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Doubly warped product Finsler manifolds
with some non-Riemannian curvature properties

by Esmaeil Peyghan (Arak), Akbar Tayebi (Qom) and
Behzad Najafi (Tehran)

Abstract. We consider doubly warped product (DWP) Finsler manifolds with some
non-Riemannian curvature properties. First, we study Berwald and isotropic mean Ber-
wald DWP-Finsler manifolds. Then we prove that every proper Douglas DWP-Finsler
manifold is Riemannian. We show that a proper DWP-manifold is Landsbergian if and
only if it is Berwaldian. Then we prove that every relatively isotropic Landsberg DWP-
manifold is a Landsberg manifold. We show that a relatively isotropic mean Landsberg
warped product manifold is a weakly Landsberg manifold. Finally, we show that there is
no locally dually flat proper DWP-Finsler manifold.

1. Introduction. The study of relativity theory demands a wider class
of manifolds and the idea of doubly warped products was introduced and
studied by many authors. Recent studies show that the notion of doubly
warped product manifolds has an important role in Riemannian geometry
and its applications [A], [BEP], [BP], [G], [Mu1], [Mu2], [U]. For example,
Beem–Powell studied this product for Lorentzian manifolds [BP]. Then in
[A], Allison considered global hyperbolicity of doubly warped products and
null pseudo convexity of Lorentzian doubly warped products.

On the other hand, Finsler geometry is dedicated to classical and gener-
alized Finsler geometries. It studies manifolds whose tangent spaces carry a
norm varying smoothly with the base point. Indeed, Finsler geometry is just
Riemannian geometry without the quadratic restriction. Thus it is natural
to extend the construction of warped product manifolds to Finsler geom-
etry. In the first step, Asanov generalized the Schwarzschild metric to the
Finslerian setting and obtained some models of relativity theory described
through warped products of Finsler metrics [As1], [As2]. In [Koz], Kozma–
Peter–Varga defined their warped product for Finsler metrics and concluded
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that completeness of a doubly warped product can be related to completeness
of its components.

Let (M1, F1) and (M2, F2) be two Finsler manifolds and f1 : M1 → R+

and f2 : M2 → R+ be two smooth functions. Let π1 : M1 ×M2 → M1 and
π2 :M1 ×M2 →M2 be the natural projection maps. The product manifold
M1 ×M2 endowed with the metric F : TM◦1 × TM◦2 → R given by

(1.1) F (v1, v2) =
√
f22 (π2(v2))F

2
1 (v1) + f21 (π1(v1))F

2
2 (v2)

is considered, where TM◦1 = TM1 \ {0} and TM◦2 = TM2 \ {0}. The metric
defined above is a Finsler metric. The product manifold M1 ×M2 with this
metric will be called the doubly warped product of the manifoldsM1 andM2,
denoted f2M1 × f1M2. If either f1 = 1 or f2 = 1, then f2M1 × f1M2 becomes
a warped product of Finsler manifolds M1 and M2. If f1 = f2 = 1, then we
have a product manifold. If neither f1 nor f2 is constant, then we have a
proper DWP-manifold.

Let (M,F ) be a Finsler manifold. The second and third order derivatives
of 1

2F
2
x at y ∈ TxM0 are symmetric trilinear forms gy and Cy on TxM , called

the fundamental tensor and Cartan torsion, respectively. The rate of change
of Cy along geodesics is the Landsberg curvature Ly on TxM [Ba], [BCS].The
metric F is said to be a relatively isotropic Landsberg metric if L+cFC = 0,
where c = c(x) is a scalar function on M . Set Iy :=

∑n
i=1Cy(ei, ei, ·) and

Jy :=
∑n

i=1 Ly(ei, ei, ·), where {ei} is an orthonormal basis for (TxM,gy).
Then Iy and Jy are called the mean Cartan torsion and mean Landsberg
curvature, respectively. The metric F is said to be a relatively isotropic mean
Landsberg metric if J + cF I = 0, where c = c(x) is a scalar function on M
[ChSh].

The geodesic curves of a Finsler manifold (M,F ) are determined by the
system of second order differential equations c̈i + 2Gi(ċ) = 0, where the
local functions Gi = Gi(x, y) are called the spray coefficients of F . A Finsler
metric F is called a Berwald metric if the Gi are quadratic in y ∈ TxM for
any x ∈ M , and a Douglas metric if Gi = 1

2Γ
i
jk(x)y

jyk + P (x, y)yi [BM],
[NST1]. Taking the trace of the Berwald curvature yields the mean Berwald
curvature E. The metric F is said to be an isotropic mean Berwald metric if
E = n+1

2 cF−1h, where h = hijdx
i ⊗ dxj is the angular metric and c = c(x)

is a scalar function on M [NST2].
This paper is arranged as follows: In Section 2, we recall some basic con-

cepts of Finsler manifolds. In Sections 3 and 4, we study doubly warped
product Finsler metrics (DWP-Finsler metrics) with vanishing Berwald cur-
vature and isotropic mean Berwald curvature, respectively. In Section 5,
we prove that every proper Douglas DWP-Finsler manifold is Riemannian.
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In Section 6, we show that a proper DWP-Finsler manifold is a Landsberg
manifold if and only if it is a Berwald manifold. Then we prove that every rel-
atively isotropic Landsberg DWP-Finsler manifold is a Landsberg manifold.
In Section 7, we prove that a relatively isotropic mean Landsberg warped
product manifold is a weakly Landsberg manifold. Finally in Section 8, we
show that there is no locally dually flat proper DWP-Finsler manifold.

