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Existence of classical solutions for parabolic
functional differential equations with
initial boundary conditions of Robin type

by MILENA MATUSIK (Gdansk)

Abstract. The paper deals with the initial boundary value problem of Robin type for
parabolic functional differential equations. The unknown function is the functional variable
in the equation and the partial derivatives appear in the classical sense. A theorem on the
existence of a classical solution is proved. Our formulation and results cover differential
equations with deviated variables and differential integral problems.

1. Introduction. For any metric spaces X and Y we denote by C(X,Y)
the class of all continuous functions defined on X and taking values in Y.
We will use vectorial inequalities with the understanding that the same in-
equalities hold between their corresponding components. Let S C R™ be a
bounded domain with boundary 05 of class C'. Write

QOZ[_bOaO}Xga Q:(O,CL]XS, Q:QOUQa OOQ:QOU([Ova‘]Xas)

where a > 0,by € Ry = [0,+00) and S is the closure of S. For each (t,z) €
[0,a] x S we define

Dit,z] ={(r,y) ER" ™ . 7 <0, (t+ 7,2 +y) € QoUQ}.
There is [¢,d]™ C R"™ such that
D[t,z] C [~by — a,0] x [¢,d]* for (t,x) € [0,a) x S.
Write I = [~bg — a,0] and B = I x [c,d]". For a function z : Qo UQ — R
and a point (t,x) € [0,a) x S we define 2(; 5) : D[t,r] — R by
Z2)(Ty) = 2(t+ T2 +y), (7,y) € D[t,x].
That is, z( 4 is the restriction of z to the set (Qo U Q) N ([~bo,t] x R™)

shifted to the set D[t, z]. Suppose that ¢¢ : [0,a) — Rand ¢ = (¢1,...,¢n) :
Q — R™ are given functions. Write ¢(t,x) = (¢o(t), ¢(t,z)) for (t,z) € Q.
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We assume that 0 < ¢g(t) < ¢t and ¢(t,z) € S for (t,z) € Q. Put = =
QxRxC(B,R)xR™ and suppose that ¢ : Qo — R, 8,7,¥ : [0,a] x9S — R
are given functions. Write

0z(t, x)

A[Z] (tv :C) = B(t’ QS)Z(t, $) + V(t’ $) an(l') )

where n(z) is the unit outward normal on 0S at z € 0S. We write On
instead of On(x). We assume that the functions 8 : [0,a] x 95 — (0, 00) and
7 :[0,a] x 9S — R, are continuous and let B = inf(, 1y¢c(0,a1xa5 B(t; ).

Suppose that F' : & — R, a;;,b; : Q — R,i,j =1,...,n, are given
functions. We assume that F' satisfies the condition (V') i.e. if for each
(t,z,p,w,q) € = and w € C(B,R) such that w(r,y) = w(r,y) for (1,y) €
DIit, x| we have F(t,z,p,w,q) = F(t,z,p,w, q). Note that the condition (V')
means that the value of F at (t,x,p,w,q) € = depends on (¢, x,p,q) and on
the restriction of w to the set D[t, z] only. Write

n n
Llz|(t,2) = Opz(t, ) = Y aij(t, 2) 00, 2(t, ) + D bi(t, 2)00,2(t, ).
ij=1 i=1
We assume that L is strictly uniformly parabolic in @, i.e. there exists some
positive constant k such that

n
EUEP <) ai(t,2)éigs < kIEP
ij=1

We consider the problem consisting of the functional differential equation
(11) L[Z] (t? :E) = F(tv xz, Z(t, 1’), Rip(t,x) 8xz(ta IE))
and the initial boundary conditions
(1.2)  A[z](t,x) =¥ (t,x) on [0,a] x DS, z(t,x) =(t,x) on Q.
The aim of this paper is to give sufficient conditions for the existence of
classical solutions to ([1.1f), (L.2]).

