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On uniqueness of algebroid functions with shared values in
some angular domains

by Nan Wu and Zu Xing Xuan (Beijing)

Abstract. We investigate the uniqueness of transcendental algebroid functions with
shared values in some angular domains instead of the whole complex plane C. We obtain
two theorems which are counterparts of results for meromorphic functions obtained by
Zheng.

1. Introduction and main results. We assume that the readers are
familiar with the standard notations and fundamental results of Nevanlinna
theory in the unit disk ∆ = {z : |z| < 1} and in the complex plane C
(see [2, 16]). An a ∈ Ĉ is called an IM (ignoring multiplicities) shared value
in X ⊆ C of two ν-valued algebroid functions f(z) and g(z) if f(z) = a if
and only if g(z) = a in X. He [3] proved that f(z) ≡ g(z) if two ν-valued
algebroid functions f(z) and g(z) have 4ν + 1 distinct IM shared values in
X = C.

Zheng [22] was the first to consider the uniqueness of meromorphic func-
tions with shared values in a proper subset of C. After Zheng’s work, many
researchers have investigated the uniqueness of meromorphic functions in
angular domains: Lin, Mori and Tohge [5], Lin, Mori and Yi [6], Liu and
Sun [7], Mao and Liu [9]. In 2010, Liu and Sun [8] studied the uniqueness
of algebroid functions in an angular domain.

In this paper, we consider the uniqueness of ν-valued algebroid functions
with shared values in q angular domains. Our results extend some uniqueness
theorems of [22] for meromorphic functions to algebroid functions.

Before stating the results, we give some notations and definitions. Let
w = w(z) be the ν-valued algebroid function defined by an irreducible equa-
tion

(1.1) F (z, w) := A0(z)w
ν +A1(z)w

ν−1 + · · ·+Aν(z) = 0,
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where Aν(z), . . . , A0(z) are analytic functions without any common zeros.

Let ~A = (A0, . . . , Aν) and ~∞ = (1, 0, . . . , 0). For any a ∈ C, denote ~a =
(aν , aν−1, . . . , 1). Then

‖ ~A(z)‖ = (|A0|2 + |A1|2 + · · ·+ |Aν |2)1/2,

‖~a‖ =

{
(|a|2ν + |a|2ν−2 + · · ·+ |a|2 + 1)1/2, a 6=∞,
1, a =∞.

Since F (z, w) is irreducible, we have F (z, a) = ~A(z)·~a 6≡ 0, where F (z,∞) =
A0(z). Set

log+ x = max{0, log x}.
Define

m(r,~a, ~A) =
1

2π

2π�

0

log
‖ ~A(reiθ)‖ ‖~a‖
|F (reiθ, a)|

dθ,

N(r,~a, ~A) = N(r, 0, F (z, a))

=

r�

0

n(t, 0, F (z, a))− n(0, 0, F (z, a))

t
dt+ n(0, 0, F (z, a)) log r,

T (r,~a, ~A) = m(r,~a, ~A) +N(r,~a, ~A),

where n(t, 0, F (z, a)) is the number of roots of the equation F (z, a) = 0
in the disk {z : |z| ≤ t}, counting multiplicities. Throughout, n(t, a, w(z))
denotes the number of roots of w(z) = a in the disk {z : |z| ≤ t}, counting
multiplicities. Following G. Valiron, we define the characteristic function of
w(z) as

T (r, w) =
1

2νπ

2π�

0

log max
0≤j≤ν

|Aj(reiθ)| dθ.

By Yang’s result [15], we get the relation between T (r, w) and T (r,~a, ~A):

|T (r,~a, ~A)− νT (r, w)| = O(1).

The counting function of roots of w(z)− a is defined as

N(r, a, w) =
1

ν
N(r, 0, F (z, a)).

Put

δ(a,w) = 1− lim sup
r→∞

N(r, a, w)

T (r, w)
= 1− lim sup

r→∞

N(r, 0, F (z, a))

T (r,~a, ~A)
.

The value a is called a Nevanlinna deficient value of w if δ(a,w) > 0. The
order and lower order of w(z) are defined as

λ(w) := lim sup
r→∞

log T (r, w)

log r
, µ(w) := lim inf

r→∞

log T (r, w)

log r
.
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Give a subset Y ⊂ C, let n(r, Y, w = a) denote the number of roots of
w(z) − a in Y ∩ {z : |z| ≤ r}, counting multiplicities. Define the counting
function of a-points of w(z) in Y as

N(r, Y, w = a) =
1

ν

r�

0

n(t, Y, w = a)

t
dt.