2. Preliminaries. Let M be an n-dimensional C∞ manifold. Denote
by TxM the tangent space at x ∈ M , by TM =

⋃
x∈M TxM the tangent

bundle of M , and by TM0 = TM \ {0} the slit tangent bundle on M .
A Finsler metric on M is a function F : TM → [0,∞) which has the
following properties:

(i) F is C∞ on TM0;
(ii) F is positively 1-homogeneous on the fibers of tangent bundle TM ;
(iii) for each y ∈ TxM , the quadratic form gy on TxM is positive definite,

where

gy(u, v) :=
1

2

∂2

∂s∂t
[F 2(y + su+ tv)]

∣∣∣∣
s,t=0

, u, v ∈ TxM.

Let x ∈ M and Fx := F |TxM . To measure the non-Euclidean feature of Fx,
define Cy : TxM ⊗ TxM ⊗ TxM → R by

Cy(u, v, w) :=
1

2

d

dt
[gy+tw(u, v)]

∣∣∣∣
t=0

, u, v, w ∈ TxM.

The family C := {Cy}y∈TM0 is called the Cartan torsion. It is well known
that C = 0 if and only if F is Riemannian. For y ∈ TxM0, define the mean
Cartan torsion Iy by Iy(u) := Ii(y)u

i, where Ii := gjkCijk, Cijk = 1
2
∂gij
∂yk

and
u = ui ∂

∂xi

∣∣
x
. By Deicke’s Theorem, F is Riemannian if and only if Iy = 0

[BCS], [Sh1].
Given a Finsler manifold (M,F ), a global vector field G is induced by

F on TM0, which in standard coordinates (xi, yi) for TM0 is given by G =
yi ∂
∂xi
− 2Gi(x, y) ∂

∂yi
, where

Gi :=
1

4
gil(y)

{
∂2F 2

∂xk∂yl
yk − ∂F 2

∂xl

}
, y ∈ TxM.

G is called the spray associated to (M,F ). In local coordinates, a curve c(t)
is a geodesic if and only if its coordinates (ci(t)) satisfy c̈i + 2Gi(ċ) = 0.

For a tangent vector y ∈ TxM0, define By : TxM ⊗ TxM ⊗ TxM → TxM
and Ey : TxM ⊗ TxM → R by By(u, v, w) := Bi

jkl(y)u
jvkwl ∂

∂xi

∣∣
x
and



296 E. Peyghan et al.

Ey(u, v) := Ejk(y)u
jvk where

Bi
jkl :=

∂3Gi

∂yj∂yk∂yl
, Ejk :=

1

2
Bm

jkm.

B and E are called the Berwald curvature and mean Berwald curvature,
respectively. Then F is called a Berwald metric and weakly Berwald metric
if B = 0 and E = 0, respectively [Sh1]. It is proved that on a Berwald space,
parallel translation along any geodesic preserves the Minkowski functionals
[Ich]. Thus Berwald spaces can be viewed as Finsler spaces modeled on a
single Minkowski space.

A Finsler metric F is said to be an isotropic mean Berwald metric if its
mean Berwald curvature is of the form

Eij =
1

2
(n+ 1)cF−1hij ,(2.1)

where hij = gij − F−2yiyj is the angular metric and c = c(x) is a scalar
function on M [ChSh].

Define Dy : TxM ⊗ TxM ⊗ TxM → TxM by

Dy(u, v, w) := Di
jkl(y)u

ivjwk
∂

∂xi

∣∣∣∣
x

where

Di
jkl := Bi

jkl −
2

n+ 1

{
Ejkδ

i
l + Ejlδ

i
k + Eklδ

i
j +

Ejk
∂yl

yi
}
.

We call D :={Dy}y∈TM0 the Douglas curvature. A Finsler metric with D = 0
is called a Douglas metric. The notion of Douglas metrics was proposed by
Bácsó–Matsumoto as a generalization of Berwald metrics [BM].

There is another extension of Berwald curvature. For a tangent vector y ∈
TxM0, define Ly : TxM⊗TxM⊗TxM → R by Ly(u, v, w) := Lijk(y)u

ivjwk,
where

Lijk := −
1

2
ylB

l
ijk.

The family L := {Ly}y∈TM0 is called the Landsberg curvature. A Finsler
metric is called a Landsberg metric if L = 0. The quantity L/C is regarded
as the relative rate of change of C along geodesics. A Finsler metric F is
said to be a relatively isotropic Landsberg metric if

L = cFC

for some scalar function c = c(x) on M [ChSh].
Taking the trace of the Landsberg curvature yields the mean Landsberg

curvature Jy : TxM → R, defined by Jy(u) := Ji(y)u
i, where

Ji := gjkLijk.
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A Finsler metric is called a weakly Landsberg metric if J = 0. The quantity
J/I is regarded as the relative rate of change of I along geodesics. A Finsler
metric F is said to be a relatively isotropic mean Landsberg metric if

J = cF I

for some scalar function c = c(x) on M [ChSh]. It is obvious that every
relatively isotropic Landsberg metric is a relatively isotropic mean Landsberg
metric.

A Finsler metric F = F (x, y) on a manifoldM is said to be locally dually
flat if at any point there is a standard coordinate system (xi, yi) in TM that
satisfies

(2.2) (F 2)xkyly
k = 2(F 2)xl .

In this case, the coordinate system (xi) is called an adapted local coordinate
system [Am], [amna]. It is easy to see that every locally Minkowskian metric
satisfies (2.2), hence is locally dually flat [Sh2]. But the converse is not true,
generally.

