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An improved Chen—Ricci inequality
for special slant submanifolds in Kenmotsu space forms

by SIMONA COSTACHE and IULIANA ZAMFIR (Bucuresti)

Abstract. B.Y. Chen [Arch. Math. (Basel) 74 (2000), 154-160] proved a geometrical
inequality for Lagrangian submanifolds in complex space forms in terms of the Ricci curva-
ture and the squared mean curvature. Recently, this Chen—Ricci inequality was improved
in [Int. Electron. J. Geom. 2 (2009), 39-45].

On the other hand, K. Arslan et al. [Int. J. Math. Math. Sci. 29 (2002), 719-726]
established a Chen—Ricci inequality for submanifolds, in particular in contact slant sub-
manifolds, in Kenmotsu space forms.

In this article, we improve the latter inequality for special slant submanifolds in Ken-
motsu space forms. We also investigate the equality case.

1. Preliminaries. S. Tanno [I3] has classified, into three classes, the
connected almost contact Riemannian manifolds whose automorphism group
has maximum dimension:

1. homogeneous normal contact Riemannian manifolds with constant ¢-
holomorphic sectional curvature;

2. global Riemannian products of a line or circle and a Kaehlerian space
form;

3. warped product spaces L Xy F', where L is a line and F' a Kaehlerian
manifold.

K. Kenmotsu [7] studied the third class and characterized it by tensor
equations. Below, such a manifold is called a Kenmotsu manifold.

More precisely, a (2m + 1)-dimensional Riemannian manifold (M, g) is
said to be a Kenmotsu manifold if it admits an endomorphism ¢ of its
tangent bundle T'M, a vector field & and a 1-form 7, which satisfy:
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¢*=-ld+n®¢ nE)=1, ¢€=0, no¢=0,
9(¢X,9Y) = g(X,Y) —n(X)n(Y), n(X)=g(X,§),
(V)Y = —g(X, V)& = n(Y)$X,
Vxé =X —n(X),
for any vector fields X, Y on M , Where V denotes the Riemannian connection
with respect to g (see also [12], [14]). .

We denote by w the fundamental 2-form of M, i.e. w(X,Y) = g(¢X,Y)

for all X,Y € I'(TM). It is known that the pairing (w,n) defines a locally
conformal cosymplectic structure, i.e.

(1.2) dw=2wAn, dn=0.

(1.1)

A Kenmotsu manifold with constant ¢-holomorphic sectional curvature c is
called a Kenmotsu space form. Then its curvature tensor field R is expressed
by [7]
(1.3)  4R(X,Y)Z = (c—3){g(Y,2)X — g(X,Z)Y}

e+ D{n(X)n(Z)Y — n(V)n(Z)X + g(X, Zyn(Y)

— (¥, 2)(X)E + w(Y, Z)6X — w(X, Z)8Y — 2(X,Y)$Z}.

By analogy with submanifolds in a Kaehler manifold, various classes of sub-
manifolds in a Kenmotsu manifold have been considered (see, for example,
91, [10]).

The notion of a slant submanifold in a Hermitian manifold was intro-
duced by B. Y. Chen [2]. The corresponding notion in an almost contact
Riemannian manifold was defined by A. Lotta [§].

A submanifold M isometrically immersed in an almost contact Rieman-
nian manifold M is said to be a contact slant submanifold if the angle 6(X)
between ¢X and T,M is a constant ¢, for any point p € M and any vector
X € T, M linearly independent of . The angle 6 of a contact slant immersion
is called the slant angle of the immersion.

Invariant and anti-invariant submanifolds are particular cases of contact
slant submanifolds (with # = 0 and 6 = 7/2, respectively).

A contact slant submanifold which is neither invariant nor anti-invariant
is called a proper contact slant submanifold.

A proper contact slant submanifold of a Kenmotsu manifold is said to
be a special contact slant submanifold if

(VxT)Y = (cos? 0)[-n(Y)TX + g(Y, TX )]

for any vector fields X, Y tangent to M, where T X is the tangential com-
ponent of pX.