We consider q pairs {αj , βj} of real numbers satisfying

(1.2) − π ≤ α1 < β1 ≤ · · · ≤ αq < βq ≤ π,
and define ω = max1≤i≤q{π/(βi − αi)}.

Now we state our results.

Theorem 1.1. Let f(z) and g(z) be ν-valued transcendental algebroid
functions and let f(z) be of finite lower order µ and such that for some

a ∈ Ĉ, δ = δ(a, f) > 0. For q pairs {αj , βj} of real numbers satisfying (1.2)
and

(1.3) 0 <

q∑
i=1

(αi+1 − βi) <
4

σ
arcsin

√
δ/2, αq+1 = π + α1,

where σ = max{ω, µ}, assume that f(z) and g(z) have 4ν + 1 distinct IM
shared values in X =

⋃q
j=1{z : αj ≤ arg z ≤ βj}. If ω < λ(f), then f(z) ≡

g(z).

If we remove the condition µ(f) <∞ in Theorem 1.1, then we have the
following theorem.

Theorem 1.2. Let f(z) and g(z) be ν-valued algebroid functions such

that for some a ∈ Ĉ, δ = δ(a, f) > 0. Assume that for q rays arg z = αj
(1 ≤ j ≤ q) satisfying

−π ≤ α1 < · · · < αq < π, αq+1 = α1 + 2π,

f(z) and g(z) have 4ν + 1 distinct IM shared values in X = C\
⋃q
j=1{z :

arg z = αj}. If

(1.4) max

{
π

αj+1 − αj
: 1 ≤ j ≤ q

}
< λ(f),

then f(z) ≡ g(z).

Remark 1.3. We mention that the total linear measure of flare angles
of angular domains X =

⋃q
j=1{z : αj ≤ arg z ≤ βj} in Theorem 1.1 is less

than 2π under the condition (1.3). This indicates that the uniqueness of
algebroid functions we study in this paper is different from the case of C.

2. Lemmas. The following result was proved in [20] for a meromorphic
function.
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Lemma 2.1. Let f(z) be an algebroid function in C of finite lower order
0 ≤ µ <∞ and order 0 < λ ≤ ∞. Then for any positive number β satisfying
µ ≤ β ≤ λ and any set E of finite logarithmic measure, i.e.,

	
E t
−1 dt <∞,

there exists a sequence {rn} of positive numbers such that

(1) rn /∈ E, limn→∞ rn/n =∞;
(2) lim infn→∞ log T (rn, f)/ log rn ≥ β;
(3) T (t, f) < (1 + o(1))(2t/rn)βT (rn/2, f), t ∈ [rn/n, nrn];

(4) T (t, f)/tβ−εn ≤ 2β+1T (rn, f)/rβ−εnn , 1 ≤ t ≤ nrn, εn = [log n]−2.

Since the characteristic function T (r, f) of an algebroid function f(z) is
also a non-decreasing, positive and continuous function defined in (0,∞), we
can derive Lemma 2.1 directly from [20]. A sequence {rn} satisfying (1)–(4)
in Lemma 2.1 is called a sequence of Pólya peaks of order β outside E. For
r > 0 and a ∈ Ĉ, define

E(r, a) =

{
θ : log+

‖ ~A(reiθ)‖ ‖~a‖
|F (reiθ, a)|

>
1

log r
T (r, f)

}
.

The following result is a special version of the main result of Krytov [4]
and Yang [15].

Lemma 2.2 ([4, 15]). Let f(z) be a ν-valued algebroid function in C
of finite lower order µ and order 0 < λ ≤ ∞ and for some a ∈ Ĉ, δ =
δ(a, f) > 0. Then for any sequence {rn} of Pólya peaks of order σ > 0,
where µ ≤ σ ≤ λ, we have

(2.1) lim inf
n→∞

measE(rn, a) ≥ min{2π, (4/σ) arcsin
√
δ/2},

where meas denotes Lebesgue measure.

Lemma 2.2 was proved in [4, 15] for Pólya peaks of order µ. By the same
argument, one can derive it for Pólya peaks of order σ with µ ≤ σ ≤ λ.

Lemma 2.3. Let f(z) be the ν-valued algebroid function determined by
(1.1) in the complex plane. Assume that X ⊂ C is an open simply connected
domain in C, and u = u(z) is a conformal mapping from X onto the unit
disk. Then f(z(u)) is a ν-valued algebroid function defined in the unit disk.

Lemma 2.3 was proved by the first author [12, 11]. For completeness, we
repeat the proof.

Proof. It is obvious that f(z(u)) is an algebroid function determined by
the equation

F (z(u), w) :=A0(z(u))wν +A1(z(u))wν−1 + · · ·+Aν(z(u)) = 0.