Problems of the existence of solutions to parabolic functional differential
equations have been considered by many authors under various assumptions.
The paper [14] deals with weakly coupled parabolic systems with time delays.
It is shown by using upper and lower solutions and by monotone iterative
techniques that the corresponding sequences of approximate solutions con-
verge monotonically to a unique solution of the original problem. The given
functions in the nonlinear parts of the systems satisfy the Lipschitz condition
with respect to the unknown functions and have a mixed quasimonotonicity
property. The main difficulty in using monotone iterative methods is to con-
struct lower and upper functions. There is not much literature on general
methods for finding such functions. This method also requires assumptions
on monotonicity of given functions with respect to functional variables. In



Ezistence of classical solutions for PFDE 255

our paper we do not need this restriction. Nor do we need assumptions on
lower and upper functions. In contrast to many papers ([4], [6], [14], [15]),
in our considerations it is important that F' depends on 0,z.

Monotone iterative methods have been applied in [5], [3], [6] to studying
the existence of solutions to parabolic functional differential problems. The
results presented in those papers can be characterized as follows: theorems
have simple assumptions and their proofs are very natural; unfortunately, the
class of functional differential equations covered is rather small. The results
given in [5], [3], [6] are not applicable to differential integral equations of
Volterra type or to equations with deviated variables.

Initial boundary value problems for parabolic functional differential equa-
tions lead to integral functional equations. Classical solutions of the latter
are considered to be generalized solutions of the original problems. The pa-
per [16] gives sufficient conditions for the existence of generalized solutions
of the Cauchy problem for semilinear parabolic systems with functionals.

Classical solutions of initial boundary value problem of the Dirichlet type
have been considered in [I7].

The present paper is a continuation of [5], [I7] and generalizes some
results presented in those papers.

We now give examples of equations which can be obtained from by
specializing F'.

EXAMPLE 1.1. Suppose that f: Q x R? x R” — R is a given function.

Write
F(t,z,p,w,q) = f(tjar,p, | w(r,y)dydr, q) on =.
Dlt,x]
Then (|1.1]) reduces to the differential integral equation
LIZ|(tx) = f(tz, 2(t2), | 2(¢o(t) + 7, 8(t, ) +y) dy d7, D2 (t, 2)).
Dlt,z]
ExaMPLE 1.2. For the above f we put

(13) F(t,x,p,w,q) = f(tawapaw(070[n})aQ) on Ea

where Op,) = (0,...,0) € R". Then (I.1)) reduces to the equation with devi-
ated variables

(1.4) L[z|(t,x) = f(t,z, z(t,x), z(p(t, x)), Ox2(t, )).

We will write CLS(F, ¥, ) for the set of classical solutions of , .
A function p € C(Ry,R;) is called a modulus if o is nondecreasing and
0o(0T) = 0. Let C(B,R,r) = {w € C(B,R) : ||w||g < r} where || - ||p is
the supremum norm in the space C(B,R). For any A C R we write
Ar=A{(s,z) € A: —bg < s < t}.
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Let the ordinary differential equation
(1.5) W (t) = o(t,w(t))

be defined in a region D and let (tp,n) € D. A solution w of , passing
through the point (¢g,n) and defined in some interval At = [tg, ay), is called
a right-hand mazimum (resp. minimum) solution of in AT passing
through (¢g,n) if for every solution @ of passing through (to,7n) and
defined in an interval AT = [tg, as), we have

O(t) <w(t) (resp. @(t) > w(t)) forte AT N AT
Let n > 0. We will write o € Oy, if o : [0, a] x Ry — R is continuous and

nondecreasing with respect to both variables and the right-hand maximum
solution of the problem

(1.6) W'(t) = o(t,w(t), w(0)=n,
exists in [0, a]. We will denote this solution by w(-,n).

For o € O,), we will denote by X, the set of all functions F': & — R
such that

(i) for every (t,z,u,w) € Q@ x R x C(B,R)
F(t,z,u,w,0p)sgn(u) < o(t, max{|ul, |w||s});
(ii) for every r > 0 there exists a modulus g, such that
[E(t, 2, u,w,p) = F(t2,u,w, 04))| < er([lpl])
in @ x [—r,r] x C(B,R,r) x R"™.
The remark below is a reformulation of Lemma 4.1 in [I3].

