On existence of a unique generalized solution to systems of elliptic PDEs at resonance

by Tiantian Qiao (Qingdao and Harbin), Weiguo Li (Qingdao), Kai Liu (Nanjing) and Boying Wu (Harbin)

Abstract

The Dirichlet boundary value problem for systems of elliptic partial differential equations at resonance is studied. The existence of a unique generalized solution is proved using a new min-max principle and a global inversion theorem.

1. Introduction. In this paper, we consider the following Dirichlet boundary value problem:

$$
\begin{equation*}
L u+g(x, u)=h(x), \quad x \text { in } \Omega, \quad u=0, \quad x \text { on } \partial \Omega, \tag{1.1}
\end{equation*}
$$

where $\Omega \subseteq \mathbb{R}^{n}$ is a bounded domain with smooth boundary, $g: \Omega \times \mathbb{R}^{m} \rightarrow$ \mathbb{R}^{m} is continuous and continuously differentiable with respect to u, and $h \in L^{2}(\Omega)$.

By a global inversion theorem and a non-variational version of the minmax principle, the existence of a unique generalized solution to (1.1) has been proved for $L=\Delta$ in QL. The main contribution of this paper is that the existence of a unique solution of (1.1) at resonance can be derived for much more general operators L.

Let $\Omega \subseteq \mathbb{R}^{n}$ be a bounded domain with boundary $\partial \Omega$ of class C^{2}, and L be a second order differential operator of the form

$$
L u=\left(\begin{array}{c}
L_{1} u_{1} \\
L_{2} u_{2} \\
\vdots \\
L_{m} u_{m}
\end{array}\right), \quad L_{k} \varphi=\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial}{\partial x_{i}}\left(a_{i j}^{(k)}(x) \frac{\partial \varphi}{\partial x_{j}}\right), \quad k=1, \ldots, m
$$

where the operators $L_{k}, k=1, \ldots, m$, are assumed to be strongly elliptic

[^0]and symmetric, i.e.,
$$
a_{i j}^{(k)}=a_{j i}^{(k)}, \quad \exists \mu^{(k)}>0, \quad \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j}^{(k)} \zeta_{i} \zeta_{j}>\sum_{i=1}^{n} \sum_{j=1}^{n} \mu^{(k)} \zeta_{i} \zeta_{j}
$$
for all $x \in \bar{\Omega}$ and all $\zeta \in \mathbb{R}^{n} \backslash\{0\}$.
In this paper, we suppose that $a_{i j}^{(k)} \in C^{1}(\bar{\Omega})$ and
\[

A_{k}=\left(a_{i j}^{(k)}\right)_{n \times n} \in \mathbb{R}^{n \times n}, \quad A=\left($$
\begin{array}{ccc}
A_{1} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & A_{m}
\end{array}
$$\right) \in \mathbb{R}^{n m \times n m}
\]

It is easy to see that $A_{k}, k=1, \ldots, m$, are symmetric matrices. Thus, A is also symmetric. Moreover, $L_{k}, k=1, \ldots, m$, induce a self-adjoint differential operator in $L^{2}(\Omega)$ with domain $H_{0}^{1}(\Omega) \cap H^{2}(\Omega)$. Let $0<\lambda_{1}^{(k)}<\lambda_{2}^{(k)}<\cdots$ be all different eigenvalues of the eigenvalue problem $-L_{k} \varphi=\lambda \varphi$ in Ω with $\varphi=0$ on $\partial \Omega, k=1, \ldots, m$ (see, e.g., Gilbarg and Trudinger [GT]).