The fact that Ai(z) (i = 0, . . . , ν) are entire functions implies that
A0(z(u)), . . . , Aν(z(u)) are analytic functions. As A0(z), . . . , Aν(z) have
no common zeros, A0(z(u)), . . . , Aν(z(u)) have no common zeros either:
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if u = u0 were a common zero, then z(u0) would be a common zero
of A0(z), . . . , Aν(z). Since F (z, w) is irreducible, so is F (z(u), w), because
if F (z(u), w) = F1(u,w)F2(u,w), then F (z, w) = F1(u(z), w)F2(u(z), w),
a contradiction.

Lemma 2.4 ([17]). The transformation

(2.2) ζ(z) =
(ze−iθ0)π/(β−α) − 1

(ze−iθ0)π/(β−α) + 1
(θ0 = (α+ β)/2)

maps the angle X = {z : α < arg z < β} (0 ≤ α < β ≤ 2π, 0 < β − α ≤ 2π)
conformally onto the unit disk {ζ : |ζ| < 1}, and maps z = eiθ0 to ζ = 0.
Under the transformation (2.2), the image of Xε(r) = {z : 1 ≤ |z| ≤ r, α+ε
≤ arg z ≤ β − ε} (0 < ε < (β − α)/2) is contained in the disk {ζ : |ζ| ≤ h},
where

h = 1− ε

β − α
r−π/(β−α).

On the other hand, the inverse image of the disk {ζ : |ζ| ≤ t} (t < 1) in the
z-plane is contained in X ∩ {z : |z| ≤ ρ}, where

ρ =

(
2

1− t

)(β−α)/π
.

Moreover, for |ζ| ≤ h, we have

β − α
π

(
1− h

2

)(β−α)/π
≤ |z′(ζ)| ≤ β − α

π

(
2

1− h

)1+(β−α)/π
,

where z(ζ) is the inverse of transformation (2.2).

Lemma 2.5 ([10]). Let f(z) be a ν-valued algebroid function in the unit

disk and let ai ∈ Ĉ (i = 1, . . . , q) be q (> 2ν) distinct complex numbers.
Then

(q − 2ν)T (r, f) ≤
q∑
i=1

N(r, ai, f) +O
(
log(1− r)−1 + log T (r, f)

)
except for r in a set F ⊂ (0, 1) with

	
F dr/(1− r) <∞.

Lemma 2.5 is usually called the second fundamental theorem for alge-
broid functions in the unit disk.

By using the Poisson–Jensen formula for meromorphic functions, the
first author [11, 12] established an estimate of the logarithmic module

log+ ‖
~A(z)‖ ‖~a‖
|F (z,a)| . Applying the Boutroux–Cartan Theorem, we will modify

that result. The proof is essentially the same and it is included here only for
completeness.
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Lemma 2.6. Let f(ξ) be the ν-valued algebroid function determined by
(1.1) in the unit disk. Then, for any z = reiθ /∈ (γ), 0 < r < R < 1, we have

(2.3) log+
‖ ~A(z)‖ ‖~a‖
|F (z, a)|

≤ log+(ν + 1)1/2 +
4 + 2 log(2R/h)

R− r
(νT (R, f) +O(1)),

where (γ) denotes several disks, the total sum of whose diameters does not
exceed 4eh.

Proof. For any z = reiθ, 0 < r < R < 1, there exists an integer 0 ≤ k =
kz ≤ ν such that

max
0≤l≤ν

|Al(z)| = |Ak(z)|.

Then

(2.4) log+
‖ ~A(z)‖ ‖~a‖
|F (z, a)|

≤ log+
(ν + 1)1/2|Ak(z)| ‖~a‖

|F (z, a)|

≤ log+(ν + 1)1/2 + log+
|Ak(z)| ‖~a‖
|F (z, a)|

= log+(ν + 1)1/2 + log+
∣∣∣∣ Ak(z)F (z, a)

‖~a‖
∣∣∣∣.