REMARK 1.3. Suppose that F' € X,, z € CLS(F,¥,¢) and [[4[ < 7,
1¥1l0,qxas < Bw(t,n). Then
I2llQ. € w(t,n) <7 =w(a,n), tel0,al.
Let (Y, - ||) be a normed space and r > 0. We define I, : Y — Y by
T if ||z|| <,
(L.7) I (z) = { 2

mr i |z]| > r.

[E2
We see at once that
1 ()| = min{|[z||,r},  [[I(2) = L) <2z -yl inY,

which follows from ([1.7)).
Let I : R — R and I, : C(B,R) — C(B,R) be defined by (1.7)). For a
function F': & — R we define F,. : = — R by

(1.8) FE.(t,z,u,w,p) = F(t,z, I (u), I,(w),p).
The remark below is a consequence of Remark and definition ([1.7]).
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REMARK 1.4. Suppose that F' € Xo, [[¥]0,xas < Buw(t,n), |¢| < n.
Then

(1) Fr e XO';
(i) CLS(F,¥,v) = CLS(Fy, ¥, ).
Let A C R be a bounded domain and 0 < a < 1. We will denote by

Co/2e (A, R) the space of all continuous functions f : A — R with the finite
norm

1Flerzoary = I1fla + HEP[f] + HE(f]

where
1721) = sup { LD 1.0) 1.0y € 1 £
—t|2
st = sup {LED T 0, () € 0 2,
[ — ]
and | - || is the Euclidean norm in R™. Moreover, set

Ho/% (] = H}?[f) + H2[f).

For A and « as above, let C1+%/22+2( A R) denote the space of all con-
tinuous functions f : A — R satisfying the conditions:

(i) the partial derivatives Oy f = (0u, [y, 02, f), Ouaf = [Ona; [ 1,
O:f exist on A and are continuous,
(ii) the following norm is finite:

Ifllcr+arzaraiary = [flla +110:flla + Z 10z f1l.a + Z 10, f 1| 4

1,j=1

+Ha/2a af Z Ha/Qa IMJ ]
i,j=1
In a similar way we define the space C1+®)/214¢(AR), 0 < a < 1. Let

C12(A,R) be the space of all continuous functions f : A — R satisfying the
conditions:

(i) Ouf, Ouf, Oxsf exist and are continuous on A,

(i) the following norm is finite:

I lerecam = 1 1a +10efla+ D 10 flla+ D 100, flla.

i=1 i,j=1
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Let CY'(2,R) = C(2,R)N COY(Q,R) and || f||2" = ||f]lo + 0 fllg- Write

G
Cor /T (@, R) = CH(Q,R) N OO/ (QR),
c

Hofh
CLEeI22H0 (9 R) = O (Q,R) N CH0/22+(Q, R)

o fit
with norms

1+ 21+
A2 = max{|| fllowa o.m), | Flcaserzara@r

1+ 2,2+
LA 5224 = max{||fllcmn(a.pys [ Fllorsarzara@ay

Let Lq(A,R), g > 1, be the Banach space consisting of all equivalence
classes of Lebesgue measurable functions f defined on A into R with the
finite norm

/
Flzocam = (§ 1ol dyar)
A

We denote by Wy’ 2(A,R) the Banach space consisting of all f € LI(A,R)
having generalized derivatives O f, 0uf, Ozuf = [0, f1};—1 such that the
following norm is finite:

Hf”quvZ(AR)

= [ fllzacar) + 10 flLaar) + Z 10z, fll Lacar) + Z 02,5 f | LaaR)-

i=1 ij=1

For nonintegral «, the Banach space Wy / 2’a(A,R) is defined analogously
(see [11]).

Let S C R™ be a bounded domain. We will say that 0.5 is of class C?T,
0 < a < 1, if for every x € 0S there exist a neighborhood U, of = and
i € {1,...,n} such that 9S N U, can be represented in the form

€Tq = h(l'l,- sy Li—1, Lit1y - - - 7xn>a (xla sy Ti—1, Tt 1y - - ~a-75n) € U:E

where U, C R"! is an open set and h € C*+(U,,R).

