Definable stratification satisfying the Whitney property with exponent 1

by Beata Kocel-Cynk (Kraków)

Abstract. We prove that for a finite collection of sets $A_1, \ldots, A_s \subset \mathbb{R}^{k+n}$ definable in an o-minimal structure there exists a compatible definable stratification such that for any stratum the fibers of its projection onto \mathbb{R}^k satisfy the Whitney property with exponent 1.

Introduction. K. Kurdyka proved (in [4]) that for any locally finite family of subanalytic sets in \mathbb{R}^n there exists a subanalytic stratification of \mathbb{R}^n compatible with every element of the family and such that all strata satisfy the Whitney property with exponent 1. The aim of our note is to prove a version with parameter of the above theorem for an o-minimal structure on $(\mathbb{R}, +, \cdot)$.

THEOREM 1. Let S be an o-minimal structure on $(\mathbb{R}, +, \cdot)$ and let $A_1, \ldots, A_s \subset \mathbb{R}^{k+n}$ be definable sets in S. Then there exists a finite definable stratification of \mathbb{R}^{k+n} compatible with the sets A_1, \ldots, A_s and such that for any stratum Q of this stratification and any point $y \in \pi(Q)$ the fiber Q_y is (in some coordinate system in \mathbb{R}^n) a definable cell satisfying the Whitney property with exponent 1 (and coefficient depending only on n).

In the proofs we shall use properties of the closure of a definable cell and extensions of definable functions to the boundary.

1. Basic properties of o-minimal structures. In this section we collect some basic properties of o-minimal structures on $(\mathbb{R}, +, \cdot)$, crucial for further considerations. Let us start with some definitions.

DEFINITION 1 ([2]). A structure S on \mathbb{R} consists of a collection S_n of subsets of \mathbb{R}^n , for each $n \in \mathbb{N}$, such that

(1) S_n is a boolean algebra of subsets of \mathbb{R}^n ,

²⁰⁰⁰ Mathematics Subject Classification: 14P15, 32B20.

Key words and phrases: Whitney property, definable sets, o-minimal structure.

B. Kocel-Cynk

- (2) S_n contains the diagonals $\{(x_1, \ldots, x_n) \in \mathbb{R}^n : x_i = x_j\}$ for $1 \le i < j \le n$,
- (3) if $A \in S_n$, then $A \times \mathbb{R}$ and $\mathbb{R} \times A$ belong to S_{n+1} ,
- (4) if $A \in \mathcal{S}_{n+1}$, then $\pi(A) \in \mathcal{S}_n$, where $\pi : \mathbb{R}^{n+1} \to \mathbb{R}^n$ is the projection on the first *n* coordinates.

We say that a set $A \subset \mathbb{R}^n$ is *definable* iff $A \in S_n$. A function $f : A \to \mathbb{R}^m$ with $A \subset \mathbb{R}^n$ is called *definable* iff its graph is definable.

DEFINITION 2 ([2]). A structure S on \mathbb{R} is *o-minimal* iff

- (1) $\{(x,y) : x < y\} \in \mathcal{S}_2$ and $\{a\} \in \mathcal{S}_1$ for each $a \in \mathbb{R}$,
- (2) each set in S_1 is a finite union of intervals $(a, b), -\infty \leq a < b \leq +\infty$, and points $\{a\}$.

A structure on $(\mathbb{R}, +, \cdot)$ is a structure on \mathbb{R} containing the graphs of both addition and multiplication.

2. Cell decomposition and stratification

DEFINITION 3 ([1]). Cells in \mathbb{R}^n are definable sets defined in the following inductive way:

- (1) The cells in \mathbb{R}^1 are exactly points and open intervals,
- (2) Let $C \subset \mathbb{R}^n$ be a cell and let $f, g : C \to \mathbb{R}$ be continuous definable functions such that f < g on C. Then

$$(f,g) := \{ (x,r) \in C \times \mathbb{R} : f(x) < r < g(x) \}$$

is a cell in \mathbb{R}^{n+1} . Also, given a continuous definable function $f: C \to \mathbb{R}$ on a cell C in \mathbb{R}^n , the graph

$$\Gamma(f) = \{ (x, r) \in C \times \mathbb{R} : r = f(x) \}$$

and the sets

$$\{(x,r) \in C \times \mathbb{R} : f(x) < r\}, \ \{(x,r) \in C \times \mathbb{R} : r < f(x)\}, \ C \times \mathbb{R} \text{ are cells in } \mathbb{R}^{n+1}.$$