Notice that Ak(ξ) and F (ξ, a) are entire functions, and ‖~a‖ is a constant
number, so

Ak(ξ)‖~a‖
F (ξ, a)

is a meromorphic function. Set R̃ = (r+R)/2. We apply the Poisson–Jensen
formula to the meromorphic function Ak(ξ)‖~a‖/F (ξ, a) to get

log+
∣∣∣∣Ak(z)‖~a‖F (z, a)

∣∣∣∣ ≤ 1

2π

2π�

0

log+
∣∣∣∣Ak(R̃eiφ)‖~a‖
F (R̃eiφ, a)

∣∣∣∣ R̃2 − r2

R̃2 − 2R̃r cos(θ − φ) + r2
dφ

+
M∑
t=1

log

∣∣∣∣ R̃2 − btz
R̃(z − bt)

∣∣∣∣.
Using the inequality R̃2−r2

R̃2−2Rr cos(θ−φ)+r2
≤ R̃+r

R̃−r
, we obtain

log+
∣∣∣∣Ak(z)‖~a‖F (z, a)

∣∣∣∣ ≤ 1

2π

R̃+ r

R̃− r

2π�

0

log+
∣∣∣∣Ak(R̃eiφ)‖~a‖
F (R̃eiφ, a)

∣∣∣∣ dφ+

M∑
t=1

log

∣∣∣∣ 2R̃

z − bt

∣∣∣∣
=

1

2π

R̃+ r

R̃− r

2π�

0

log+
|Ak(R̃eiφ)| ‖~a‖
|F (R̃eiφ, a)|

dφ+

M∑
t=1

log

∣∣∣∣ 2R̃

z − bt

∣∣∣∣.
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In view of |Ak(R̃eiφ)| ≤ ‖ ~A(R̃eiφ)‖, we have

(2.5) log+
∣∣∣∣Ak(z)‖~a‖F (z, a)

∣∣∣∣ ≤ R̃+ r

R̃− r
m(R̃,~a, ~A) +

M∑
t=1

log

∣∣∣∣ 2R̃

z − bt

∣∣∣∣.
According to the Boutroux–Cartan Theorem, for z /∈ (γ), we deduce that

M∑
t=1

log

∣∣∣∣ 2R̃

z − bt

∣∣∣∣ = log
(2R̃)M∏M
t=1 |z − bt|

≤M log

(
2R̃

h

)
.

By the definition of N(R, 0, F (z, a)), we derive that

n(R̃, a, f) ≤ N(R, 0, F (z, a))

logR− log R̃
≤ N(R, 0, F (z, a))R

R− R̃
=

2R

R− r
N(R,~a, ~A).

Therefore, for z /∈ (γ),

(2.6) log+
‖ ~A(z)‖ ‖~a‖
|F (z, a)|

≤ log+(ν + 1)1/2 +
2(R+ r)

R− r
m(R,~a, ~A) +

2R log(2R/h)

R− r
N(R,~a, ~A)

≤ log+(ν + 1)1/2 +
4

R− r
m(R,~a, ~A) +

2 log(2R/h)

R− r
N(R,~a, ~A)

≤ log+(ν + 1)1/2 +
4 + 2 log(2R/h)

R− r
(νT (R, f) +O(1)).

In order to prove Theorem 1.1, we need the following result, which is the
main lemma in this paper.

Lemma 2.7. Let f(z) be the ν-valued algebroid function of finite lower
order µ <∞ in C determined by (1.1), and let g(z) be a ν-valued algebroid
function. Assume that f(z) and g(z) have 4ν + 1 distinct IM shared values
in X = {z : α < arg z < β} (0 ≤ α < β ≤ 2π, 0 < β − α ≤ 2π) and
f(z) 6≡ g(z). If for any ε satisfying 0 < ε < (β − α)/10, there exists a set
Ω ⊂ (α, β) such that meas(Ω ∩ (α+ ε, β − ε)) = κ > 0, then there exists at
least one point φ ∈ Ω ∩ (α+ ε, β − ε) such that for all r off a set E of finite
logarithmic measure, we have

(2.7) log+
‖ ~A(reiφ)‖ ‖~a‖
|F (reiφ, a)|

= O(rω log2 r), ω =
π

β − α
.

Proof. Let aj ∈ Ĉ (j = 1, . . . , 4ν + 1) be 4ν + 1 distinct IM shared
values in X of f(z) and g(z). By Lemmas 2.3 and 2.4, f(z(ζ)), g(z(ζ)) are
ν-valued algebroid functions in the unit disk, where z(ζ) is the inverse of the

transformation in (2.2), and aj ∈ Ĉ (j = 1, . . . , 4ν+1) are 4ν+1 distinct IM
shared values of f(z(ζ)) and g(z(ζ)) in the unit disk. By applying Lemma 2.5
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to f(z(ζ)), we have

(2ν + 1)T (h, f(z(ζ))) ≤
4ν+1∑
j=1

N(h, aj , f(z(ζ))) +R(h, f(z(ζ)))

≤ N
(
h,

1

f(z(ζ))− g(z(ζ))

)
+R(h, f(z(ζ)))

≤ T
(
h, f(z(ζ))− g(z(ζ))

)
+R(h, f(z(ζ)))

≤ T (h, f(z(ζ))) + T (h, g(z(ζ))) +R(h, f(z(ζ))),

where R(h, ∗) = log(1− h)−1 + log T (h, ∗), h /∈ F, and F is a set such that	
F dh/(1− h) <∞, so that

(2.8) 2νT (h, f(z(ζ)))−R(h, f(z(ζ))) ≤ T (h, g(z(ζ))).