2. Existence of solution for mixed problems. We will say that
problem (1.1)), (1.2) satisfies the compatibility conditions if

(2.1) LIW)(0,z) = F(0,2,%(0,2), ¥y0,4), 0z¥ (0, 7)) for x € 98,

(2.2) B0, 2)u(0, ) + (0, z) 8“((;;; ?)

We give sufficient conditions for the existence of a solution to (|L.1f), (1.2)).

=v(0,z) forxz e dS.

AssumpPTION H[F,¥,1)]. Suppose that 1/2<pu< (1+«)/2,a<p<1
are given constants and:
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1) there exists o € O, such that F' € X;
2) there exists a nondecreasing function p : Ry — Ry such that

|F(t, 2, u,w, p)| < p(max{ul, |w][p})(1 +[]pl|*) on =;
3) for every r,q, L > 0 there exists a constant C(r, ¢, L) > 0 such that

‘F(t)x7u7w7p) - F(ta‘T?ﬂawvﬁ”
< C(ryq, L)[lu —ul* + [lw — w3 + [|p — pl]
on @ x [-r, 7] x C(B,R,q) x {p € R" : [|p[| < L};
4) for every r,q, L > 0 there exists a constant H(r, g, L) > 0 such that
(23) |F(t7 €T, u, wap) - F(Ea T, u, va)| < H(T‘, q, L)Ht - ﬂa/2 + |’:C - ‘f|a]
on @ x [-r,7] x C(B,R,q) x {p € R" : [|p|| < L};
5) wecUta)/21ta([0,a]x0S,R), ¢ € CHE(Qo,R), ¥(0,-) € C*H(S,R)
and [[¥|[j0.9xas < Bw(t,n), [[v] < n;
6) t_here exists ¥ € C;EQ/Q’HQ(Q,R) such that A[¥]jg4)xos = ¥ and
W|Q0 =,
AssuMmPTION H[yp]. Suppose that:
1) ¢o € C([0,a],Ry), ¢ € C(Q,R™) and ¢o(t) <t for t € [0,a], ¢(t, ) €
S for (t,x) € Q;
2) there is Cy > 0 such that
|G0(t) — go(t)| < Colt — i, ¢t €[0,al,
qu(t,l‘) - (b(f, j)” < COHt - ﬂ + ||'7; - jH]v (t,l‘), (Ea 'f) € Q

Define
Fyp(t,z,u,w,p) = F(t,v,u+ W (tx), w + Yy, p + 0¥ (¢, x)) — LP](t, @),
where ¥ is given by condition 6) of Assumption H[F,¥,1].

REMARK 2.1. Suppose that Assumption H[F, ¥, ] is satisfied and a;;, b;
€ C*%%(Q,R), 1 < i,j <n. Then z € CLS(F,¥,%) if and only if z — ¥ €
CLS(Fg,0,0).

We define the Nemytskii operator for problem (1.1)), (1.2)). Put

Flz](t,x) = F(t, 7, 2(t, ), 2p(t,2), 02(t, ), (t,2) € Q,
where z € C0H (2, R).

We will need the following lemmas.

LEMMA 2.2. Suppose that Assumptions H[F, W, ], H|p| are satisfied and
let F be the Nemytskit operator for (1.1)), (1.2). Then

(i) F: CYY(02,R) — C(Q,R) is continuous and bounded;

(i) F(CUT/21H(2,R)) € C*/2%(Q,R).
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Proof. (i) Let |lu — @/ < 1. Then