We remark that any 3-dimensional proper contact slant submanifold of
a Kenmotsu manifold is a special contact slant submanifold.
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2. Chen—Ricci inequality. In [3], B. Y. Chen established a sharp re-
lationship between the Ricci curvature Ric and the squared mean curvature
|H||? for any n-dimensional submanifold M of a real space form M/(c) of
constant sectional curvature c; namely,

2
Ric(X) < (n — e+ ||,

which is known as the Chen—Ricci inequality. The same inequality holds
for Lagrangian submanifolds in a complex space form M (4c) (see []). As a
general reference for such inequalities we mention [5].

K. Arslan et al. [I] proved a similar inequality for submanifolds of Ken-
motsu space forms (see also [11]).

THEOREM 2.1. Let M(c) be a (2m + 1)-dimensional Kenmotsu space
form and M an n-dimensional submanifold, tangent to &. Then:

(i) for any unit vector X € T,M, orthogonal to &,
Ric(X) < 1{(n— 1)(c — 3) + LEITX|? = 2)(c+ 1) + n?|[H|]?},

where T'X 1is the tangential component of ¢p.X ;

(ii) if H(p) = 0, then a unit vector X € T,M orthogonal to & yields
equality in the inequality above if and only if X € N, (the kernel of
the second fundamental form);

(iii) equality holds for all unit tangent vectors orthogonal to & at p if and
only if p is a totally geodesic point.

In particular, if M is a contact slant submanifold, one has
Ric(X) < ${(n—1)(c — 3) + 3(3cos® 0 — 2)(c + 1) + n*|| H|]*}.

The Chen—Ricci inequality was further improved by S. Deng [6] for La-
grangian submanifolds in complex space forms:

THEOREM 2.2. Let M be a Lagrangian submanifold of dimension n > 2
in a complex space form M (4c) of constant holomorphic sectional curvature
4c and X a unit tangent vector in T,M, p € M. Then

Ric(X) < (n — 1) (c + ZHH|]2> .

Equality holds for any unit tangent vector at p if and only if either:
(i) p is a totally geodesic point, or
(ii) n =2 and p is an H-umbilical point with A = 3.

Moreover, Lagrangian submanifolds in complex space forms achieving
equality were also determined in [6].
In the proof of the above inequality, S. Deng used the following lemmas.
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LEMMA 2.1. Let fi(x1,...,2,) be the function on R™ defined by

n n
filzy,...,zn) =11 Z:vj - Zx?
Jj=2 Jj=2

If x1 4+ -+ z, = 2na, then
n J—
f1($1, NN ,xn) S an
FEquality holds if and only if %Hxl =Iy=--=2I,=da.

LEMMA 2.2. Let fo(x1,...,xy,) be the function on R™ defined by

1
(xl ++$n)2

n
fo(z1,. ... zn) =21 ij — x%
j=2

If t1 + -+ + x, = 4a, we have
fo(xy, .o xpn) < %(l’l +"'+:En)2.

Equality holds if and only if x1 =a, z2+-- -+ 2, = 3a.

3. An improved Chen—Ricci inequality. In this section we shall
improve the Chen-Ricci inequality from [I] for special slant submanifolds in
a Kenmotsu space form.

DEFINITION. A proper 3-dimensional slant submanifold M in a Ken-
motsu manifold M is called H-umbilical if its second fundamental form h
takes the following form:

h(e1,e1) = AFey1, h(ea,ea) = puFey, h(er,ez) = pFes,
with respect to an orthonormal frame {ey = £, e1,e2}, where F X is the

normal component of ¢.X.
We state the main result of this paper.