3. Berwaldian DWP-Finsler manifolds. In this section, we study
DWP-Finsler manifolds with vanishing Berwald curvature.

Lemma 3.1. Every proper DWP-Finsler manifold (f2M1× f1M2, F ) with
vanishing Berwald curvature is a Riemannian manifold.

Proof. The Berwald curvature of (f2M1 × f1M2, F ) is as follows:

Bk
ijl = Bk

ijl −
1

4f22

∂3gkh

∂yi∂yj∂yl
∂f21
∂xh

F 2
2 ,(3.1)

Bk
iβl = −

1

4f22

∂2gkh

∂yl∂yi
∂f21
∂xh

∂F 2
2

∂vβ
,(3.2)

Bk
αβl = −

1

f22

∂f21
∂xh

∂gkh

∂yl
gαβ,(3.3)

Bk
αβλ = − 1

f22

∂f21
∂xh

gkhCαβλ,(3.4)

Bγ
αβλ = Bγ

αβλ −
1

4f21

∂3gγν

∂vβ∂vα∂vλ
∂f22
∂uν

F 2
1 ,(3.5)

Bγ
iβλ = − 1

4f21

∂2gαγ

∂vβ∂vλ
∂f22
∂uα

∂F 2
1

∂yi
,(3.6)

Bγ
ijλ = − 1

2f21
gij

∂gαγ

∂vλ
∂f22
∂uα

,(3.7)
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(3.8) Bγ
ijk = −

1

f21
Cijkg

αγ ∂f
2
2

∂uα
.

If (f2M1 × f1M2, F ) is Berwaldian, then Bd
abc = 0. By (3.4), we get

(3.9) Cαβλg
kh ∂f

2
1

∂xh
= 0.

Multiplying (3.9) with gkr implies that

(3.10) Cαβλ
∂f21
∂xr

= 0.

By (3.10), if f1 is not constant then we get Cαβλ = 0, i.e., (M2, F2) is Rie-
mannian. In a similar way, from (3.8) we conclude that if f2 is not constant
then (M1, F1) is Riemannian.

Theorem 3.2. Let (f2M1 × f1M2, F ) be a DWP-Finsler manifold.

(i) If f1 is constant and f2 is not constant, then (f2M1 × f1M2, F ) is a
Berwald manifold if and only if M1 is Riemannian, M2 is a Berwald
manifold and

∂gαγ

∂vλ
∂f22
∂uα

= 0.

(ii) If f2 is constant and f1 is not constant, then (f2M1 × f1M2, F ) is a
Berwald manifold if and only ifM2 is Riemannian,M1 is Berwaldian
and

∂gij

∂yk
∂f21
∂xi

= 0.

Proof. Let (f2M1 × f1M2, F ) be a Berwaldian manifold with f1 constant
on M1. Then from (3.8) we get Cijk = 0, i.e., (M1, F1) is Riemannian. Also,
(3.7) gives

∂gαγ

∂vλ
∂f22
∂uα

= 0.

Differentiating this equation with respect to vβ implies that

∂2gαγ

∂vλ∂vβ
∂f22
∂uα

= 0,

and consequently
∂3gαγ

∂vλ∂vβ∂vµ
∂f22
∂uα

= 0.

Then (3.5) reduces to Bγ
αβλ = 0, i.e., (M2, F2) is Berwaldian. In a similar

way, we can prove the converse of this assertion. The proof of (ii) is similar
and we omit it.

By a similar argument, we obtain
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Corollary 3.3. Let (M1 × f1M2, F ) be a proper WP-Finsler manifold.
Then (M1× f1M2, F ) is Berwaldian if and only if M2 is Riemannian, M1 is
Berwaldian and

(3.11) Cijk
∂f1
∂xi

= 0,

where Cijk = −2∂g
ij

∂yk
is the Cartan tensor.

4. Isotropic mean Berwald DWP-manifolds. In this section, we
study DWP-Finsler metrics with isotropic mean Berwald curvature. First,
we compute the mean Berwald curvature of a DWP-Finsler manifold.

Lemma 4.1. Let (f2M1× f1M2, F ) be a DWP-Finsler manifold. Then the
mean Berwald curvature of F is as follows:

Eαβ = Eαβ −
1

8f21

∂3gγν

∂vβ∂vα∂vγ
∂f22
∂uν

F 2
1 −

1

4f22
gαβ

∂gkh

∂yk
∂f21
∂xh

,(4.1)

Eij = Eij −
1

8f22

∂3gkh

∂yi∂yj∂yk
∂f21
∂xh

F 2
2 −

1

4f21
gij

∂gαγ

∂vγ
∂f22
∂uα

,(4.2)

Eiβ = − 1

4f22

∂2gkh

∂yk∂yi
∂f21
∂xh

vβ −
1

4f21

∂2gαγ

∂vβ∂vγ
∂f22
∂uα

yi,(4.3)

where Eij and Eαβ are mean Berwald curvatures of (M1, F1) and (M2, F2),
respectively.

Theorem 4.2. Let (f2M1× f1M2, F ) be a proper DWP-Finsler manifold.
Then F is a weakly Berwald metric if and only if F1 and F2 are weakly
Berwald metrics and

(4.4)
∂gkh

∂yk
∂f21
∂xh

=
∂gγν

∂vγ
∂f22
∂uν

= 0.

Proof. Let (f2M1 × f1M2, F ) be a weakly Berwald manifold. Then we
have Eαβ = Eij = Eiβ = 0. Using (4.3), we get

(4.5)
1

f22

∂2gkh

∂yj∂yk
∂f21
∂xh

vβ = − 1

f21

∂2gαγ

∂vβ∂vγ
∂f22
∂uα

yj .