= |F(t,x,u(t,©), Uy q), Oxult, x)) — F(t, 2, 0(t, ), Uyt 2), Oz U(t, T))|
< C(T’, q, L)U“’(t? .%') - ﬁ(t, $)|a+Hugo(t,x)_a<p(t,x) H%"i_”awu(tv 37) - 8$ﬁ<t, .%')H],

which shows that F is continuous. Let [lul|2" < 7. Since

’F[u](t? .%')‘ = ‘F(t7x>u(t7x)>ugo(t,x)v6xu(tvx))|
<|E(t 2, u(t, o), ugt,2), Oxu(t, ©)) — F(t,2,0,0,0p,)] + |F(t,2,0,0,0p4,)]
< C(r, D[l[ull§ + llwpe,o)llB + 10zull] + [1F(-,-,0,0,00) o

F is bounded.
(ii) Let u € C'(Ha)/2 (2, R). We claim that F[u] is Hélder continuous
of exponent « w1th respect to = and is Holder continuous of exponent o/2

with respect to t. Indeed, put r = HuH (I+a)/21+e Note that the functions

Ug(tz) and Uy z), Where (t,z), (t,7) € Q, have dlfferent domains. There-
fore we need the following construction. Write Y = [~bg, a] x [¢, d] where
= (Cly.osln), d = (di,...,dn), & = ¢; — |di — |, di = d; + |di — ¢4

d
for 2 = 1,...,n. There is & : Y — R such that u € CS;O‘)/ZHQ(Y,R)
and a(t,x) = u(t,z) for (t,z) € Qo U Q. Then the function @y, is de-
fined on B for (t,z) € Q. It follows from Assumptions H[F, ¥, ] and H[y]
that
[Flu](t, 2) — Flu](t, 7)]
= |F(t,z,u(t,z),u Up(t,2)> Oyu(t,z)) — F(t,z,u(t,x),u Up(t,7)» O, Lu(t, 7))
< ’F(twrau(t $> p(tx 8 U(t .Z')) - F(t,x,u(t,a?), <p(t Z)s 0 U(t j;))’
+ |F(t7xau(t> ) u o(t,T)s 0 u( )) - F(ta-fau(ta f)v ~<p(t x)aa u(t’j))|
< O(r, L)[|u(t, z) —u(t, 2)|* + [ tpt,2) — otz | B+ 10su(t, ©) — Opult, Z)]]
+ H(r,L)||z —z|*
< C(r, D)[|0zul|Bllz—z |+ [HE[@)*|¢(t, 2) — o (t, ) | + Hy [Dpu] |z — 2| °]
+H(r, L)||lz — |
< O(r, D)1 0sullllz — l|* + 2(H (@] C4~ o — 2| + Hy [0ull|x — 2[|°]
+ H(r, L)l — 2|
where HS[0u] = Y 1 | HY[0y,u]. Hence Flu] is Holder continuous of expo-

nent o with respect to z. We proceed to show that Flu| is Holder continuous
of exponent «/2 with respect to ¢:
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= |F(t,x,u(t,:£), w(t,x)¢8fru(t7x)) - F(f,x,u(f ) tx)aa u(fa SL‘))|
< |F(t,x,u(t,x), w(t,z)vaﬂ?u(t’$)) - F(t,x,u(f ) tx)aa u(fv l‘))‘
+ ’F(taxvu(ﬂ ), U (f:v)va u(f z)) — F(t_ Z u(t ), Up(t,x)> ) u(_, z))|

< CO(r, D)[Ju(t, ) — u(t, )|* 4+ | Gpt,2) — UpEa) |+ [|0xult, ©) — Dpu(t, )|
+ H(r,L)|t — ]*/?
< C(r, L)[[H P[]t — 7024 1 [a)CH|t — 8+ HE [ Cf |t — )7
+ 29,0 ¢ — 70H2) 4 H(r, L)t — £2/2.
This finishes the proof. u

LEMMA 2.3. Suppose that Assumptwns H[F v, ], Hlp| are satisfied and

zeCY 2(!2 R) is a solution of , . Then there exists a constant L
such that

(2.4) 10215 < L.

