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Definable stratification satisfying
the Whitney property with exponent 1

by BEATA KOCEL-CYNK (Krakéw)

Abstract. We prove that for a finite collection of sets Ay, ..., As C R¥*" definable in
an o-minimal structure there exists a compatible definable stratification such that for any
stratum the fibers of its projection onto R* satisfy the Whitney property with exponent 1.

Introduction. K. Kurdyka proved (in [4]) that for any locally finite
family of subanalytic sets in R™ there exists a subanalytic stratification of R™
compatible with every element of the family and such that all strata satisfy
the Whitney property with exponent 1. The aim of our note is to prove a
version with parameter of the above theorem for an o-minimal structure on

(R7+7 )

THEOREM 1. Let S be an o-minimal structure on (R,+,-) and let
Ay, ..., Ay C RFT™ be definable sets in S. Then there exists a finite definable
stratification of R¥T™ compatible with the sets Ay, ..., Ay and such that for
any stratum @Q of this stratification and any point y € w(Q) the fiber Qy is
(in some coordinate system in R™) a definable cell satisfying the Whitney
property with exponent 1 (and coefficient depending only on n).

In the proofs we shall use properties of the closure of a definable cell and
extensions of definable functions to the boundary.

1. Basic properties of o-minimal structures. In this section we
collect some basic properties of o-minimal structures on (R, +, ), crucial for
further considerations. Let us start with some definitions.

DEFINITION 1 ([2]). A structure S on R consists of a collection S,, of
subsets of R™, for each n € N, such that

(1) S, is a boolean algebra of subsets of R,

2000 Mathematics Subject Classification: 14P15, 32B20.
Key words and phrases: Whitney property, definable sets, o-minimal structure.

[155] © Instytut Matematyczny PAN, 2007



156 B. Kocel-Cynk

(2) S, contains the diagonals {(z1,...,2,) € R" 1 z; =} for 1 <i <
Jj<mn,

(3) if A€ S, then A X R and R x A belong to S41,

(4) if A € 8,11, then 7(A) € S,,, where 7 : R*™! — R™ is the projection
on the first n coordinates.

We say that a set A C R" is definable iff A € S,,. A function f: A — R™
with A C R" is called definable iff its graph is definable.

DEFINITION 2 (|2]). A structure S on R is o-minimal iff

(1) {(z,y): x <y} €Sy and {a} € S; for each a € R,
(2) each set in S is a finite union of intervals (a, b), —oo < a < b < 400,
and points {a}.

A structure on (R,+,-) is a structure on R containing the graphs of both
addition and multiplication.

2. Cell decomposition and stratification

DEFINITION 3 ([1]). Cellsin R™ are definable sets defined in the following
inductive way:

(1) The cells in R! are exactly points and open intervals,
(2) Let C C R™ be a cell and let f, g : C' — R be continuous definable
functions such that f < g on C'. Then
(f,9) =A{(z,r) € CxR: f(z) <r <g(x)}

is a cell in R"*1. Also, given a continuous definable function f : C' —
R on a cell C'in R", the graph

I'if)y={(z,r) e C xR:r=f(x)}
and the sets
{(z,r) e C xR: f(z)<r}, {(z,r) eCxR:r< f(z)},C xR
are cells in R**1,

DEFINITION 4 ([1]). A cell decomposition of R™ is a partition of R™ into
finitely many cells defined in the following inductive way:

(1) A decomposition of R! is a collection of open intervals and points of
the following form:

{(—00,a1), (a1,a2),..., (ag, +00),{ar},...,{ax}}.

(2) A decomposition of R"™! is a finite partition of R"*! into cells A
such that the set of projections m(A) is a decomposition of R™, where
7 : R™1 — R” is the projection on the first n coordinates.
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In a similar way we define a C* cell and C* cell decomposition, by requiring
that the functions in part (2) of Definition 3 are C¥ functions.

PROPOSITION 2 ([2]). Any o-minimal structure S on (R, +,.) admits C
cell decompositions, i.e.:

(1) If Ay,..., Ay C R" are definable sets then there exists a C' cell de-
composition of R™ compatible with A1, ..., Ag.