Contracting (4.5) with yj gives

(4.6)
1

f22

∂gkh

∂yk
∂f21
∂xh

vβ =
1

f21

∂2gνγ

∂vβ∂vγ
∂f22
∂uν

F 2
1 .

Differentiating (4.6) with respect vα implies that

(4.7)
1

f22

∂gkh

∂yk
∂f21
∂xh

gαβ =
1

f21

∂3gνγ

∂vα∂vβ∂vγ
∂f22
∂uν

F 2
1 .
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In a similar way, one can obtain

(4.8)
1

f21

∂gγα

∂vγ
∂f22
∂uα

gij =
1

f22

∂3gkh

∂yi∂yj∂yk
∂f21
∂xh

F 2
2 .

Substituting (4.7) into (4.1) and plugging (4.8) into (4.2), we have

Eαβ =
3

8f21

∂3gνγ

∂vα∂vβ∂vγ
∂f22
∂uν

F 2
1 ,(4.9)

Eij =
3

8f22

∂3gkh

∂yi∂yj∂yk
∂f21
∂xh

F 2
2 .(4.10)

Since Eαβ is a function of (uα, vα), by differentiating (4.9) with respect yh
we deduce that

∂3gνγ

∂vα∂vβ∂vγ
∂f22
∂uν

yh = 0,

and consequently

(4.11)
∂3gνγ

∂vα∂vβ∂vγ
∂f22
∂uν

= 0.

Putting (4.11) into (4.9) gives Eαβ = 0. A similar argument yields Eij = 0.
Further, from (4.11) and (4.7) we derive that

∂gkh

∂yk
∂f21
∂xh

= 0.

Also, contracting (4.11) with vαvβ implies that

∂gγν

∂vγ
∂f22
∂uν

= 0.

Thus we have (4.4).
Conversely, suppose (M1, F1) and (M2, F2) are weakly Berwald manifolds

and (4.4) holds. Then Eij = Eαβ = 0. Equation (4.4) gives

∂2gkh

∂yj∂yk
∂f21
∂xh

=
∂3gkh

∂yi∂yj∂yk
∂f21
∂xh

=
∂2gνγ

∂vβ∂vγ
∂f22
∂uν

=
∂3gνγ

∂vα∂vβ∂vγ
∂f22
∂uν

= 0.

By plugging Eij = Eαβ = 0 and the above equation into (4.1)–(4.3), we
obtain Eαβ = Eij = Eiβ = 0. This means that (f2M1 × f1M2, F ) is a weakly
Berwald manifold.

Now, if f2 is a constant function on M2, then (4.7) implies that Eαβ = 0.
Thus we have

Corollary 4.3. Let (f2M1 × f1M2, F ) be a DWP-Finsler manifold and
f1 be constant on M1 (resp. f2 be constant on M2). Then (f2M1 × f1M2, F )
is weakly Berwald if and only if (M1, F1) and (M2, F2) are weakly Berwald
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manifolds and
∂gγν

∂vγ
∂f22
∂uν

= 0

(
resp.

∂gkh

∂yk
∂f21
∂xh

= 0

)
.

Corollary 4.4. Let (M1 × f1M2, F ) be a WP-Finsler manifold. Then
(M1 × f1M2, F ) is weakly Berwald if and only if (M1, F1) and (M2, F2) are
weakly Berwald manifolds and

∂gkh

∂yk
∂f21
∂xh

= 0.

Now, we consider DWP-Finsler manifolds with isotropic mean Berwald
curvature. First, as a consequence of Lemma 4.1, we have

Lemma 4.5. A DWP-Finsler manifold (f2M1 × f1M2, F ) has isotropic
mean Berwald curvature if and only if

(4.12) Eαβ −
1

8f21

∂3gγν

∂vβ∂vα∂vγ
∂f22
∂uν

F 2
1 −

1

4f22
gαβ

∂gkh

∂yk
∂f21
∂xh

− n+ 1

2
cf21F

−1
(
gαβ −

f21
F 2

vαvβ

)
= 0,

(4.13) Eij −
1

8f22

∂3gkh

∂yi∂yj∂yk
∂f21
∂xh

F 2
2 −

1

4f21
gij
∂gαγ

∂vγ
∂f22
∂uα

− n+ 1

2
cf22F

−1
(
gij −

f22
F 2

yiyj

)
= 0,

(4.14) (n+ 1)c
f21 f

2
2

F 3
yivβ −

1

2f22

∂2gkh

∂yk∂yi
∂f21
∂xh

vβ −
1

2f21

∂2gαγ

∂vβ∂vγ
∂f22
∂uα

yi = 0,

where c = c(x) is a scalar function on M .

Theorem 4.6. A DWP-Finsler manifold (f2M1×f1M2, F ) with isotropic
mean Berwald curvature is a weakly Berwald manifold provided that

∂gkh

∂yk
∂f1
∂xh

= 0 or
∂gγν

∂vγ
∂f2
∂uν

= 0.

Proof. Suppose that ∂gkh

∂yk
∂f1
∂xh

= 0 and F is an isotropic mean Berwald
DWP-Finsler metric. Then by using (4.14), we obtain

(n+ 1)c
f21 f

2
2

F 3
vβ =

1

2f21

∂2gαγ

∂vβ∂vγ
∂f22
∂uα

.

Differentiating the above equation with respect yj gives
n+ 1

F 5
cf21 f

4
2 vβyj = 0.

