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On existence of a unique generalized solution to systems of
elliptic PDEs at resonance

by Tiantian Qiao (Qingdao and Harbin), Weiguo Li (Qingdao),
Kai Liu (Nanjing) and Boying Wu (Harbin)

Abstract. The Dirichlet boundary value problem for systems of elliptic partial dif-
ferential equations at resonance is studied. The existence of a unique generalized solution
is proved using a new min-max principle and a global inversion theorem.

1. Introduction. In this paper, we consider the following Dirichlet
boundary value problem:

(1.1) Lu+ g(x, u) = h(x), x in Ω, u = 0, x on ∂Ω,

where Ω ⊆ Rn is a bounded domain with smooth boundary, g : Ω × Rm →
Rm is continuous and continuously differentiable with respect to u, and
h ∈ L2(Ω).

By a global inversion theorem and a non-variational version of the min-
max principle, the existence of a unique generalized solution to (1.1) has
been proved for L = ∆ in [QL]. The main contribution of this paper is that
the existence of a unique solution of (1.1) at resonance can be derived for
much more general operators L.

Let Ω ⊆ Rn be a bounded domain with boundary ∂Ω of class C2, and
L be a second order differential operator of the form

Lu =


L1u1

L2u2
...

Lmum

 , Lkϕ =
n∑
i=1

n∑
j=1

∂

∂xi

(
a
(k)
ij (x)

∂ϕ

∂xj

)
, k = 1, . . . ,m,

where the operators Lk, k = 1, . . . ,m, are assumed to be strongly elliptic
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and symmetric, i.e.,

a
(k)
ij = a

(k)
ji , ∃µ(k) > 0,

n∑
i=1

n∑
j=1

a
(k)
ij ζiζj >

n∑
i=1

n∑
j=1

µ(k)ζiζj

for all x ∈ Ω̄ and all ζ ∈ Rn \ {0}.
In this paper, we suppose that a

(k)
ij ∈ C1(Ω̄) and

Ak = (a
(k)
ij )n×n ∈ Rn×n, A =


A1 . . . 0
...

. . .
...

0 . . . Am

 ∈ Rnm×nm.

It is easy to see that Ak, k = 1, . . . ,m, are symmetric matrices. Thus, A is
also symmetric. Moreover, Lk, k = 1, . . . ,m, induce a self-adjoint differential

operator in L2(Ω) with domain H1
0 (Ω) ∩H2(Ω). Let 0 < λ

(k)
1 < λ

(k)
2 < · · ·

be all different eigenvalues of the eigenvalue problem −Lkϕ = λϕ in Ω with
ϕ = 0 on ∂Ω, k = 1, . . . ,m (see, e.g., Gilbarg and Trudinger [GT]).

Now, we first introduce the following two lemmas which play an impor-
tant role in this paper. Their detailed proofs are omitted; the interested
readers are referred to [L1, LL, L2, L],

Lemma 1.1 ([L1, LL]). Let X and Y be two closed subspaces of a real
Hilbert space H, and H = X⊕Y . Suppose that T : H → H is a C1 mapping.
If there exist continuous functions α, β : [0,∞)→ (0,∞) such that

〈T ′(u)v, v〉 ≤ −α(‖u‖)‖v‖2,(1.2)

〈T ′(u)w,w〉 ≥ β(‖u‖)‖w‖2,(1.3)

〈T ′(u)v, w〉 = 〈v, T ′(u)w〉,(1.4)

for all u ∈ H, v ∈ X, w ∈ Y , and

(1.5)

∞�

1

min{α(s), β(s)} ds =∞,

then T is a diffeomorphism from H onto H.

Lemma 1.2 ([L2, L]). Let H be a vector space such that H = Z ⊕ Y for
some subspaces Y and Z. If Z is finite-dimensional and X is a subspace of
H such that X ∩ Y = {0} and dimX = dimZ, then H = X ⊕ Y .

2. Existence of unique solution. To show the existence of a unique
solution to equation (1.1), we assume throughout this section that the fol-
lowing condition holds.

(C) ∂g(x, u)/∂u is symmetric and there exist continuous functions
α, β : [0,∞) → (0,∞) and constant symmetric m × m matrices
B1 and B2 such that
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(2.1) B1 + α(‖u‖)I ≤ ∂g(x, u)

∂u
≤ B2 − β(‖u‖)I,

on Rn × Rm and the eigenvalues of B1 and B2 are λ
(k)
Nk

and λ
(k)
Nk+1,

k = 1, . . . ,m, respectively. Here λ
(k)
Nk

and λ
(k)
Nk+1 are two consecutive

eigenvalues of −Lkϕ = λϕ in Ω with ϕ = 0 on ∂Ω, k = 1, . . . ,m.
Moreover

(2.2)

∞�

1

min{α(s), β(s)} ds =∞.