THEOREM 3.1. Let M(c) be a (2n + 1)-dimensional Kenmotsu space
form and M an (n + 1)-dimensional special contact 0-slant submanifold.
Then, for any p € M and any unit vector X € T,M orthogonal to &,

(n+1)2%(n—1) (n—l)(c—3)+3(c+ 1)
4dn 4 4

Moreover, equality holds in (3.1) for any p € M and any unit vector X €
T,M orthogonal to & if and only if either

(3.1) Ric(X) < |H|*> -1+ cos? 6.

(i) M is a totally geodesic submanifold, or
(ii) n =2 and M is H-umbilical.

Proof. Let p € M and X € T,M be a unit vector orthogonal to .
We choose an orthonormal basis {eg = &, e1,...,€n,€n41,...,€2,} of
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T, M such that e, el, ...,en are tangent to M at p and X = ey, and e, =
smGFeJ’ j=1.
We denote

h;j:g(h(eivej%en#ﬂ’)a Vi,j,'rzl,...,n.

By using the expression (1.3) of the curvature tensor of a Kenmotsu
space form and the Gauss equation for X = Z = e; and ¥ = W = ¢y,
j=2,...,n, we get

-3  3(c+1 =
“2 M 2 er, ) + S, — (1))

r=1

R(€17€j,€1,€j) =

Summing for j from 2 to n and taking into account that K(e; A &) = —1,
we obtain

Ric(X) = —1+ (n=1(e=3) 3(0I 2 > g (dere;)

1 <
+iiw%4m%
Then o
(32) Ric(X)+1— "= 121(0 =3 _ 3(0 D ey 2
S < S-Sk S0

Since M is a special contact 6-slant submanifold, we have
(VxT)Y = (cos® 0)[-n(Y)TX + g(Y, TX)g],

which implies

hi; —hlm, Vi, j,r = 1,n.

The previous relation becomes
(n—=1)(¢c=3) 3(c+1)
4 4
n

<ZZh Z;h )2 = (h];)?

r=1 j=2 j=2

Ric(X)+1— cos? f

= S5k = S ()2 = D (hl)2
j=2

r=1 j=2 =2
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We denote
f(hllvh%%"'? nn 1Zh Z )
7j=2
f?’(h71017h726277 nn 1Zh]-7 , VT’ZQ,n.

Since (n + 1)H' = hi; + hiy + - + h,m, Lemma 2.1 yields

1 31 1 n—1 e (m+1)%*n-1)
fl(hllah227-”7hnn)— An ((n+1)H) - An

Analogously, by Lemma 2.2, we obtain, for any 2 < r < n,
< (n+1)%(n — 1)

(H")?*.

FoBig W ) < 34 1y < CEERZ D ey

Thus,

Ric(X)+1— (n = 121(6 =3 _ S(CI D cos? 0

(n+ 12 —1) = o _ (R +1D*(n—1) 2
T T D

Therefore,

Ric(X) < (n+1)%2(n—1) IHI2 -1+ (n— 131(0 -3) n 3(c+1) cos2 0,
ie., (3.1).

Next we study the equality case. For n > 3, we choose F'e; parallel to H
and we have H" = 0, for r > 2; from Lemma 2.2, we get

; (n+1)H7 .
hl.:hilzfzo, Vi > 2,
hix =0, Vik>2 j#k.
Lemma 2.1 yields hi; = (n+1)a and h}j =aforall j > 2, witha = (n+2173H1

In (3.2) we computed Ric(X) = Ric(ey). Similarly, by computing Ric(ez)
and using the equality case of (3.1), we get
i=h, =0, Vr#2, #4204
Then we obtain
(n+1)H?

h%l 2 2

The argument is also valid for matrices (h;k) because equality holds for all

unit tangent vectors; so, h%j = héz = W =0 for all j > 3.
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The matrix (h?k) (respectively (h7;)) has only two possible nonzero en-

1 1
tries hiy = h3; = hdy = "D (vespectively A, = A7y = bl = PEDE for

r > 3). Now, by the Gauss equation we obtain
~ HH\?
R(eg,ej,€2,€j) :R(e2vej7€27€j)_ <(n—|_2)> ) VJ > 3.
n

Similarly we get

> +1)H\? +1)HN\?
R(€2,€1,€2,€1):R(€2,€1,€2,€1)—(n+1)<(n 2n) > +<(n ) ) .