Thus, c = 0, so F is a weakly Berwald metric.
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5. Douglas DWP-Finsler manifolds. In this section, we study DWP-
Finsler manifolds with vanishing Douglas curvature. We prove that every
Douglas proper DWP-Finsler manifold is Riemannian. To do this, we need

Lemma 5.1. Let (f2M1× f1M2, F ) be a DWP-Finsler manifold. Then the
Douglas curvature of F is as follows:

Dk
ijl = Bk

ijl −
1

4f22

∂3gkh

∂yi∂yj∂yl
∂f21
∂xh

F 2
2(5.1)

− 2

n+ 1

{
Eijδ

k
l −

1

8f22

∂3gsh

∂yi∂yj∂ys
∂f21
∂xh

F 2
2 δ

k
l

− 1

4f21
gij
∂gαγ

∂vγ
∂f22
∂uα

δkl + Eilδ
k
j −

1

8f22

∂3gsh

∂yi∂yl∂ys
∂f21
∂xh

F 2
2 δ

k
j

− 1

4f21
gil
∂gαγ

∂vγ
∂f22
∂uα

δkj + Ejlδ
k
i −

1

8f22

∂3gsh

∂yj∂yl∂ys
∂f21
∂xh

F 2
2 δ

k
i

− 1

4f21
gjl
∂gαγ

∂vγ
∂f22
∂uα

δki −
1

4f21

∂gij
∂yl

∂gαγ

∂vγ
∂f22
∂uα

yk

− 1

8f22

∂4gsh

∂yl∂yi∂yj∂ys
∂f21
∂xh

F 2
2 y

k +
∂Eij
∂yl

yk
}
,

Dk
iβl = −

1

4f22

∂2gkh

∂yl∂yi
∂f21
∂xh

∂F 2
2

∂vβ
+

2

n+ 1

{
1

4f22

∂2gsh

∂ys∂yi
∂f21
∂xh

δkl vβ(5.2)

+
1

4f21

∂2gαγ

∂vβ∂vγ
∂f22
∂uα

δkl yi +
1

4f22

∂2gsh

∂ys∂yl
∂f21
∂xh

δki vβ

+
1

4f21

∂2gαγ

∂vβ∂vγ
∂f22
∂uα

δki yl +
1

4f22

∂3gsh

∂yl∂ys∂yi
∂f21
∂xh

ykvβ

+
1

4f21

∂2gαγ

∂vβ∂vγ
∂f22
∂uα

ykgil

}
,

Dk
αβl = −

1

2f22
gαβ

∂gkh

∂yl
∂f21
∂xh
− 2

n+ 1

{
Eαβδ

k
l −

1

4f22
gαβ

∂gsh

∂ys
∂f21
∂xh

δkl(5.3)

− 1

8f21

∂3gγν

∂vβ∂vα∂vγ
∂f22
∂uν

F 2
1 δ

k
l −

1

4f21

∂3gγν

∂vβ∂vα∂vγ
∂f22
∂uν

yly
k

− 1

4f22
gαβ

∂2gsh

∂yl∂ys
∂f21
∂xh

yk
}
,

Dk
αβλ = − 1

f22
Cαβλg

kh ∂f
2
1

∂xh
− 2

n+ 1

{
∂Eαβ
∂vλ

yk(5.4)

− 1

8f21

∂4gγν

∂vλ∂vβ∂vα∂vγ
∂f22
∂uν

F 2
1 y

k − 1

4f22

∂gαβ
∂vλ

∂gsh

∂ys
∂f21
∂xh

yk
}
,
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Dγ
αβλ=Bγ

αβλ−
1

4f21

∂3gγν

∂vβ∂vα∂vλ
∂f22
∂uν

F 2
1 +

2

n+ 1

{
1

8f21

∂3gµν

∂vβ∂vα∂vµ
∂f22
∂uν

F 2
1 δ

γ
λ

(5.5)

− Eαβδγλ +
1

4f22
gαβ

∂gkh

∂yk
∂f21
∂xh

δγλ +
1

8f21

∂3gµν

∂vλ∂vα∂vµ
∂f22
∂uν

F 2
1 δ

γ
β

− Eαλδγβ +
1

4f22
gαλ

∂gkh

∂yk
∂f21
∂h

δγβ +
1

8f21

∂3gµν

∂vλ∂vβ∂vµ
∂f22
∂uν

F 2
1 δ

γ
α

− Eβλδγα +
1

4f22
gβλ

∂gkh

∂yk
∂f21
∂xh

δγα +
1

8f21

∂4gµν

∂vλ∂vβ∂vα∂vµ
∂f22
∂uν

F 2
1 v

γ

+
1

4f22

gαβ
∂vγ

∂gkh

∂yk
∂f21
∂xh

vγ −
∂Eαβ
∂vλ

vγ
}
,

Dγ
iβλ = − 1

4f21

∂2gαγ

∂vβ∂vλ
∂f22
∂uα

∂F 2
1

∂yi
+

2

n+ 1

{
1

4f22

∂2gkh

∂yk∂yi
∂f21
∂xh

δγλvβ(5.6)

+
1

4f21

∂2gαµ

∂vβ∂vµ
∂f22
∂uα

δγλyi +
1

4f22

∂2gkh

∂yk∂yi
∂f21
∂xh

δγβvλ

+
1

4f21

∂2gαµ

∂vλ∂vµ
∂f22
∂uα

δγβyi +
1

4f22

∂2gkh

∂yk∂yi
∂f21
∂xh

gβλv
γ

+
1

4f21

∂3gαµ

∂vλ∂vβ∂vµ
∂f22
∂uα

vγyi

}
,

Dγ
ijλ = − 1

2f21
gij
∂gαγ

∂vλ
∂f22
∂uα

− 2

n+ 1

{
Eijδ

γ
λ −

1

8f22

∂3gkh

∂yi∂yj∂yk
∂f21
∂xh

F 2
2 δ

γ
λ

(5.7)

− 1

4f21
gij
∂gαµ

∂vµ
∂f22
∂uα

δγλ −
1

8f22

∂3gkh

∂yi∂yj∂yk
∂f21
∂xh

∂F 2
2

∂vλ
vγ

− 1

4f21
gij

∂2gαµ

∂vλ∂vµ
∂f22
∂uα

vγ
}
,

Dγ
ijk = −

1

f21
Cijkg

αγ ∂f
2
2

∂uα
− 2

n+ 1

{
∂Eij
∂yk

vγ(5.8)

− 1

8f22

∂4gsh

∂yk∂yi∂yj∂ys
∂f21
∂xh

F 2
2 v

γ − 1

4f21

∂gij
∂yk

∂gαµ

∂vµ
∂f22
∂uα

vγ
}
.