Proof. Without loss of generality we can assume that ¥(t,z) = 0 for
(t,x) € [0,a] x9S and ¥(t,z) = 0 for (t,x) € Qo. Put F/: Q x Rx R" — R,
F(t,z,u,p) = F(t,2,u, 2, 5),p). Consider the problem
(2.5)  L[u)(t,x) = F(t,z,u(t, ), dpu(t,z)), (t,z) € Q,

(2.6)  Alu)(t,z) =0, ( x) € [0,a] x 0S, wu(t,x)=0, (t,z)€ Qo.
Then z is a solution of (2.5 , . It follows from Assum t10n H[F, ¥, ]
that F satisfies the hypotheses of |2, Theorem 2.2]. Hence is proved "

We can now formulate our main results.

THEOREM 2.4. Suppose that Assumptions H[F, W, |, H[p| are satisfied
and:

1) Qij, bz‘ (S CQ/Z’Q(Q, R),
2) S C R" is a bounded domain and 9S is of class C*+,

3) problem (L.1)), (L1.2)) satisfies the compatibility conditions (2.1)), (2.2)).
Then problem (1.1, (1.2) has a solution z € C1te/22+a(Q R).

Proof. In view of Remark 2.1 we may assume that ¥(t,z) = 0 for (¢,z) €
[0,a] x 08 and ¥(t,x) = 0 for (t,x) € Q9. Hence condition ({2.1)) takes the
form

(2.7) F(0,7,0,0,04,) =0 forze€dS.
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Set

Co/2(Q,R) = {g € C*/2*(Q,R) : g(0,z) = 0 for z € S},
C'HQ,R,0) = {g € C'/*'(Q,R) : g(0,2) = 0, x € S A Alg]|jp,qx0s = 0},
CY/2(2,R,0) = {g € CY*'(Q,R) : g(t, ) = 0 on Qo A Alg)0.a)xas = 0},

where | = 1+ a, 2 4 . Let us define an operator V : Cg/Q’a(Q,]R) —

Clte/22+2(Q R, 0). For g € C’g/z’a(Q, R) we denote by Vg a solution of the
problem

(2.8)  L[Z](t, 90) =g(t z), (tx)€q,
(2.9)  AlZ](¢, (t,x) € [0,a] x 0S, =z(t,x) =0, (t,x)€ Qo.

It follows from 10 Ch. IV, Th. 5.3| that there is exactly one solution Vg of
problem (2.8 ) and Vg € C1H/224e(Q R, 0). Moreover

||Vg||cl+a/z,z+a<@,m < ellgllgoraom
for some ¢ > 0, which implies that V' is continuous. Now we will construct a
bounded linear extension of V' onto the space L4(Q,R) for some ¢ > 1. Since
03/2’Q(Q,R) is dense in L4(Q,R) for g € LI(Q,R) there exists a sequence
{9:}32, C Cg/Q’Q(Q,R) SuCh that 19i — gllLagr) — 0 as i — oo.

Consider problem ({2.8] , with ¢ = ¢; in @, ¢ = 0,1,.... It follows
from [10 Ch IV, Th. 5. 3 that there is exactly one solution ng of problem

(2.8), and Vg; € C’Ha/2 2+ (Q,R,0). Since classical solutions of (2.8 .,
l.i are also generalized solutions of 1 ., we have Vg; € qu 2(Q R)
and

V9 = Vaillwrzgr < cillgi = 9illLagr)
(see [II], Theorem A.3.3]), which shows that {Vg;}° is a Cauchy sequence in

qu’z(Q, R). Since qu’Q(Q, R) is a Banach space, there exists Z € qu’Z(Q, R)
such that

1= Voillwe2@m =0

Put V*g = Z. We see at once that Z is independent of the choice of {g;}5°.
We claim that V* : LY(Q,R) — W, *(Q,R) is bounded and continuous.
Indeed,

V=g =V allwizgm < 19— 9llaem
and

IV9illwr2gr < cillgillogry:
Put ¢ = (n+2)/(1 — a) and £ = ({0} x S)U([0,a] x 8S). Since Wy*(Q,R)
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is imbedded in C1+e)/21+a(Q R) (see [I]), we have

1Zllcor(o,axas,8) < 12 — Vgillcoa(o,a1xas,r)