Now, we first introduce the following two lemmas which play an important role in this paper. Their detailed proofs are omitted; the interested readers are referred to [L1, LL, L2, L,

Lemma 1.1 ([L1, $\overline{\mathrm{LL}})$). Let X and Y be two closed subspaces of a real Hilbert space H, and $H=X \oplus Y$. Suppose that $T: H \rightarrow H$ is a C^{1} mapping. If there exist continuous functions $\alpha, \beta:[0, \infty) \rightarrow(0, \infty)$ such that

$$
\begin{align*}
\left\langle T^{\prime}(u) v, v\right\rangle & \leq-\alpha(\|u\|)\|v\|^{2} \tag{1.2}\\
\left\langle T^{\prime}(u) w, w\right\rangle & \geq \beta(\|u\|)\|w\|^{2} \tag{1.3}\\
\left\langle T^{\prime}(u) v, w\right\rangle & =\left\langle v, T^{\prime}(u) w\right\rangle \tag{1.4}
\end{align*}
$$

for all $u \in H, v \in X, w \in Y$, and

$$
\begin{equation*}
\int_{1}^{\infty} \min \{\alpha(s), \beta(s)\} d s=\infty \tag{1.5}
\end{equation*}
$$

then T is a diffeomorphism from H onto H.
Lemma 1.2 ([L2, $\mathbb{L}])$. Let H be a vector space such that $H=Z \oplus Y$ for some subspaces Y and Z. If Z is finite-dimensional and X is a subspace of H such that $X \cap Y=\{0\}$ and $\operatorname{dim} X=\operatorname{dim} Z$, then $H=X \oplus Y$.
2. Existence of unique solution. To show the existence of a unique solution to equation (1.1), we assume throughout this section that the following condition holds.
(C) $\partial g(x, u) / \partial u$ is symmetric and there exist continuous functions $\alpha, \beta:[0, \infty) \rightarrow(0, \infty)$ and constant symmetric $m \times m$ matrices B_{1} and B_{2} such that

$$
\begin{equation*}
B_{1}+\alpha(\|u\|) I \leq \frac{\partial g(x, u)}{\partial u} \leq B_{2}-\beta(\|u\|) I \tag{2.1}
\end{equation*}
$$

on $\mathbb{R}^{n} \times \mathbb{R}^{m}$ and the eigenvalues of B_{1} and B_{2} are $\lambda_{N_{k}}^{(k)}$ and $\lambda_{N_{k}+1}^{(k)}$, $k=1, \ldots, m$, respectively. Here $\lambda_{N_{k}}^{(k)}$ and $\lambda_{N_{k}+1}^{(k)}$ are two consecutive eigenvalues of $-L_{k} \varphi=\lambda \varphi$ in Ω with $\varphi=0$ on $\partial \Omega, k=1, \ldots, m$. Moreover

$$
\begin{equation*}
\int_{1}^{\infty} \min \{\alpha(s), \beta(s)\} d s=\infty \tag{2.2}
\end{equation*}
$$

For convenience, we introduce the following notations:
If $f, g \in L^{2}(\Omega)$, let

$$
\begin{aligned}
B[\phi, \psi] & =\int_{\Omega} \sum_{k=1}^{m} \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j}^{(k)} \frac{\partial \phi_{k}}{\partial x_{i}} \frac{\partial \psi_{k}}{\partial x_{j}} d x=\int_{\Omega} \sum_{k=1}^{m} \nabla \phi_{k}^{T} A_{k} \nabla \psi_{k} d x \\
\langle f, g\rangle_{0} & =\int_{\Omega} f^{T} g d x, \quad\|f\|_{0}^{2}=\int_{\Omega} f^{T} f d x \\
\langle u, v\rangle & =\int_{\Omega}\left[u^{T}(x) v(x)+\sum_{k=1}^{m} \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j}^{(k)} \frac{\partial u_{k}}{\partial x_{i}} \frac{\partial v_{k}}{\partial x_{j}}\right] d x \\
\|u\|^{2} & =\int_{\Omega}\left[u^{T}(x) u(x)+\sum_{k=1}^{m} \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j}^{(k)} \frac{\partial u_{k}}{\partial x_{i}} \frac{\partial u_{k}}{\partial x_{j}}\right] d x .
\end{aligned}
$$

By (1.1), we have

$$
\begin{equation*}
B[u, v]-\langle g(x, u), v\rangle_{0}=-\langle h(x), v\rangle_{0}, \quad \forall v \in H_{0}^{1}(\Omega) \tag{2.3}
\end{equation*}
$$

Main Theorem 2.1. If $g(x, u)$ satisfies condition (C) for all $u \in \mathbb{R}^{m}$, $x \in \mathbb{R}^{n}$, then there exists a unique generalized solution to equation (1.1) for every $h \in L^{2}(\Omega)$.