Proof. By lengthy calculations using Lemmas 3.1 and 4.1.

Theorem 5.2. Every proper DWP-Finsler manifold (f2M1 × f1M2, F )
with vanishing Douglas curvature is a Riemannian manifold.
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Proof. Suppose that the Douglas curvature of (f2M1×f1M2, F ) vanishes,
i.e., Dd

abc = 0. Then by contracting (5.8) with yk we obtain

(5.9) Eij =
3

8f22

∂3gsh

∂yi∂yj∂ys
∂f21
∂xh

F 2
2 .

Since Eij is a function of (x, y), by differentiating the above equation with
respect to vα, we get

(5.10)
∂3gsh

∂yi∂yj∂ys
∂f21
∂xh

= 0.

Putting the above into (5.9) gives Eij = 0. Further, (5.10) implies

(5.11)
∂4gsh

∂yk∂yi∂yj∂ys
∂f21
∂xh

=
∂2gsh

∂yj∂ys
∂f21
∂xh

=
∂gsh

∂ys
∂f21
∂xh

= 0.

In a similar way, we conclude that Eαβ = 0 and

∂4gγν

∂vλ∂vβ∂vα∂vγ
∂f22
∂uν

=
∂3gγν

∂vβ∂vα∂vγ
∂f22
∂uν

(5.12)

=
∂2gγν

∂vα∂vγ
∂f22
∂uν

=
∂gγν

∂vγ
∂f22
∂uν

= 0.

Inserting (5.10)–(5.12) and Eij = Eαβ = 0 into (5.4) and (5.8) implies that
Cijk = Cαβλ = 0. Therefore (M1, F1) and (M2, F2) are Riemannian, and
consequently (f2M1 × f1M2, F ) is Riemannian.

From Theorem 5.2, we obtain
Corollary 5.3. Let (f2M1 × f1M2, F ) be a DWP-Finsler manifold.

(i) If f2 is constant on M2, then F is a Douglas metric if and only if F2

is a Riemannian metric, F1 is a Berwald metric and ∂gsh

∂ys
∂f21
∂xh

= 0.
(ii) If f1 is constant on M1, then F is a Douglas metric if and only if F1

is a Riemannian metric, F2 is a Berwald metric and ∂gγλ

∂vγ
∂f22
∂uλ

= 0.

Finally, we consider warped product Finsler manifolds with vanishing
Douglas curvature:

Corollary 5.4. The WP-Finsler manifold (M1×f1M2, F ) is a Douglas
manifold if and only if F2 is a Riemannian metric, F1 is a Berwald metric
and ∂gsh

∂ys
∂f21
∂xh

= 0.

Proof. By Lemma 5.1.

6. Relatively isotropic Landsberg DWP-Finsler manifolds. In
this section, we prove that for a proper DWP-Finsler manifold the notions of
being a Landsberg manifold and of being a Berwald manifold are equivalent.
Then we study DWP-Finsler metrics with relatively isotropic Landsberg
curvature.
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Lemma 6.1. Let (f2M1× f1M2, F ) be a DWP-Finsler manifold. Then the
Landsberg curvature of F is as follows:

Lijk = f22Lijk +
1

8
f22 yl

∂3glh

∂yi∂yj∂yk
∂f21
∂xh

F 2
2 +

1

2
Cijkv

α ∂f
2
2

∂uα
,(6.1)

Lijλ =
1

4
yl

∂2glh

∂yi∂yj
∂f21
∂xh

vλ +
1

4
gijvγ

∂gαγ

∂vλ
∂f22
∂uα

,(6.2)

Liβλ =
1

4
yl
∂glh

∂yi
∂f21
∂xh

gβλ +
1

4
vγ

∂2gαγ

∂vβ∂vλ
∂f22
∂uα

yi,(6.3)

Lαβλ = f21Lαβλ +
1

8
f21 vγ

∂3gγν

∂vα∂vβ∂vλ
∂f22
∂uν

F 2
1 +

1

2
Cαβλy

h ∂f
2
1

∂xh
.(6.4)

Proof. Ise the definition of Landsberg curvature and (3.1)–(3.8).

Proposition 6.2. Every proper DWP-Finsler manifold (f2M1×f1M2, F )
with vanishing Landsberg curvature is Riemannian.

Proof. Let the Landsberg curvature tensor of (f2M1 × f1M2, F ) be zero.
Then by using (6.1) we obtain

(6.5) f22Lijk +
1

8
f22 yl

∂3glh

∂yi∂yj∂yk
∂f21
∂xh

F 2
2 +

1

2
Cijkv

α ∂f
2
2

∂uα
= 0.

Differentiating (6.5) with respect to vγ implies that

(6.6)
1

4
f22 yl

∂3glh

∂yi∂yj∂yk
∂f21
∂xh

vγ +
1

2
Cijk

∂f22
∂uγ

= 0.