This implies that R(h, f(z(ζ))) = R(h, g(z(ζ))). We also have the same
formula (2.8) with f(z(ζ)) and g(z(ζ)) interchanged, and combining the
two formulas, we obtain

2νT (h, g(z(ζ)))−R(h, g(z(ζ))) ≤ T (h, f(z(ζ)))

≤ T (h, g(z(ζ))) +R(h, g(z(ζ))).

Hence

(2.9) T (h, f(z(ζ))) = O

(
log

1

1− h

)
, h /∈ F,

where F is the set described in Lemma 2.5 satisfying
	
F dh/(1 − h) < ∞.

Set

(2.10) E =

{
r : h = 1− ε

4(β − α)
r−ω, h ∈ F

}
,

where ε > 0 is small enough. Put

ζ = ζ(reiφ) (α+ ε ≤ φ ≤ β − ε),

h = 1− ε

(β − α)
r−ω,

h′ = 1− ε

4(β − α)
r−ω /∈ F,

(2.11)

where ζ = ζ(z) is the mapping described in Lemma 2.4. Combining (2.10)
with (2.11), we can see that if h′ /∈ F , then r /∈ E and E is a set of finite
logarithmic measure, because

�

E

dr

r
=

1

ω

�

F

dh

1− h
<∞.

Next we apply (2.3) to estimate the logarithmic module:

log+
‖ ~A(reiφ)‖ ‖~a‖
|F (reiφ, a)|

= log+
‖ ~A(z(ζ))‖ ‖~a‖
|F (z(ζ), a)|

.
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We now adapt a line of reasoning used by Zhang and Wu [13, 17, 18, 19].
According to Lemma 2.4, X is mapped onto the unit disk {|ζ| < 1} and

z = ei(α+β)/2 is mapped to ζ = 0. The image of Xε(r) = {z : 1 ≤ |z| ≤ r,
α+ε ≤ arg z ≤ β−ε} in the ζ-plane must be contained in the disk {|ζ| < h},
where

h = 1− ε

β − α
r−π/(β−α).

On the other hand, the inverse image of the disk |ζ| ≤ (h + 1)/2 in the
z-plane is contained in X ∩ {|z| ≤ r1}, where

r1 =

(
4(β − α)

ε

)(β−α)/π
r.

In addition, for |ζ| ≤ (h+ 1)/2,

(2.12)
β − α
π

(
ε

4(β − α)

)(β−α)/π 1

r
≤ |z′(ζ)|

≤ β − α
π

(
4(β − α)

ε

)1+(β−α)/π
r1+π/(β−α).

The transformation

(2.13) ξ = ξ(ζ) =
2

1 + h
ζ

maps the disks |ζ| ≤ (1 + h)/2 and |ζ| ≤ h to the unit disk |ξ| ≤ 1 and the
disk |ξ| ≤ τ , respectively, where

(2.14) τ = 2h/(1 + h).

Let ζ(ξ) be the inverse of the mapping in (2.13). Then according to (2.12),
we have 1/2 ≤ |ζ ′(ξ)| ≤ 1. If z(ξ) = z(ζ(ξ)), we have, for |ξ| ≤ 1,

(2.15)
β − α

2π

(
ε

4(β − α)

)(β−α)/π 1

r
≤ |z′(ξ)|

≤ β − α
π

(
4(β − α)

ε

)1+(β−α)/π
r1+π/(β−α).

Evidently the image Γξ(α, β, r) in the ξ-plane of the circular arc Γ (α, β, r)
in the z-plane under the mappings (2.2) and (2.13) is orthogonal to the
circle |ξ| = 2/(1 + h), while the image arc in the ξ-plane of the circular arc
Γ (α+ ε, β − ε, r) in the z-plane is contained in the disk {|ξ| ≤ τ}. Putting

ξ0 =
2

1 + h
ζ(rei(α+β)/2),

we obtain ξ0 ∈ Γξ(α+ ε, β − ε, r). The linear transformation

(2.16) x = x(ξ) =
ξ − ξ0
1− ξ0ξ
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maps Γξ(α, β, r) to a straight line segment Γx(α, β, r) passing through the
origin x = 0. On the other hand, the inverse of (2.16) is expressed as
ξ = ξ(x). When |x| < 1,

1− ξ0
2
≤ |ξ′(x)| ≤ 2

1− ξ0
.

