ANNALES
POLONICI MATHEMATICI
110.1 (2014)

On the attractors of Feigenbaum maps

by GUIFENG HUANG and LipoNG WANG (Dalian)

Abstract. A solution of the Feigenbaum functional equation is called a Feigenbaum
map. We investigate the likely limit set (i.e. the maximal attractor in the sense of Milnor)
of a non-unimodal Feigenbaum map, prove that it is a minimal set that attracts almost
all points, and then estimate its Hausdorff dimension. Finally, for every s € (0,1), we con-
struct a non-unimodal Feigenbaum map with a likely limit set whose Hausdorff dimension
is s.

1. Introduction. In order to explain the famous phenomenon of quan-
titative universality of approaching chaos via period doubling bifurcation,
Mitchell J. Feigenbaum [E2] introduced in 1978 the Feigenbaum functional
equation g?(—Ar) +Ag(z) = 0. This attracted many scholars, and a lot of
research on the existence and dynamical properties of solutions of this equa-
tion was undertaken. In [HWL], we discussed the dynamical properties of a
class of unimodal Feigenbaum maps, estimated the Hausdorff dimension of
the likely limit set (the maximal attractor in the sense of Milnor) for a uni-
modal Feigenbaum map, and proved that for every s € (0,1), there always
exists a unimodal Feigenbaum map such that the Hausdorff dimension of the
likely limit set is s. We also discussed the kneading sequences of unimodal
Feigenbaum maps.

In this article, we study a class of non-unimodal Feigenbaum maps sim-
ilar to [HWL], show that their likely limit sets are minimal sets, and then
consider the Hausdorff dimension of the likely limit set. We prove that for
every s € (0,1) there exists a non-unimodal Feigenbaum map with likely
limit set whose Hausdorff dimension is exactly s.

The main results are Theorems 3.1 and 3.3.
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2. Basic definitions and preparations. X is always a compact metric
space. Let x € X and A C X. Define the distance between x and A by

p(x,A) = inf{p(z,a) : a € A}.
If AC X and ¢ > 0, define the e-neighbourhood of A by
A ={zx € X : p(z,A) < e}.

Let B be the class of non-empty closed bounded subsets of X. Define the

Hausdorff metric d on B by
d(A, B) = sup{p(a,B),p(b,A) :a € A, b € B}.

|E| denotes the diameter of a subset of X, i.e., |E| = sup{p(z,y) :
z,y € E}.

If EC|J;U; and 0 < |U;| < 0 for each i, we say that {U;} is a 0-cover
of E.

Let £ C X and 0 < s < oco. For § > 0, define

MH3(E) =inf Y _|U]°,
=1

where the infimum is over all (countable) d-covers {U;} of E.
The Hausdorff s-dimensional outer measure of E is defined by

H(E) = lim Hi(E).
(E) = Jim #3(E)
Then there is a unique value, dim F, called the Hausdorff dimension of E,
such that
H(E)=o00 if0<s<dimFE, H(E)=0 ifdimF <s < oo.

A mapping ¥ : R® — R" is called a contraction if there exists ¢ < 1 such
that |¢(z) — ¥ (y)| < c|z —y| for all z,y € R™. We call the infimum of such
c the ratio of the contraction.

We call a set E C R" invariant for a set of contractions 1, ..., ¥, if

E=Ju(B).
j=1

We will use the following lemmas.

LeEMMA 2.1 (see [H]). Let ¢1,...,¢pm be contractions on R™ with con-
traction ratios r; < 1. Then there exists a unique non-empty compact set £
such that

E=¢(E) =] wi(B).
i=1

Further, if F is any non-empty compact subset of R™, the iterates o (F)
converge to E in the Hausdorff metric as k — oo.
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LEMMA 2.2 (see [E1]). Let {¢;}" be contractions on R for which the
open set condition holds, i.e., there is an open interval V such that

(1) (V) =UZ; pi(V) CV,
(2) e1(V),...,om(V) are pairwise disjoint.

Moreover, suppose that for each i, there exist q;,r; such that

gilz —yl < |pi(x) —i(y)| < rilz —y|
forallz,y € V. Then s < dim E < t, where s and t are defined by Y i~ ¢; =
L=
DEFINITION 2.3. Let M be a compact manifold (possibly with bound-
ary), and f a continuous map of M into itself. The likely limit set A = A(f)

of f is the smallest closed subset of M with w(x, f) C A for Lebesgue almost
every © € M (w(z, f) denotes the w-limit set of  under f).