(2) For each definable function f: A — R with A C R" there exists a cell
decomposition of R™ partitioning A and such that for every C C A
in the decomposition the restriction f|C : C — R is a C' function.

REMARK 3. Every o-minimal structure on (R, +,-) admits C* cell de-

compositions (for any positive integer k), i.e. the above proposition holds
with C! replaced by C*.

DEFINITION 5. We call a definable subset of R” which is a C¥ submani-
fold of R™ a definable C* stratum in R™.

A definable C* stratification of R™ is a finite partition of R into definable

C* strata satisfying the following boundary condition: for any two strata S, T
of the partition, if S N AT # () then S C OT.

DEFINITION 6. A set T definable in an o-minimal structure satisfies the
Whitney property with exponent c (cf. [5]) if there exists a positive constant
C such that any points p and ¢ in 7' can be joined by a definable curve y
with length(y) < Clp —q|*.

3. Angle between linear subspaces

DEFINITION 7. The angle between a linear subspace X and a line P in
R™ is the number

d(P,X) = inf{sin(P,S) : S a line in X'}
where sin(P, S) denotes the sine of the angle between the lines P and S.

The angle between linear subspaces X and Y in R™ is the number
(Y, X) :=sup{d(P,X): Palnein Y}.

If Y =0 we put 6(0,X) =0.

REMARK 4 ([4]).

(1) If dim X =dimY then 0(X,Y) = 4(Y, X).

(2) If dim X < dimY < dim Z then 6(Z, X) < 6(Z,Y) + 8(Y, X).

(3) Let G(k, m) be the Grassmannian of k-dimensional subspaces in R™.

The mapping G(k,m) x G(k,m) > (X,Y) — §(X,Y) € R is contin-

uous and semialgebraic.
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(4) For any o > 0 there exists M > 0 such that if §(P, X') > « for some
linear hyperplane X and a line P then X is the graph of a linear
map ¢ : P+ — P satisfying ||¢|| < M.

LEMMA 5 ([4, Lem. 3|). For any nonnegative integers r,n there exist
g,m > 0 such that for any hyperplanes X1, ..., X, in R™ there exists a line
P such that for any hyperplanes Y1, ...,Y, satisfying 0(X;,Y;) < & we have
0(P,Y;) > m.

4. Closure of a cell. The closure of a definable cell is also definable.
In this section we shall give a description of the closure of a cell. We shall
consider separately cells of graph and band types.

EXAMPLE 6. Consider the following cell of graph type in R3:
Q={(z,y,2):0<z<1,0<y<1,z=ux/y}

The closure Q of Q is not a graph, its fiber over any point from the closure
of the projection of 7(Q) = [0, 1)? different from (0,0) consists of one point,
whereas the fiber over (0,0) is the half-line [0, c0).

We shall show that for any cell of graph type the set of points over which
the fiber of the closure is infinite has small dimension.

LEMMA 7. Let f: @Q — R be a continuous definable function defined on
a cell of dimension d in R™. There is a definable set Z C 0Q of dimension
< d—2 such that f has a continuous extension to Q \ Z.

Proof. Let Z := {x € 0Q : limy_., yeq f(y) does not exist}. To prove
that dim Z < d — 2, assume to the contrary that Z contains a cell W of
dimension d — 1. The boundary of the graph of f has dimension smaller
than d, so the set of points in the closure of () for which the fiber of the closure
of the graph is infinite (i.e. the function has infinitely many accumulation
points) has dimension smaller than d — 1.