After combining the last two relations, we find

Ric(e2) +1—(n — 1)ﬁ — §(c—i— 1)cos? 6 = 2(n — 1)(

(n+1)H"\?
4 4 >

2n
On the other hand, the equality case of (3.1) implies that

c—3 3 2, (m+1)2%(n-1)
1 z(c—kl)cos 0= n

1H*

ot (Y

Since n # 1,2, by equating the last two equations we find H* = 0. Thus,
(hj),) are all zero, i.e., M is a totally geodesic submanifold in M(c). Now,
let us assume that n = 2. If M is not totally geodesic, one has

Ric(e2) +1—(n—1)

h(ei,e1) = Aes,  h(ez,e2) = pes,  h(e1,e2) = peu,
with A = 3u = %Hl, i.e., M is H-umbilical. =

4. An inequality for the scalar curvature. Let M be an (n + 1)-
dimensional special contact slant submanifold of a (2n+1)-dimensional Ken-
motsu space form M (c). For any vector field X tangent to M we write
¢X =TX + FX, where TX and FX are the tangential and normal com-
ponents of ¢X, respectively. An orthonormal basis of T,M, p € M, is

given by {eg = &, e1,...,e,} and an othonormal basis of TpLM is given
by {e},....,es}, with ef =L Fey, k=T1,n.

We denote hfj = g(h(e;,e;j),ex) for i,j =0,n and k =1, n.
For a special contact slant submanifold, hfj = hék = hgk (= h;?i = h};j
= h)) for all i,j, k€ {1,...,n}.
From the Gauss equation it follows that
c—3 c+1

(n+ D2|H|? = 27 + |[A]* = n(n + T BIT]* ~ 2n) 1
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By the definition,

(n+ V2P =3 [ S +2 > hih).
i=1  j=1 1<j<k<n
We derive
c+3 c+1
2r =n(n+1) + 3|7 - 2">T + (n+ 12 H[]* — ||Al?
-3 1
=n(n+1)°2 4 3|72 - 2n)c—£
2D hihip =2 (h5)7 =6 Y (hi)* = Y (hgy)”
i j<k i#£j 1<j<k 7,k=1
If we denote m = z—f%, we get
-3 1
(n+1)%|H|? - m[% —n(n+ 1)CT — 3|7 - 2n)cz }
= Z +(14+2m) Y (B2 +6m Y (B> —2(m—1) Y " hih,
1] 1<j<k 1 j<k
= Z(h;) +6m y ()’ 1) > (G
i 1<j<k i g<k
+[1+2m— (n—2)(m—1)] > (hi;)* —2(m — 1) > hizhi,
i#] i#]
=6m Y (hf)*+(m—1)> Y (h
1<j<k i#£j,k i<k
1 ) i 12
+n_1§[hn‘ (n—1)(m—1)h%]* >0
1#£]

For a contact 6-slant submanifold we have ||T'||? = n cos? 6.

Summing up, we have derived the following.

THEOREM 4.1. Let M be an (n + 1)-dimensional special contact slant
submanifold of a (2n + 1)-dimensional Kenmotsu space form M (c). Then

2(n +2) n(n +2) c—3

L e e § Yo LAl o o R
n(n +2) c+1
—(n_l)(n+1)2(300329—2) T

Equality holds at oll p € M if and only if there exists a real function p on M
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such that the second fundamental form satisfies the relations

h(ei,e1) = 3pey,  h(ez,e2) == h(en, en) = pei,
h(ei,e;) = pej,  hlejex) =0 (2<j#k#n),

with respect to a suitable orthonormal frame {ey = &, e1,...,en} on M,
where e}, = A Fep, ke {l,...,n}.
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