Proof. By the Riesz representation theorem and the above assumptions, we can define a mapping $T(u): H_{0}^{1}(\Omega) \rightarrow H_{0}^{1}(\Omega)$ as follows:

$$
\begin{equation*}
\langle T(u), v\rangle=B[u, v]-\langle g(x, u), v\rangle_{0} . \tag{2.4}
\end{equation*}
$$

Obviously, $T(u)$ is continuously differentiable for all $u \in H_{0}^{1}(\Omega)$ and

$$
\begin{equation*}
\left\langle T^{\prime}(u) w, v\right\rangle=B[w, v]-\int_{\Omega} v^{T}(x) \frac{\partial g(x, u)}{\partial u} w(x) d x \tag{2.5}
\end{equation*}
$$

Invoking the Riesz representation theorem again, there exists a function $d \in H_{0}^{1}(\Omega)$ such that

$$
\begin{equation*}
\langle d, v\rangle=-\int_{\Omega} v^{T}(x) h(x) d x \tag{2.6}
\end{equation*}
$$

By (2.3), we just need to prove that there exists a unique u satisfying

$$
\begin{equation*}
T(u)=d \tag{2.7}
\end{equation*}
$$

We assume that $e_{1}, e_{2}, \ldots, e_{m}$ are eigenvectors corresponding to the eigenvalues $\lambda_{N_{1}}^{(1)}, \lambda_{N_{2}}^{(2)}, \ldots, \lambda_{N_{m}}^{(m)}$ of B_{1}, and $\xi_{1}, \xi_{2}, \ldots, \xi_{m}$ are eigenvectors corresponding to the eigenvalues $\lambda_{N_{1}+1}^{(1)}, \lambda_{N_{2}+1}^{(2)}, \ldots, \lambda_{N_{m}+1}^{(m)}$ of B_{2}, with $\left\|e_{i}\right\|_{0}=1$ and $\left\|\xi_{i}\right\|_{0}=1$ for all $i=1, \ldots, m$. And let $\tau_{i 1}^{(k)}(x), \tau_{i 2}^{(k)}(x), \ldots, \tau_{i l_{i}}^{(k)}(x)$ be eigenfunctions of the problem $-L_{k} \varphi=\lambda_{i}^{(k)} \varphi, x \in \Omega$, and $\left.\varphi\right|_{\partial \Omega}=0$.

Let

$$
\begin{aligned}
& X=\left\{v \in H_{0}^{1}(\Omega) \mid v=\sum_{k=1}^{m} b_{k}(x) e_{k}, b_{k}(x)=\sum_{i=1}^{N_{k}} \sum_{j=1}^{l_{i}} p_{i j}^{(k)} \tau_{i j}^{(k)}(x)\right\} \\
& Y=\left\{w \in H_{0}^{1}(\Omega) \mid w=\sum_{k=1}^{m} r_{k}(x) \xi_{k}, r_{k}(x)=\sum_{i=N_{k}+1}^{\infty} \sum_{j=1}^{l_{i}} q_{i j}^{(k)} \tau_{i j}^{(k)}(x)\right\}, \\
& Z=\left\{z \in H_{0}^{1}(\Omega) \mid z=\sum_{k=1}^{m} s_{k}(x) \xi_{k}, s_{k}(x)=\sum_{i=1}^{N_{k}} \sum_{j=1}^{l_{i}} q_{i j}^{(k)} \tau_{i j}^{(k)}(x)\right\}
\end{aligned}
$$

where $N_{i}, i=1, \ldots, m$, are as in condition (C) and $p_{i j}^{(k)}, q_{i j}^{(k)}$ are constants. Obviously, $H_{0}^{1}(\Omega)=Z \oplus Y$.