Using the cell decomposition we may assume that at any * € Z the
function f has finitely many accumulation points and that the definable
functions limsup,,_,, ,eq f(y) and liminf, ., ,ecq f(y) are continuous on Z.
Fix o € Z and set a = limsup,_,,  ,eo f(¥), b = liminfy, .. eq f(y).
There exist numbers ¢ € (a,b) and e > 0 such that |f(y) — ¢/ > e in a
neighborhood of g in Q. Let Q1 C @ be a cell such that Q; is a neighborhood
of 29 in Q and |f(z) — ¢| > e on Q. This contradicts the connectedness
of Ql. ]

If

Q= {(xw%'n) ER" ' xR:ze€ Q1, f(m) <ITn < g(.%‘)}

is a cell of band type then
@ = QUgraph f Ugraphg U (@ N (9Q1 x R)).
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The cell @ is “bounded from below and above” by cells of graph type,
graph g and graph f, which we shall call the top and bottom decks of (). The
closure @ of @ is bounded by the closures of the top and bottom decks.
In the case of cells of band type with only one deck or without a deck the
closure is described similarly.

LEMMA 8. Under the assumptions of Theorem 1, for any € > 0 there
exists a cell decomposition T of RF x R™ compatible with A1, ..., As and
satisfying the following conditions:

(1) for any cell @ € T such that dim@Q, = n — 1 and any points
(', y"), (2", y") € Q we have
5(Tm’Qy’7Tx”Qy”) <g,
(2) for any cell Q € T such that dimQ, = n for some y € ©(Q) there
exist cells By,...,B, € T (p < 2n) such that dim (B;), = n — 1,
(Bi)y C Q,\ Qy and the set 9Qy, \ U(B:)y is a finite union of cells

of dimension <n — 2.

Proof. We use induction on n.

There exists a cell decomposition of R¥ x R™ compatible with A1, ..., A,
and such that the corresponding decomposition of R*¥ x R®~! satisfies the
assertion of the lemma. Consequently, condition (1) holds for any cell of band
type. For any cell Q C R* x R such that dim @y = n—1and @, is of graph
type consider the map

Q>3 (z,y) — T,Qy € G(n—1,n).
Since this map is definable we can assume, after refining the decomposition
in R¥ x R"~! that condition (1) holds for any cell Q such that dim Q, = n—1
and @, is of graph type.
Fix a cell @ such that @), is an open cell. Clearly @ is of band type, so

Q = {(y,ﬂj’) € Ql xR: f(yvxl)"'amnfl) <ZTp < g(yawlv' "7xn71)}
where @1 is the projection of Q onto RF x R*~1L,

By Lemma 7 there exists a definable subset Z C 9@ such that for any y
we have dim Z, < n — 2 and the functions f(y,-) and g(y, -) extend contin-
uously to (9Q; \ Z),. After refining we may assume that the decomposition
of R* x R"~! is compatible with @1, Q; and Z and satisfies the assertions
of the lemma.

We have constructed a cell decomposition of R* x R” such that

e for any cell ) of this decomposition such that @, is of graph type
and dim @y, = n — 1 condition (1) holds,
e for any cell @ such that @, is open,

Q={(y,x) € Q1xR: f(y,x1,...,2p-1) < xn < g(Y,Z1, .., Tn-1)},
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there exist definable cells By, ..., B, such that (El)y C 0(Q1)y and
(0Q1)y \U(Bi)y is a union of cells of dimension < n—2 and the func-

tions f(y, '); 9(y, ) have continuous extensions f(y,-), g(y,-) onto
(Q1)y UU(Bi)y-
Put
Bi ={(y,z) e R* xR" : (y,21,...,2n_1) € B,

fly,z1, .y xn—1) < xp < g(y,z1,...,Tn-1)}
fori=1,...,p, and

Bpi1 =graph f,  Bpio = graphy.

Clearly (Bi1)y,--.,(Bp+2)y are cells of dimension n — 1, and p + 2 < 2n.
We now show that dim(0Q, \ U(EZ)y) < n — 1. Assume that 0Q, \ U(EZ)y
contains a cell C' of dimension n — 1; we can assume (after refining the
decomposition) that C is a cell of the decomposition. If C' C (Bp41)y U
(Bp+2)y then by Lemma 7 we would get C' C (Bpy1)y or C C (Bpy2)y,
contrary to our assumptions. Consequently, C' N ((BpH)y U (Bp+2)y) = 0.
This means that the projection of C' onto R is contained in one of the
sets (Bj)y, i = 1,...,p. But then C C (B;), Ugraphg|(B;), Ugraph f|(B;)y,
which contradicts the choice of C'. u

LEMMA 9. Let A C RF x R™ be a definable set and let d := max dim Ay.
For any € > 0 there exists a cell decomposition T of R¥ x R™ compatible
with A such that for any cell Q@ of T satisfying dim Qy = d and any points
(@', y), (", y") € Q we have

6(Tley/7 Tx”Qy”) < E.