For convenience, we introduce the following notations:

If f, g ∈ L2(Ω), let

B[φ, ψ] =
�

Ω

m∑
k=1

n∑
i=1

n∑
j=1

a
(k)
ij

∂φk
∂xi

∂ψk
∂xj

dx =
�

Ω

m∑
k=1

∇φTkAk∇ψk dx,

〈f, g〉0 =
�

Ω

fT g dx, ‖f‖20 =
�

Ω

fT fdx,

〈u, v〉 =
�

Ω

[
uT (x)v(x) +

m∑
k=1

n∑
i=1

n∑
j=1

a
(k)
ij

∂uk
∂xi

∂vk
∂xj

]
dx,

‖u‖2 =
�

Ω

[
uT (x)u(x) +

m∑
k=1

n∑
i=1

n∑
j=1

a
(k)
ij

∂uk
∂xi

∂uk
∂xj

]
dx.

By (1.1), we have

(2.3) B[u, v]− 〈g(x, u), v〉0 = −〈h(x), v〉0, ∀v ∈ H1
0 (Ω).

Main Theorem 2.1. If g(x, u) satisfies condition (C) for all u ∈ Rm,
x ∈ Rn, then there exists a unique generalized solution to equation (1.1) for
every h ∈ L2(Ω).

Proof. By the Riesz representation theorem and the above assumptions,
we can define a mapping T (u) : H1

0 (Ω)→ H1
0 (Ω) as follows:

(2.4) 〈T (u), v〉 = B[u, v]− 〈g(x, u), v〉0.

Obviously, T (u) is continuously differentiable for all u ∈ H1
0 (Ω) and

(2.5) 〈T ′(u)w, v〉 = B[w, v]−
�

Ω

vT (x)
∂g(x, u)

∂u
w(x) dx.

Invoking the Riesz representation theorem again, there exists a function
d ∈ H1

0 (Ω) such that

(2.6) 〈d, v〉 = −
�

Ω

vT (x)h(x) dx.
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By (2.3), we just need to prove that there exists a unique u satisfying

(2.7) T (u) = d.

We assume that e1, e2, . . . , em are eigenvectors corresponding to the eigen-

values λ
(1)
N1
, λ

(2)
N2
, . . . , λ

(m)
Nm

of B1, and ξ1, ξ2, . . . , ξm are eigenvectors corre-

sponding to the eigenvalues λ
(1)
N1+1, λ

(2)
N2+1, . . . , λ

(m)
Nm+1 of B2, with ‖ei‖0 = 1

and ‖ξi‖0 = 1 for all i = 1, . . . ,m. And let τ
(k)
i1 (x), τ

(k)
i2 (x), . . . , τ

(k)
ili

(x) be

eigenfunctions of the problem −Lkϕ = λ
(k)
i ϕ, x ∈ Ω, and ϕ|∂Ω = 0.

Let

X =
{
v ∈ H1

0 (Ω)
∣∣∣ v =

m∑
k=1

bk(x)ek, bk(x) =

Nk∑
i=1

li∑
j=1

p
(k)
ij τ

(k)
ij (x)

}
,

Y =
{
w ∈ H1

0 (Ω)
∣∣∣ w =

m∑
k=1

rk(x)ξk, rk(x) =
∞∑

i=Nk+1

li∑
j=1

q
(k)
ij τ

(k)
ij (x)

}
,

Z =
{
z ∈ H1

0 (Ω)
∣∣∣ z =

m∑
k=1

sk(x)ξk, sk(x) =

Nk∑
i=1

li∑
j=1

q
(k)
ij τ

(k)
ij (x)

}
,

where Ni, i = 1, . . . ,m, are as in condition (C) and p
(k)
ij , q

(k)
ij are constants.

Obviously, H1
0 (Ω) = Z ⊕ Y .

For all v ∈ X and u ∈ H, we have

(2.8) 〈T ′(u)v, v〉 = B[v, v]−
�

Ω

vT (x)
∂g(x, u)

∂u
v(x) dx

=
�

Ω

m∑
k=1

n∑
i=1

n∑
j=1

a
(k)
ij

∂vk
∂xi

∂vk
∂xj

dx−
�

Ω

vT (x)
∂g(x, u)