Letting ε > 0 be small enough, we have

1− ξ0 ≥ r−π/(β−α).
Writing z(x) = z(ζ(ξ(x))), and combining the above with (2.15), when
|x| < 1, we have

(2.17)
β − α

2π

(
ε

4(β − α)

)(β−α)/π(1

r

)1+π/(β−α)
≤ |z′(x)|

≤ 2(β − α)

π

(
4(β − α)

ε

)1+(β−α)/π
r1+2π/(β−α).

We define a set Ez(r) in the z-plane as

Ez(r) = {reiϕ : ϕ ∈ Ω ∩ (α+ ε, β − ε)}.
Let Eξ(r) and Ex(r) be the images of Ez(r) in the ξ-plane and the x-plane,
respectively. Evidently, Eξ(r) ⊂ Γξ(α+ ε, β− ε, r), Ex(r) ⊂ Γx(α, β, r), and
it follows that

κr ≤
�

Ez(r)

|dz| =
�

Ex(r)

|z′(x)| |dx|

≤ 2(β − α)

π

(
4(β − α)

ε

)1+(β−α)/π
r1+2π/(β−α) measEx(r)

and

(2.18) measEx(r) ≥ κπ

2(β − α)

(
ε

4(β − α)

)1+(β−α)/π
r−2π/(β−α).

Let G(ξ) = f(z(ζ(ξ))). Then G(ξ) is a ν-valued algebroid function in {ξ :
|ξ| ≤ 1}. Let (γ)ξ be the non-Euclidean exceptional disks with regard to
the n(1, a,G) points and the number H, and let (γ)x be their images in the
x-plane. We take

H =
1

8e

κπ

2(β − α)

(
ε

4(β − α)

)1+(β−α)/π
r−2π/(β−α).

The sum of the non-Euclidean radii is less than or equal to 2eH. Since a non-
Euclidean disk is also a Euclidean disk, with its non-Euclidean radius larger
than or equal to its Euclidean radius, and since Γx(α, β, r) is a segment, it
follows from (2.18) that there is a point x1 ∈ Ex(r) \ (γ)x. If ξ1 is the image
of x1, then ξ1 ∈ Eξ(r) \ (γ)ξ. Let (γ)ζ be the inverse image of (γ)ξ in the
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ζ-plane, and let ζ1 be the inverse image of ξ1. Then ζ1 ∈ Eζ(r)\(γ)ζ , where
Eζ(r) is the image of Ez(r) and (γ)ζ are the non-Euclidean exceptional
circles with regard to the n

(
(1 +h)/2, a, f(z(ζ))

)
points and the number H.

Let z1 = z(ζ1) be the inverse image of ζ1 in the z-plane. Then z1 ∈ Ez(r).
For R = (3 + h)/4, r = h and ζ1 ∈ Eζ(r) \ (γ)ζ , Lemma 2.6 gives

(2.19) log+
‖ ~A(z1)‖ ‖~a‖
|F (z1, a)|

= log+
‖ ~A(z(ζ1))‖ ‖~a‖
|F (z(ζ1), a)|

≤ log+(ν + 1)1/2 +
4 + 2 log(2/H)

R− r
(νT (R, f(z(ζ))) +O(1)).

For r /∈ E, we infer from (2.11) that h′ = (h + 3)/4 /∈ F . Then combining
(2.9) with (2.19), we have

(2.20) log+
‖ ~A(z1)‖ ‖~a‖
|F (z1, a)|

≤ log+(ν + 1)1/2 +
4ν

1− h
O

(
log

4

1− h

)[
4 + 2 log

2

H

]
.

Noticing that h = 1− ε
β−αr

−ω and applying the expression on H, we have

log+
‖ ~A(z1)‖ ‖~a‖
|F (z1, a)|

≤ log+(ν + 1)1/2 +O(rω log2 r).

Thus (2.7) follows from the existence of φ, which is deduced from the fact
that z1 ∈ Ez(r).

The following lemma is crucial to Theorem 1.2, as it is a generalization of
Edrei [1]. The proof has been given by the first author [11]; for completeness
we repeat it here.

Lemma 2.8. Let f(z) be the ν-valued algebroid function determined by

(1.1) with δ = δ(a, f) > 0 for some a ∈ Ĉ. Then, given ε > 0, we have

measE(r, a) >
1

T ε(r, f)[log r]1+ε
, r /∈ F,

where

E(r, a) =

{
θ ∈ [−π, π) : log+

‖ ~A(reiθ)‖ ‖~a‖
|F (reiθ, a)|

>
δ

4
T (r, f)

}
,

and F is a set of positive real numbers of finite logarithmic measure depend-
ing on ε.