<Nz =Vgillcarearzitagr) < c2llz — Vgi”qu’Q(Q,]R)
and
IZllcorxsr) < 12 = Vaillooyxsr)
< |2 =Vaillcorarziragry < €212 = Vaillyiz o)

for some c2 > 0. Hence 2|([0,a x0S) = O, 8x2|([0,a]><85‘) =0 and Z(O,I) =0 for
x € S. Therefore Z satisfies ([2.9))

We proceed to show that Z is a classical solution of (1.1)), (1.2)) if and
only if Z is a solution of
(2.10) z=(V*F)z.
Suppose that Z € C’l+a/2’2+a(Q,R, 0) is a classical solution of (1.1}, (1.2).
Put z* = (V*F)z. It follows from Lemma and from (2.7) that F[Z] €
CS{/Q’Q(Q,R). Hence z* = (VIF)Z and z* is a solution of

L[Z](t, :C) = F[E](t,x), (t ‘T) €Q,
(2.11) Alz](t,z) =0, (t,z) € [0,a] x OS,
z(t,z) =0, (t,x) € Qo.

But Z also satisfies (2.11). Therefore Z = z* by uniqueness. Suppose now
that 2* satisfies (2.10)). Since I : C(Q,R) — L4(Q,R) defined by Iz = z for

z € C(Q, R) is contmuous and I : W, (Q,R) — C+e)/21+e(Q R) defined
by Iz =z for z € Wq (Q, R) is continuous, we deduce from Lemmathat

VAF : COY(2,R) — C2 1 (0 R)

is also continuous. Since z* = (V*F)z*, 2* € CU0+e)/214e( R 0) and in
view of Lemma m, Fz* € C’gm’a(@, R). Therefore

2 = (V*F)z* = (VF)z* € /222 (0 R, 0)
and 2* satisfies (1.1), (1.2). Let C{"'(2,R,0) = {z € CY'(2,R) : 2, = 0
and A[z]j0,qjxas = 0}. The operator G = V*F is completely continuous from
Y 1((2 R,0) into itself, which is clear from Lemma [2.2{ and the fact that
ot/ 1+a(!2 R) is compactly imbedded in C2(£2, R) (see [).

o
Let

U={ueCr(R,R,0): |ullo <7+1, ||0ulg < L+1}
where 7 = w(a,n) is defined in Remark and L in Lemma We see at

once that 0 € U and U is bounded, open subset of CS’I(Q,R, 0). We will
show that u # AGu for every u € QU, X € (0,1). On the contrary, suppose
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that AGu = u for some u € 9U, A € (0,1). Then A(V*F)u = (V*AF)u = u
is a solution of

L[z|(t,x) = AF[Z](t,z), (t,z) € Q,

Alz](t,z) =0, (t,z) € [0,a] x OS,

z(t,z) =0, (t,z) € Qo.
Applying Lemma (with AF instead of ) we find that |jul|p < 7 and
|0zullg < L as A € (0,1). This contradicts the fact that u € 9U. We
conclude from the Leray—Schauder theorem that G has a fixed point, which
in view of the first part of the proof is the desired conclusion. =

REMARK 2.5. Let us consider the functional differential equation
(2.12) L[z|(t,x) = F(t,z, 2(t, ), 2(1 ), Ox2(t, 7))
which is a particular case of ((1.1)).

Let us note some differences between problems ([L.1f), (1.2) and (2.12)),
(1.2). Differential equations with deviated variables are obtained from ([2.12)

in the following way. Suppose that f : Q x R? x R” — R is a given function.
Write

(2.13) F(t,z,u,w,p) = f(t,z,u,w(p(t,z) — (t,z)),p) on =.

Then reduces to . Note that Assumption H[F, ¥, 1] is not satisfied
for F' given by . More precisely, condition is not satisfied on
Qx [-rr] x C(B,R,q) x {pe R": |[p|| < L}.

It is clear that under natural assumptions on f the function F' given by
satisfies Assumption H[F, ¥, ].

With the above motivation we have considered , .
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