For all $v \in X$ and $u \in H$, we have

$$
\begin{align*}
& \left\langle T^{\prime}(u) v, v\right\rangle=B[v, v]-\int_{\Omega} v^{T}(x) \frac{\partial g(x, u)}{\partial u} v(x) d x \tag{2.8}\\
& =\int_{\Omega} \sum_{k=1}^{m} \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j}^{(k)} \frac{\partial v_{k}}{\partial x_{i}} \frac{\partial v_{k}}{\partial x_{j}} d x-\int_{\Omega} v^{T}(x) \frac{\partial g(x, u)}{\partial u} v(x) d x \\
& \leq \int_{\Omega}\langle-L v, v\rangle_{0} d x-\int_{\Omega} v^{T}(x)\left(B_{1}+\alpha(\|u\|) I\right) v(x) d x \\
& =\int_{\Omega}\langle-L v, v\rangle_{0} d x-\int_{\Omega} v^{T}(x) B_{1} v(x) d x-\alpha(\|u\|)\|v\|_{0}^{2} \\
& \leq \sum_{k=1}^{m} \lambda_{N_{k}}^{(k)} \int_{\Omega} b_{k}^{2}(x) d x-\int_{\Omega} \sum_{i=1}^{m} \sum_{j=1}^{m} b_{i}(x) b_{j}(x) e_{i}^{T} B_{1} e_{j} d x-\alpha(\|u\|)\|v\|_{0}^{2} \\
& \leq-\alpha(\|u\|)\|v\|_{0}^{2} .
\end{align*}
$$

Since

$$
\begin{align*}
\|v\|^{2} & =\|v\|_{0}^{2}+B[v, v]=\|v\|_{0}^{2}-\langle L v, v\rangle_{0} \tag{2.9}\\
& \leq\|v\|_{0}^{2}+\sum_{k=1}^{m} \lambda_{N_{k}}^{(k)} b_{k}^{2}(x)\left\langle e_{k}, e_{k}\right\rangle_{0} \leq(1+M)\|v\|_{0}^{2}
\end{align*}
$$

where $M=\max \left\{\lambda_{N_{k}}^{(k)}: k=1, \ldots, m\right\}$, we have

$$
\begin{equation*}
\left\langle T^{\prime}(u) v, v\right\rangle \leq-\frac{\alpha(\|u\|)}{M+1}\|v\|^{2} \tag{2.10}
\end{equation*}
$$

Similarly, denoting $N=\max \left\{\lambda_{N_{k}+1}^{(k)}: k=1, \ldots, m\right\}$, we have

$$
\begin{equation*}
\left\langle T^{\prime}(u) w, w\right\rangle \geq \frac{\beta(\|u\|)}{N+1}\|w\|^{2}, \quad \forall w \in Y, \forall u \in H \tag{2.11}
\end{equation*}
$$

By the symmetry of B, it is easy to see that

$$
\begin{equation*}
\left\langle T^{\prime}(u) v, w\right\rangle=\left\langle v, T^{\prime}(u) w\right\rangle \tag{2.12}
\end{equation*}
$$

Let $\alpha_{1}(s)=\frac{\alpha(s)}{M+1}$ and $\beta_{1}(s)=\frac{\beta(s)}{N+1}$; then

$$
\begin{equation*}
\delta(s)=\min \left\{\alpha_{1}(s), \beta_{1}(s)\right\} \geq \frac{\min \{\alpha(s), \beta(s)\}}{N+1} \tag{2.13}
\end{equation*}
$$

By (2.2), it is easy to see that

$$
\begin{equation*}
\int_{1}^{\infty} \delta(s) d s=\infty \tag{2.14}
\end{equation*}
$$