Proof. Let {bt} be the sequence of roots of f(z) = a, and also the se-
quence of roots of F (z, a) = 0 (we assume that {|bt|} is non-decreasing and
that the multiplicities of roots have been taken into account by suitable
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repetitions of elements). Let

It := (|bt| − 1/t2, |bt|+ 1/t2).

If r > 0 and r /∈
⋃∞
t=1 It, then combining (2.4) with (2.5), we have (r < R)

(2.21) log+
‖ ~A(reiθ)‖ ‖~a‖
|F (reiθ, a)|

≤ log+(ν + 1)1/2 +
R+ r

R− r
m(R,~a, ~A)

+ n(R)[log 2R+ 2 log n(R)],

where n(R) denotes the number of roots of F (z, a) = 0 in |z| ≤ R. Setting
R′ −R = R− r, we deduce

N(R′, 0, F (z, a))−N(R, 0, F (z, a)) =

R′�

R

n(t)

t
dt >

n(R)

R′
R′ − r

2
.

Substituting the above into (2.21), we derive

log+
‖ ~A(reiθ)‖ ‖~a‖
|F (reiθ, a)|

≤ log+(ν + 1)1/2 +
4νR′

R′ − r
T (R′, f)

+
2R′N(R′, 0, F (z, a))

R′ − r

[
log 2R′ + 2 log

(
2R′

R′ − r
N(R′, 0, F (z, a))

)]
≤ log+(ν + 1)1/2

+
4νR′

R′ − r
T (R′, f)

[(
1 +

3

2
log 2

)
+

1

2
logR′ +

R′

R′ − r
+ log T (R′, f)

]
.

If r is large enough, say larger than some r0, we obtain

(2.22) log+
‖ ~A(reiθ)‖ ‖~a‖
|F (reiθ, a)|

≤ A
(

R′

R′ − r

)2

(logR′)T (R′, f) log T (R′, f),

where A is a positive constant depending on ν, for r > r0, r /∈
⋃
It. For

r > r0, the function

V (r) = [T (r, f) log T (r, f)] log r

is positive, continuous and non-decreasing to infinity. Hence, for any η > 0,
according to Borel’s lemma, we have

V

(
r

(
1 +

1

log V (r)

))
< V 1+η(r),

except possibly for values of r > r0 which belong to an exceptional set E(η)
of finite logarithmic measure. Taking, in (2.22),

R′ = r

(
1 +

1

log V (r)

)
,
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we obtain

(2.23) log+
‖ ~A(reiθ)‖ ‖~a‖
|F (reiθ, a)|

≤ V 1+2η(r)

provided r is sufficiently large and r /∈ E(η) ∪
⋃
t It. It is easy to see that

the set E(η) ∪
⋃
t It is of finite logarithmic measure. For r /∈ E(η) ∪

⋃
t It,

consider the set

E =

{
θ ∈ [−π, π) : log+

‖ ~A(reiθ)‖ ‖~a‖
|F (reiθ, a)|

>
1

2
m(r,~a, ~A)

}
.

Then

2πm(r,~a, ~A) ≤
�

E

log+
‖ ~A(reiθ)‖ ‖~a‖
|F (reiθ, a)|

dθ + 2π
m(r,~a, ~A)

2
,

πm(r,~a, ~A) < V 1+2η(r) measE.

If r is sufficiently large, we have

m(r,~a, ~A) >
δ

2
T (r,~a, ~A) =

νδ

2
T (r, f) +O(1) >

δ

2
T (r, f),

E ⊂ E(r, a).

Therefore,

measE(r, a) >
δπ/2T (r, f)

T 1+2η(r, f)[log T (r, f)]1+2η log1+2η r
.

Taking η = ε/3, we obtain the result.

3. Proof of Theorem 1.1. The idea of the proof comes from [21, 22].
Suppose the theorem is not true, i.e. λ(f) > ω. We consider the following
two cases.

I. λ(f) > σ ≥ µ(f). By (2.9), we can choose ε > 0 such that

(3.1)

q∑
i=1

(αi+1 − βi + 2ε) + 2ε <
4

σ + 2ε
arcsin

√
δ/2,

where αq+1 = 2π+α1, and λ(f) > σ+2ε > µ. Lemma 2.1 gives the existence
of a sequence {rn} /∈ E of Pólya peaks of order σ + 2ε for f(z), where E is
the set of Lemma 2.7. Then by Lemma 2.2, for sufficiently large n, we have

(3.2) measE(rn, a) >
4

σ + 2ε
arcsin

√
δ/2− ε,

since σ + 2ε > 1/2. We can assume (3.2) holds for all n. Put

K := meas
(
E(rn, a) ∩

q⋃
i=1

(αi + ε, βi − ε)
)
.
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From (3.1) and (3.2), it follows that

K ≥ measE(rn, a)−meas
(

[−π, π) \
q⋃
i=1

(αi + ε, βi − ε)
)

= measE(rn, a)−meas
( q⋃
i=1

(βi − ε, αi+1 + ε)
)

= measE(rn, a)−
q∑
i=1

(αi+1 − βi + 2ε) > ε > 0.