By differentiating (6.6) with respect vλ, we have

yl
∂3glh

∂yi∂yj∂yk
∂f21
∂xh

gγλ = 0,

and consequently

yl
∂3glh

∂yi∂yj∂yk
∂f21
∂xh

= 0.

Thus (6.5) reduces to

(6.7) f22Lijk +
1

2
Cijkv

α ∂f
2
2

∂uα
= 0.

Differentiating (6.7) with respect to vβ gives

Cijk
∂f22
∂uβ

= 0,

and consequently Cijk = 0. Thus (M1, F1) is a Riemannian manifold. In a
similar way, we can conclude that (M2, F2) is Riemannian.

Using Proposition 6.2 and Lemma 3.1, we get
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Theorem 6.3. A proper DWP-Finsler manifold is Landsbergian if and
only if it is Berwaldian.

Now, let f1 be non-constant on M1 and f2 be constant on M2. Then as
in the proof of Proposition 6.2, we conclude that (M2, F2) is a Riemannain
manifold. Also, from (6.7) we conclude Lijk = 0, because f2 is constant.
Thus we obtain

Theorem 6.4. Let (f2M1× f1M2, F ) be a proper DWP-Finsler manifold.

(i) If f2 is constant and f1 is not constant, then (f2M1 × f1M2, F ) is a
Landsberg manifold if and only if (M1, F1) is a Landsberg manifold,
(M2, F2) is Riemannian and

(6.8) yl
∂3glh

∂yi∂yj∂yk
∂f1
∂xh

= 0.

(ii) If f1 is constant and f2 is not constant, then (f2M1 × f1M2, F ) is a
Landsberg manifold if and only if (M2, F2) is a Landsberg manifold,
(M1, F1) is Riemannian and

(6.9) vγ
∂3gγν

∂vα∂vβ∂vλ
∂f2
∂uν

= 0.

Theorem 6.4 yields

Corollary 6.5. A WP-Finsler manifold (M1× f1M2, F ) is a Landsberg
manifold if and only if (M1, F1) is Landsberg, (M2, F2) is Riemannian and

(6.10) Chkj
∂f1
∂xh

= 0.

Proof. It suffices to show that (6.4) implies (6.10). Multiplying (6.4) with
yi implies that

(6.11) yl
∂C lhj
∂yk

∂f1
∂xh

= 0.

Using ylC lhj = 0 and ∂yl
∂yk

= glk, one can obtain (6.10).

Now, we deal with DWP-Finsler manifolds with relatively isotropic
Landsberg metric.

Theorem 6.6. Let (f2M1 × f1M2, F ) be a DWP-Finsler manifold. Sup-
pose that F is a relatively isotropic Landsberg metric. Then F is a Landsberg
metric.

Proof. Let (f2M1×f1M2, F ) be a relatively isotropic Landsberg manifold.
Then by (6.1), we have

(6.12) f22Lijk +
1

8
f22 yl

∂3glh

∂yi∂yj∂yk
∂f21
∂xh

F 2
2 +

1

2
Cijkv

α ∂f
2
2

∂uα
= cFf22Cijk.
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By differentiating (6.12) with respect vγ and vλ, one obtains

(6.13)
1

4
yl

∂3glh

∂yi∂yj∂yk
∂f21
∂xh

gγλ = cF−1hγλCijk.

Contracting (6.13) with gγλ implies that

(6.14)
n2
4
yl

∂3glh

∂yi∂yj∂yk
∂f21
∂xh

= (n− 1)cF−1Cijk.

Differentiating (6.14) with respect to vβ gives (n− 1)c(F−1)vβCijk = 0, and
so c = 0. Thus F reduces to a Landsberg metric.

From Proposition 6.2 and Theorem 6.6, we deduce

Corollary 6.7. Every proper DWP-Finsler manifold with relatively iso-
tropic Landsberg curvature is Riemannian.

7. Relatively isotropic mean Landsberg DWP-Finsler manifolds.
In this section, we consider DWP-Finsler metrics with relatively isotropic
mean Landsberg curvature. First, by the definition of mean Landsberg cur-
vature and Lemma 6.1, we get

Lemma 7.1. Let (f2M1× f1M2, F ) be a DWP-Finsler manifold. Then the
mean Landsberg curvature of F is as follows:

(7.1) Ji =
1

f22
gjkLijk +

1

f21
gβλLiβλ

= Ji +
ylg

jk

8

∂3glh

∂yi∂yj∂yk
∂f21
∂xh

F 2
2 +

Iiv
ν

2f22

∂f22
∂uν

+
vγg

βλ

4

∂2gνγ

∂vβ∂vλ
∂f22
∂uν

yi,

(7.2) Jα =
1

f22
gjkLαjk +

1

f21
gβλLαβλ

= Jα +
vγg

βλ

8

∂3gγν

∂vα∂vβ∂vλ
∂f22
∂uν

F 2
1 +

Iαy
h

2f21

∂f21
∂xh

+
ylg

jk

4

∂2glh

∂yj∂yk
∂f21
∂xh

vα.

Theorem 7.2. Let (f2M1 × f1M2, F ) be a DWP-Finsler manifold.

(i) If f1 is constant and f2 is not constant, then (f2M1 × f1M2, F ) is
a weakly Landsberg manifold if and only if (M1, F1) is Riemannian,
(M2, F2) is weakly Landsbergian and

vγ
∂3gγν

∂vα∂vβ∂vλ
gβλ

∂f22
∂uν

= 0.