Obviously, $X \cap Y=\{0\}$ and $\operatorname{dim} X=\operatorname{dim} Z=\sum_{k=1}^{m} \sum_{i=1}^{N_{k}} l_{i}$. From $H=Z \oplus Y$ and Lemma 1.2, we get $H=X \oplus Y$. Thus, $T(u)$ is a diffeomorphism from $H_{0}^{1}(\Omega)$ onto itself by Lemma 1.1. Therefore, there exists a unique u satisfying $T(u)=d$, that is, u is the unique generalized solution to (1.1).
3. An example. Consider the following coupled partial differential equations:

$$
\left\{\begin{align*}
2 \frac{\partial^{2} u_{1}}{\partial x^{2}}+\frac{\partial^{2} u_{1}}{\partial y^{2}}+\frac{5}{2} u_{1}+3 \sin ^{2} \gamma(x, y) u_{1} & -\frac{1}{2} u_{2} \tag{3.1}\\
+\frac{1}{2} \ln \left(u_{1}+u_{2}+\sqrt{1+\left(u_{1}+u_{2}\right)^{2}}\right) & =h_{1}(x, y) \\
\frac{\partial^{2} u_{2}}{\partial x^{2}}+\frac{\partial^{2} u_{2}}{\partial y^{2}}+\frac{5}{2} u_{2}+2 \cos ^{2} \gamma(x, y) u_{2} & -\frac{1}{2} u_{1} \\
+\frac{1}{2} \ln \left(u_{1}+u_{2}+\sqrt{1+\left(u_{1}+u_{2}\right)^{2}}\right) & =h_{2}(x, y)
\end{align*}\right.
$$

for $(x, y) \in \Omega=[0, \pi] \times[0, \pi] \subseteq \mathbb{R}^{2}$, and $u(x, y)=\left(u_{1}(x, y), u_{2}(x, y)\right) \in \mathbb{R}^{2}$, with boundary conditions $u(0, y)=u(\pi, y)=u(x, 0)=u(x, \pi)=u(0,0)=$ $0, h_{1}, h_{2} \in L^{2}(\Omega)$. Since

$$
\begin{aligned}
& \frac{\partial g(x, u)}{\partial u}= \\
& \left(\begin{array}{cc}
\frac{5}{2}+3 \sin ^{2} \gamma+\frac{1}{2 \sqrt{1+\left(u_{1}+u_{2}\right)^{2}}} & -\frac{1}{2}+\frac{1}{2 \sqrt{1+\left(u_{1}+u_{2}\right)^{2}}} \\
-\frac{1}{2}+\frac{1}{2 \sqrt{1+\left(u_{1}+u_{2}\right)^{2}}} & \frac{5}{2}+2 \cos ^{2} \gamma+\frac{1}{2 \sqrt{1+\left(u_{1}+u_{2}\right)^{2}}}
\end{array}\right)
\end{aligned}
$$

we have $\gamma=\gamma(x, y)$. It is easy to see that

$$
\begin{aligned}
& \left(\begin{array}{cc}
\frac{5}{2} & -\frac{1}{2} \\
-\frac{1}{2} & \frac{5}{2}
\end{array}\right)+\left(\begin{array}{cc}
\frac{1}{2 \sqrt{1+\left(u_{1}+u_{2}\right)^{2}}} & \frac{1}{2} \\
0 & 2 \sqrt{1+\left(u_{1}+u_{2}\right)^{2}}
\end{array}\right) \\
& \leq \frac{\partial g(x, u)}{\partial u} \leq \\
& \left(\begin{array}{cc}
6 & 0 \\
0 & 5
\end{array}\right)-\left(\begin{array}{cc}
\frac{1}{2}-\frac{1}{2 \sqrt{1+\left(u_{1}+u_{2}\right)^{2}}} & \frac{1}{2}-\frac{1}{2 \sqrt{1+\left(u_{1}+u_{2}\right)^{2}}}
\end{array}\right)
\end{aligned}
$$

