w(ϕ(t, x)− (t, x)), p) on Ξ.

Then (2.12) reduces to (1.4). Note that AssumptionH[F, Ψ, ψ] is not satisfied
for F given by (2.13). More precisely, condition (2.3) is not satisfied on
Q× [−r, r]× C(B,R, q)× {p ∈ Rn : ‖p‖ ≤ L}.

It is clear that under natural assumptions on f the function F given by
(1.3) satisfies Assumption H[F, Ψ, ψ].

With the above motivation we have considered (1.1), (1.2).
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