∂u
v(x) dx

≤
�

Ω

〈−Lv, v〉0 dx−
�

Ω

vT (x)(B1 + α(‖u‖)I)v(x) dx

=
�

Ω

〈−Lv, v〉0 dx−
�

Ω

vT (x)B1v(x) dx− α(‖u‖)‖v‖20

≤
m∑
k=1

λ
(k)
Nk

�

Ω

b2k(x) dx−
�

Ω

m∑
i=1

m∑
j=1

bi(x)bj(x)eTi B1ej dx− α (‖u‖) ‖v‖20

≤ −α(‖u‖)‖v‖20.
Since

‖v‖2 = ‖v‖20 +B[v, v] = ‖v‖20 − 〈Lv, v〉0(2.9)

≤ ‖v‖20 +
m∑
k=1

λ
(k)
Nk
b2k(x)〈ek, ek〉0 ≤ (1 +M)‖v‖20,
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where M = max{λ(k)Nk
: k = 1, . . . ,m}, we have

(2.10) 〈T ′(u)v, v〉 ≤ −α (‖u‖)
M + 1

‖v‖2.

Similarly, denoting N = max{λ(k)Nk+1 : k = 1, . . . ,m}, we have

(2.11) 〈T ′(u)w,w〉 ≥ β(‖u‖)
N + 1

‖w‖2, ∀w ∈ Y, ∀u ∈ H.

By the symmetry of B, it is easy to see that

(2.12) 〈T ′(u)v, w〉 = 〈v, T ′(u)w〉.

Let α1(s) = α(s)
M+1 and β1(s) = β(s)

N+1 ; then

(2.13) δ(s) = min{α1(s), β1(s)} ≥
min{α(s), β(s)}

N + 1
.

By (2.2), it is easy to see that

(2.14)

∞�

1

δ(s) ds =∞.

Obviously, X ∩ Y = {0} and dimX = dimZ =
∑m

k=1

∑Nk
i=1 li. From

H = Z ⊕ Y and Lemma 1.2, we get H = X ⊕ Y . Thus, T (u) is a diffeo-
morphism from H1

0 (Ω) onto itself by Lemma 1.1. Therefore, there exists a
unique u satisfying T (u) = d, that is, u is the unique generalized solution
to (1.1).

3. An example. Consider the following coupled partial differential
equations:

(3.1)



2
∂2u1
∂x2

+
∂2u1
∂y2

+
5

2
u1 + 3 sin2 γ(x, y)u1 −

1

2
u2

+
1

2
ln(u1 + u2 +

√
1 + (u1 + u2)2) = h1(x, y),

∂2u2
∂x2

+
∂2u2
∂y2

+
5

2
u2 + 2 cos2 γ(x, y)u2 −

1

2
u1

+
1

2
ln(u1 + u2 +

√
1 + (u1 + u2)2) = h2(x, y),

for (x, y) ∈ Ω = [0, π] × [0, π] ⊆ R2, and u(x, y) = (u1(x, y), u2(x, y)) ∈ R2,
with boundary conditions u(0, y) = u(π, y) = u(x, 0) = u(x, π) = u(0, 0) =
0, h1, h2 ∈ L2(Ω). Since
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∂g(x, u)

∂u
=

5

2
+ 3 sin2 γ +

1

2
√

1 + (u1 + u2)2

−1

2
+

1

2
√

1 + (u1 + u2)2

−1

2
+

1

2
√

1 + (u1 + u2)2
5

2
+ 2 cos2 γ +

1

2
√

1 + (u1 + u2)2

,
we have γ = γ(x, y). It is easy to see that 5

2

−1

2

−1

2
5

2

+

 1

2
√

1 + (u1 + u2)2

0

0
1

2
√

1 + (u1 + u2)2


≤ ∂g(x, u)

∂u
≤(

6

0

0

5

)
−

 1

2
− 1

2
√

1 + (u1 + u2)2

0

0
1

2
− 1

2
√

1 + (u1 + u2)2

 .

Here, the set of all eigenvalues of L1 under the given boundary conditions is

C1 = {2m2 + n2 : n and m are natural numbers} = {3, 6, 9, 11, 12, 17, . . . },
and the set of all eigenvalues of L2 under the given boundary conditions is

C2 = {m2 + n2 : n and m are natural numbers} = {2, 5, 8, 10, 13, 17, . . . }.
The eigenvalues of B1 are 3 and 2, and the eigenvalues of B2 are 6 and 5.
Obviously, the integral is divergent,

	∞
0 ds/

√
1 + s2 =∞. If α(s) = 1

2

√
1 + s2

and β(s) = 1
2(1 − 1/

√
1 + s2), then the conditions of Theorem 2.1 are sat-

isfied. Thus, there exists a unique generalized solution to equation (3.1) for
arbitrary h1(x, y), h2(x, y) ∈ L2(Ω).

Remark. It should be highlighted that the existence of a unique gener-
alized solution to our system cannot be deduced from the previously known
results [AP, BF, HN, INW, IN, LS].
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