Here, the set of all eigenvalues of L_{1} under the given boundary conditions is $C_{1}=\left\{2 m^{2}+n^{2}: n\right.$ and m are natural numbers $\}=\{3,6,9,11,12,17, \ldots\}$, and the set of all eigenvalues of L_{2} under the given boundary conditions is $C_{2}=\left\{m^{2}+n^{2}: n\right.$ and m are natural numbers $\}=\{2,5,8,10,13,17, \ldots\}$.
The eigenvalues of B_{1} are 3 and 2 , and the eigenvalues of B_{2} are 6 and 5 . Obviously, the integral is divergent, $\int_{0}^{\infty} d s / \sqrt{1+s^{2}}=\infty$. If $\alpha(s)=\frac{1}{2} \sqrt{1+s^{2}}$ and $\beta(s)=\frac{1}{2}\left(1-1 / \sqrt{1+s^{2}}\right)$, then the conditions of Theorem 2.1 are satisfied. Thus, there exists a unique generalized solution to equation (3.1) for arbitrary $h_{1}(x, y), h_{2}(x, y) \in L^{2}(\Omega)$.

REmark. It should be highlighted that the existence of a unique generalized solution to our system cannot be deduced from the previously known results [AP, BF, HN, INW, IN, LS].

Acknowledgements. This research was partly supported by Fund of Oceanic Telemetry Engineering and Technology Research Center, State Oceanic Administration (grant no. 2012003), and NSFC (61101208, 61002048).

References

[AP] A. Ambrosetti and G. Prodi, A Primer in Nonlinear Analysis, Cambridge Stud. Adv. Math. 34, Cambridge Univ. Press, New York, 1993.
[BF] H. Berestycki and D. G. de Figueiredo, Double resonance in semilinear elliptic problems, Comm. Partial Differential Equations 6 (1981), 91-120.
[GT] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer, New York, 1983.
[HN] P. Habets and M. N. Nkashama, On periodic solutions of nonlinear second order vector differential equations, Proc. Roy. Soc. Edinburgh Sect. A 104 (1986), 107126.
[IN] R. Iannacci and M. N. Nkashama, Nonlinear elliptic partial differential equations at resonance: higher eigenvalues, Nonlinear Anal. 25 (1995), 455-471.
[[INW] R. Iannacci, M. N. Nkashama and J. R. Ward, Nonlinear second order elliptic partial differential equations at resonance, Trans. Amer. Math. Soc. 311 (1989), 711-726.
[L] A. C. Lazer, Application of a lemma on bilinear forms to a problem in nonlinear oscillations, Proc. Amer. Math. Soc. 33 (1972), 89-94.
[L1] W. Li, Periodic solutions for $2 k$ th order ordinary differential equations with resonance, J. Math. Anal. Appl. 259 (2001), 157-167.
[L2] W. Li, An application of a global inversion theorem to an existence and uniqueness theorem for a class of nonlinear systems of differential equations, Nonlinear Anal. 70 (2009), 730-3737.
[LL] W. Li and H. Li, A min-max theorem and its applications to nonconservative systems, Int. J. Math. Math. Sci. 2003, 1101-1110.
[LS] W. Li and Z. Shen, A constructive proof of existence and uniqueness of 2π-periodic solution to Duffing equation, Nonlinear Anal. 42 (2000), 1209-1220.
[QL] T. Qiao and W. Li, Unique existence of generalized solution to high dimensional elliptic PDE with resonance, J. Nanjing Univ. Math. Biquart. 24 (2007), 29-34 (in Chinese).

Tiantian Qiao
College of Science
China University of Petroleum
266580 Qingdao, P.R. China
and
Department of Mathematics
Harbin Institute of Technology
150001 Harbin, P.R. China
E-mail: qtthsnx@@126.com

Weiguo Li
College of Science China University of Petroleum 266580 Qingdao, P.R. China

Boying Wu
Department of Mathematics
Harbin Institute of Technology
150001 Harbin, P.R. China

Kai Liu

Department of Mathematics
Nanjing University
210093 Nanjing, P.R. China

Received 21.11.2011
and in final form 12.11.2012

[^0]: 2010 Mathematics Subject Classification: Primary 35J47; Secondary 35J61.
 Key words and phrases: PDE, resonance, existence, unique, elliptic system.