As described in [M], the likely limit set always exists and it is the unique
maximal attractor which contains all the others (in the sense of Milnor).

Let I = [0,1]. A set E C I is called a minimal set of f if E # () and
w(x, f) = E for any z € E. As is well known, the minimal set is a non-empty,
closed and invariant subset of f, and it has no proper subset with these three
properties (see [BC]). Therefore, if E is a minimal set with w(z, f) C E for
almost all z € I, then E = A(f).

In 1978, Mitchell J. Feigenbaum [F2] put forward the Feigenbaum func-
tional equation

o) {3 = it
g(0)=1, —-1<g(z)<1, =zel[-11],

where A € (0,1) is to be determined.

In 1985, L. Yang and J. Z. Zhang [YZ] proposed another Feigenbaum
type functional equation,
{ FA(Ax) = Af(x),
where A € (0,1) is to be determined.

There is a close link between solutions of these two types of equations.

(2.2)

LEMMA 2.4.

(1) If g(x) is a non-unimodal solution of (2.1), then f(x) = |g(z)| (z €
[0,1]) is a non-unimodal solution of (2.2).

(2) If f(x) is a non-unimodal solution of (2.2), then there is p € (0,1)
such that f(p) = 0 is the minimum value, and g(z) = (sgn(p —
|z)) f(|z|) is @ non-unimodal solution of (2.1).
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DEFINITION 2.5. A continuous solution of (2.2) is said to be a non-
unimodal Feigenbaum map if f][A,l] is univallecular (i.e., there exists u €
(A, 1) such that f|y ) strictly decreases and f|}, 1) strictly increases), but f
is non-univallecular.

Non-unimodal Feigenbaum maps have the following properties.

LEMMA 2.6 (see [L]). Let f: I — I be a non-unimodal Feigenbaum map.
Then
(1) f(1) = A2 (N =A%
(2) If p is the minimum point of f on [\, 1], then
(a) f(x) =0z =p,
(b) f(A) > p,
(¢) f(x) = Az has only one solution x =1 on [u,1].
Conversely, if a continuous univallecular map fo : [\, 1] — I satisfies (1)

and (2), then it can be uniquely extended to a non-unimodal Feigenbaum
map on I.

3. Main theorems and their proofs. In this section, we investigate
attractors of non-unimodal Feigenbaum maps. We have

MAIN THEOREM 3.1. Let f be a non-unimodal Feigenbaum map. If f'(z)
< =1 for x € [\, ul, and f'(z) > 1 for x € [u,1] (considering the left or
right derivative at the end points), where A, are as above, then there exists
a set of contractions such that its invariant set is the likely limit set and a
minimal set of f.

Proof. By Lemma 2.6, f([0,A]) = [u, 1]. To show that f([u,1]) = [0, A],
it is enough to show that p is the minimum value of f on [0, A]. We know

fx)=p & fA2)=0 & M@/ =0 & z/]A=p & ==
Combining f(0) = 1 > p with f(A) > pu, we infer that f(y) > u for every
y € [0, A] except y = Ap. This shows that Au is the minimum point and p is
the minimum value of f on [0, A].

Define 1,2 : I — I by setting ¢1(z) = Az, vo(z) = [p, 1] N fF~1(A\z)
for any z € I. It is easy to see that ¢1, o are both contractions. Since

()01(<07 1)) = (07 /\) - (07 1)7 802((0, 1)) = (:U’a 1) - (07 1)7
and (0,A) N (u,1) = 0, it follows that ¢ = @1 U po satisfies the open set

condition. By Lemma 2.1, there exists a unique non-empty compact set £
such that

E=¢(E) = p1(E)Upa(E).

For simplicity, we write ¢;,..;, for ¢;, o---0¢;, .
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We will get £ = A(f) by showing that E is a minimal set which attracts
almost all points. To this end, we need the following three claims; the proofs
are similar to those in [HWL].

Cram 1. For any x € I, fop1(z) = p20 f(x) and f o pa(z) = p1(z).
CLAM 2. For any k > 0, o*(I) = Uz?l,...,i;;l iy (1) s a forward
invariant set of f, i.e. f(*(I)) C *(I).

CLAM 3. For any subsets ¢;,..;, (I) and ¢j,..;, (I), there is n > 0 such
that

fn O Piq-iy, (I) = Pj1-jr (I)
We will show that (1) and (2) below hold.
(1) For almost allx € I, w(x, f) C E.