Proof. The proof is similar to the proof of (1) in Lemma 8. u

5. Proof of Theorem 1. We shall prove the theorem using induction
on n. Since in R every cell is a point, segment, half-line or line, the theorem
is obvious for n = 1.

We shall construct a sequence 7; of definable stratifications compatible
with sets A1,..., As and such that for each stratum @ € 7; with dim @ >
n+k—i and any point y € 7(Q) the fiber @, is a cell satisfying the Whitney
property with exponent 1. We can take as 7y any definable stratification
compatible with A1, ..., As. Then 7;11 is constructed by refinement of strata
from 7; of dimension at most n + k — 1.

Using Lemmata 8 and 9 it is enough to prove that for any cell () satisfying
the assertions of the lemma there are subsets Qi,...,Q, C @ such that
dim(Q \ U; Qi) < dim @ and for any point y € m(Q;) the fiber (Q;), is a cell
satisfying the Whitney property with exponent 1.
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Case I. If dim@Qy = n (i.e. Q4 is an open cell in R™) then there exist
cells By, ..., By, (p < 2n) such that

e for any points (2/,y), (2”,y") € B; we have

5(Tz’(Bi)y’a Ty (Bi)y“) <g,
o dim (B;)y =n—1,
e 0Q, \ U(Bi)y is a finite sum of cells of dimension < n — 2.

By Lemma 5 there exists a line L in R" such that for any point (x,y) € Q we
have §(L,T,(B;)y) > a, where i = 1,...,p, and « is a constant depending
only on n. Changing coordinates in R” we can assume that L is the x,-axis.
Every cell (B;), is locally the graph of a definable function with derivative
bounded by a constant M,, depending only on n.

Using cell decomposition and the inductive hypothesis we get a cell de-
composition C of R* x R™ compatible with @ and B; such that the induced
decomposition C; of RF x R™ 1 satisfies the assertion of the theorem. Let
C be a cell decomposition of R*¥ x R™ given by the cell decomposition C; of
R* x R"~! and the sets B; (this means that for any cell of C its projection
is an element of C;, and each cell of graph type is a subset of some B;).

For any cell K € C of graph type such that dim K, = n — 1 we have
K, C (B;)y for some i, and so K, is the graph of a function with derivative
bounded by the constant M,, and defined on some cell in R"~! satisfying the
Whitney property with exponent 1 and coefficient L, := L, 1V 1+ M?2_,;
depending only on n. N

Consequently, each cell K € C satisfies the Whitney property with expo-
nent 1 and coefficient depending only on n because its projection and decks
satisfy the Whitney property. N

Let Q1,...,Q, be cells of the decomposition C such that dim (Q;), = n
and Q; N Q # 0. Clearly dim(Qy \ U,;(Qi)y) < n —1 and (Q;), satisfies the
Whitney property with exponent 1 and coefficient depending only on n. Since
0Qy \ U(Bj)y is a finite sum of cells of dimension <n —2 and Q; N B;j =0
we get Q; C Q.

Cask II. If d = dim @y < n then there exists a line L in R" such that
(L, TpQy) > 1 —¢ for any (z,y) € Q. After a change of variables in R" we
can assume that L = (z; = -+ = xp—1 = 0). Then every @, is the graph
of a C! function with derivative bounded by an arbitrarily small positive
constant (depending on ¢) defined on the set Qy, where @ is the projection
of Q onto R¥ x R"~1, B B B

Applying the inductive hypothesis we can find Q1,...,Q, C @ which
are definable cells satisfying the Whitney property with exponent 1 and
coefficient depending only on d, and such that dim(Q \ U; Qi) < dim Q.

Now, put ); = QN (@z X R) [
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