It is easy to see that there exists i0 such that for infinitely many n, we have

(3.3) meas
(
E(rn, a) ∩ (αi0 + ε, βi0 − ε)

)
> K/q > ε/q.

We can assume (3.3) holds for all n. Set En = E(rn, a) ∩ (αi0 + ε, βi0 − ε).
By the definition of E(rn, a), it follows that

(3.4) log+
‖ ~A(rne

iθ)‖ ‖~a‖
|F (rneiθ, a)|

>
T (rn, f)

log rn
, ∀θ ∈ En.

On the other hand, by (2.7), there exists a θ ∈ En such that

(3.5) log+
‖ ~A(rne

iθ)‖ ‖~a‖
|F (rneiθ, a)|

= O(r
ωi0
n log2 rn), ωi0 =

π

βi0 − αi0
.

Combining (3.4) with (3.5), we have

T (rn, f) ≤ O(r
ωi0
n log3 rn)

Thus from (2) of Lemma 2.1 for σ + 2ε, we obtain

σ + 2ε ≤ lim sup
n→∞

log T (rn, f)

log rn
≤ ωi0 ≤ σ + ε.

This is impossible.

II. λ(f) = µ(f). Then σ = µ = λ(f). By the same argument as in I,
with σ + 2ε replaced by σ = µ everywhere, we can derive

max{ω, µ} = σ ≤ ω < λ(f).

This is impossible.

Therefore, Theorem 1.1 follows.

4. Proof of Theorem 1.2. Applying Lemma 2.8 to f(z) implies the
existence of a sequence {rn} of positive numbers such that rn → ∞ and
rn /∈ E ∪ F and

(4.1) measE(rn, a) ≥ 1

T ε(rn, f)[log rn]1+ε
,
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where E is the set of Lemma 2.7, and F the set of Lemma 2.8. Put

εn =
1

2q + 1

1

T ε(rn, f)[log rn]1+ε
.

Then it follows from (4.1) that

meas
(
E(rn, a) ∩

q⋃
i=1

(αi + εn, αi+1 − εn)
)

≥ measE(rn, a)−meas
( q⋃
i=1

(αi + εn, αi+1 − εn)
)

≥ (2q + 1)εn − 2qεn = εn > 0.

Thus there exists a j such that for infinitely many n, we have

(4.2) measEn > εn/q,

where En = E(rn, a)∩ (αj + εn, αj+1− εn). We can assume that (4.2) holds
for all n. Thus it follows from the definition of E(r, a) that

(4.3) log+
‖ ~A(rne

iθ)‖ ‖~a‖
|F (rneiθ, a)|

>
δ

4
T (rn, f), ∀θ ∈ En.

On the other hand, as in Lemma 2.7, for each j, there exists a point φ ∈ En
such that

(4.4) log+
‖ ~A(rne

iφ)‖ ‖~a‖
|F (rneiφ, a)|

= O(r
ωj
n log2 rn).

Combining (4.3) with (4.4) gives

δ

4
T (rn, f) < O(r

ωj
n log2 rn).

Thus µ(f) ≤ ωj <∞, and Theorem 1.2 follows from Theorem 1.1.

5. Conclusion. Corresponding to the uniqueness theorems established
for meromorphic functions with shared values in an angular domain [23, 14],
we can establish their counterparts for algebroid functions with shared values
in angular domains. For example, using the methods of Zheng [23, 14] and
of this paper, we can prove the following

Theorem 5.1. Let f(z), g(z) and a be as in Theorem 1.1. For q pairs
{αj , βj} of real numbers satisfying (1.2) and (1.3), assume that f(z) and
g(z) have 4ν distinct IM shared values ai 6= a (i = 1, . . . , 2ν) in X =⋃q
j=1{z : αj ≤ arg z ≤ βj}. If ω < λ(f), then f(z) ≡ g(z).

We can also establish a result similar to Theorem 5.1 corresponding to
Theorem 1.2. Finally, we point out that it would be of interest to investigate
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the uniqueness of algebroid functions with shared values in an unbounded
proper subset of the complex plane.
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