It is obvious that f has a unique fixed point e € (A, u) on I. Since
f?(Ax) = Af(z) implies 72 (Xez) = M f(x), it follows that A\Fe is a fixed
point of f2k. Let

A= JoWre, 1),
k=0
where O(M¥e, f) denotes the orbit of A¥e under f. Then A is a countable
set. Let

B=]J (4.
=0

Because f~1(z) has at most two points for every z € I, and A is count-
able it follows that B is countable. In particular, B has Lebesgue measure
Zero.

Let z € I — B. If x € (), then fN1(z) € p(I) for Ny = 0. If = & o(I),
then x € (A, ). Obviously, x # e. As f'(y) < —1 for every y € [\, u|, there
must be some N; > 0 such that fV(z) € [\, p], so fN1(x) € ¢(I). Thus
there is always N1 > 0 such that fN1(z) € ¢(I).

Suppose that, for k = p, there is N,, > 0 such that fVr(x) € pP(I). It is
easy to see that f?(x) belongs to some ¢;,...;,(I). By Claim 3, there exists
[ > N, such that

f1(@) € pria(l) = [0, A7),
fYz) # MPe implies APfl(z) # e, so there is Ny > 0 such that
N (AP flY(x)) € p(I). By (2.2), we have
I z) = PP () = P 0 i (AP ()
— i1 0 AP FU)) € prrn 0 olI) © P,
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By induction on k, for every k > 1, there is Ny > 0 such that
() € (D).
Moreover, by Claim 2, for every n > N,
fi(x) € (1)
As ©*(I) = E, f*(x) — E. Since E is compact, it is a closed set. Therefore,
w(z, f) C E.
(2) E is a minimal set of f.

It is easy to see that the contraction ratio of ¢ is A, and the one of
(02 is not more than ), thus the ratio of ¢, ..;, is not more than A\¥. When
k — o0, |@i;...i;, (I)| uniformly converges to zero for i, € {1,2}, r=1,... k.
Let x € I. For every y € E and every open set V' containing y, there exists
some @j,...j, (1) C V. As o(I) C I, we have "™ (I) = ¢ o p(I) C ¢'(I) for
any ¢ > 0. Hence, it is not difficult to prove that

(3.1) E={(¢'W).
=0

Since = € E implies = € ¥(I), it follows that = belongs to some ;, ...i, ().
By Claim 3, there is n > 0 such that

fM(@) € [ (@iri (1) = @jrgp (1) C V-
This shows y € w(x, f). Therefore,

(3.2) E Cw(z, f).
By (3.1) and Claim 2, f(E) C E. Moreover, E is a closed set, so
(3.3) w(z, f) C E.

By (3.2) and (3.3), we obtain w(x, f) = E. Because x is arbitrary, E is
a minimal set of f.

If we combine (1) with (2), we see that E = A(f). =

COROLLARY 3.2. If f is a non-unimodal Feigenbaum map as in Theorem
3.1, then

s <dimA(f) <t,
where

A° (1 + inf f’(x)>_s =1= )\t(l + sup f’(x)>_t

z€lu,1] x€p,1]

and dim(-) denotes Hausdorff dimension.
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Proof. By Theorem 3.1 and Lemma 2.2, we have
Pila) =X @h(x) = Aff,(p2(2) ™
So s < dim A(f) < t, where
. / s . / S
(3.4) (infl¢}(@)]) + (inf b))
t t
=1=(supl|pi(z)]) + (sup|ph(z)]) .
(sl (@) + (su b))

Then (3.4) becomes

S 3 !/ -5 _ _ 1\t !/ —t
A (1 + it f (m)) — 1= (1 +$§[E>”f (:c)) .

MAIN THEOREM 3.3. For every s € (0,1), there always exists a non-
unimodal Feigenbaum map f such that dim A(f) = s.

Proof. For any 0 < s < 1, let
A=e %5 =1- )\
Since In2/s > In2 implies e™2/% > 2. it follows that A < < 1 and A < 1/2.

Now let fo : [\, 1] — I be defined by fo() = 0, fo(1) = A, fo(A) =
1 — X+ A2, and fy be linear on [\, u] and [u, 1].

By Lemma 2.4, fy can be uniquely extended to a continuous non-uni-
vallecular solution of (2.2), denoted by f. A simple calculation gives f'(z)=1
forz € [p, 1] and f/(z) = (1-A+A2)/(2A—1) = —1+(A+A2)/(2A—1) < —1
for x € [\, p]. By Corollary 3.2, we get dim A(f) = s. m
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