(ii) If f2 is constant and f1 is not constant, then (f2M1 × f1M2, F ) is a
weakly Landsberg manifold if and only if (M1, F1) is weakly Lands-
bergian, (M2, F2) is Riemannian and

yl
∂3glh

∂yi∂yj∂yk
gjk

∂f21
∂xh

= 0.
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Proof. Let (f2M1 × f1M2, F ) be a weakly Landsberg manifold and f1 be
constant on M1. Then by (7.1) and (7.2), we have

Ji +
1

2f22
Iiv

ν ∂f
2
2

∂uν
+

1

4
vγ

∂2gνγ

∂vβ∂vλ
gβλ

∂f22
∂uν

yi = 0,(7.3)

Jα +
1

8
vγ

∂3gγν

∂vα∂vβ∂vλ
gβλ

∂f22
∂uν

F 2
1 = 0.(7.4)

By differentiating (7.4) with respect to yi, we get

(7.5) vγ
∂3gγν

∂vα∂vβ∂vλ
gβλ

∂f22
∂uν

= 0.

Contracting (7.5) with vα gives

(7.6) vγ
∂2gγν

∂vβ∂vλ
gβλ

∂f22
∂uν

= 0.

Inserting (7.6) into (7.3) implies that

(7.7) Ji +
1

2f22
Iiv

ν ∂f
2
2

∂uν
= 0.

By differentiating (7.7) with respect vβ , we conclude that Ii = 0, i.e.,
(M1, F1) is a Riemannian manifold. By inserting (7.5) into (7.2), we get
Jα = 0, i.e., (M2, F2) is a weakly Landsberg manifold.

From Theorem 7.2, we deduce

Corollary 7.3. A proper WP-Finsler manifold (M1 × f1M2, F ) is a
weakly Landsberg manifold if and only if (M1, F1) is weakly Landsberg,
(M2, F2) is Riemannian and

yl
∂3glh

∂yi∂yj∂yk
gjk

∂f21
∂xh

= 0.

Now, we consider DWP-Finsler manifolds with relatively isotropic mean
Landsberg curvature.

Theorem 7.4. Let (f2M1 × f1M2, F ) be a DWP-Finsler manifold with
relatively isotropic mean Landsberg curvature. If f1 is constant on M1 (resp.
f2 is constant on M2), then the DWP-Finsler manifold is a weakly Landsberg
manifold.

Proof. Let (f2M1 × f1M2, F ) be a relatively isotropic mean Landsberg
manifold and f1 be constant on M1. Then by (7.4) we have

(7.8) Jα +
1

8
vγ

∂3gγν

∂vα∂vβ∂vλ
gβλ

∂f22
∂uν

F 2
1 = cFIα.

Differentiating (7.8) with respect to yk implies that

(7.9)
1

4
vγ

∂3gγν

∂vα∂vβ∂vλ
gβλ

∂f22
∂uν

yk = c
f22 yk
F

Iα.
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Contracting (7.9) with yk gives

(7.10)
1

4
vγ

∂3gγν

∂vα∂vβ∂vλ
gβλ

∂f22
∂uν

F 2
1 = c

f22F
2
1

F
Iα.

By inserting (7.10) into (7.8), it follows that

(7.11) 2Jα + c

(
f22F

2
1

F
− 2F

)
Iα = 0.

By differentiating (7.11) with respect to yk, we obtain cf
4
2F

2
1

F 3 ykIα = 0. There-
fore, c = 0 and F reduces to a weakly Landsberg metric.

Corollary 7.5. Every WP-manifold (M1×f1M2, F ) with relatively iso-
tropic mean Landsberg curvature is a weakly Landsberg manifold.

8. Locally dually flat DWP-Finsler manifolds. Dually flat Finsler
metrics form a special and useful class of Finsler metrics in Finsler informa-
tion geometry, which play an important role in studying flat Finsler infor-
mation structure. In this section, we study locally dually flat DWP-Finsler
metrics. We recall that a Finsler metric F = F (x, y) on a manifold M is lo-
cally dually flat if at any point there is a standard coordinate system (xi, yi)
in TM such that

(8.1)
∂2F 2

∂xk∂yl
yk = 2

∂F 2

∂xl
.

In this case, the coordinate system (xi) is called adapted.

Theorem 8.1. Let (f2M1 × f1M2, F ) be a DWP-Finsler manifold. Then
F is locally dually flat if and only if F1 and F2 are locally dually flat and f1
and f2 are constant.

Proof. Let (f1M1× f2M2, F ) be a locally dually flat doubly DWP-Finsler
manifold. Then

f22
∂2F 2

1

∂xk∂yl
yk +

∂f22
∂uα

∂F 2
1

∂yl
vα = 2f22

∂F 2
1

∂xl
+ 2

∂f21
∂xl

F 2
2 ,(8.2)

∂f21
∂xk

∂F 2
2

∂vβ
yk + f21

∂2F 2
2

∂uα∂vβ
vα = 2f21

∂F 2
2

∂uβ
+ 2

∂f22
∂uβ

F 2
1 .(8.3)

Differentiating (8.2) with respect to vγ and then with respect to yk and using
non-singularity of gij yields

∂f2
∂uγ

= 0,
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which means that f2 is constant. Similarly, f1 is constant. In this case, (8.2)
and (8.3) reduce to

∂2F 2
1

∂xk∂yl
yk =

∂F 2
1

∂xl
,(8.4)

∂2F 2
2

∂uα∂vβ
vα = 2

∂F 2
2

∂uβ
.(8.5)

Hence F1 and F2 are locally dually flat.

From Theorem 8.1, we deduce

Corollary 8.2. There is no locally dually flat proper DWP-Finsler
manifold.
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