DEFINITION 4 ([1]). A cell decomposition of \mathbb{R}^n is a partition of \mathbb{R}^n into finitely many cells defined in the following inductive way:

 A decomposition of R¹ is a collection of open intervals and points of the following form:

 $\{(-\infty, a_1), (a_1, a_2), \dots, (a_k, +\infty), \{a_1\}, \dots, \{a_k\}\}.$

(2) A decomposition of \mathbb{R}^{n+1} is a finite partition of \mathbb{R}^{n+1} into cells A such that the set of projections $\pi(A)$ is a decomposition of \mathbb{R}^n , where $\pi: \mathbb{R}^{n+1} \to \mathbb{R}^n$ is the projection on the first *n* coordinates.

In a similar way we define a \mathcal{C}^k cell and \mathcal{C}^k cell decomposition, by requiring that the functions in part (2) of Definition 3 are \mathcal{C}^k functions.

PROPOSITION 2 ([2]). Any o-minimal structure S on $(\mathbb{R}, +, .)$ admits C^1 cell decompositions, i.e.:

- (1) If $A_1, \ldots, A_k \subset \mathbb{R}^n$ are definable sets then there exists a \mathcal{C}^1 cell decomposition of \mathbb{R}^n compatible with A_1, \ldots, A_k .
- (2) For each definable function $f : A \to \mathbb{R}$ with $A \subset \mathbb{R}^n$ there exists a cell decomposition of \mathbb{R}^n partitioning A and such that for every $C \subset A$ in the decomposition the restriction $f|C: C \to \mathbb{R}$ is a \mathcal{C}^1 function.

REMARK 3. Every o-minimal structure on $(\mathbb{R}, +, \cdot)$ admits \mathcal{C}^k cell decompositions (for any positive integer k), i.e. the above proposition holds with \mathcal{C}^1 replaced by \mathcal{C}^k .

DEFINITION 5. We call a definable subset of \mathbb{R}^n which is a \mathcal{C}^k submanifold of \mathbb{R}^n a *definable* \mathcal{C}^k stratum in \mathbb{R}^n .

A definable \mathcal{C}^k stratification of \mathbb{R}^n is a finite partition of \mathbb{R}^n into definable \mathcal{C}^k strata satisfying the following boundary condition: for any two strata S, T of the partition, if $S \cap \partial T \neq \emptyset$ then $S \subset \partial T$.

DEFINITION 6. A set T definable in an o-minimal structure satisfies the Whitney property with exponent α (cf. [5]) if there exists a positive constant C such that any points p and q in T can be joined by a definable curve γ with length $(\gamma) \leq C|p-q|^{\alpha}$.

3. Angle between linear subspaces

DEFINITION 7. The angle between a linear subspace X and a line P in \mathbb{R}^n is the number

$$\delta(P, X) = \inf\{\sin(P, S) : S \text{ a line in } X\}$$

where sin(P, S) denotes the sine of the angle between the lines P and S.

The angle between linear subspaces X and Y in \mathbb{R}^n is the number

$$\delta(Y, X) := \sup\{\delta(P, X) : P \text{ a line in } Y\}.$$

If Y = 0 we put $\delta(0, X) = 0$.

Remark 4 ([4]).

- (1) If dim $X = \dim Y$ then $\delta(X, Y) = \delta(Y, X)$.
- (2) If dim $X \leq \dim Y \leq \dim Z$ then $\delta(Z, X) \leq \delta(Z, Y) + \delta(Y, X)$.
- (3) Let $\mathbb{G}(k,m)$ be the Grassmannian of k-dimensional subspaces in \mathbb{R}^m . The mapping $\mathbb{G}(k,m) \times \mathbb{G}(k,m) \ni (X,Y) \mapsto \delta(X,Y) \in \mathbb{R}$ is continuous and semialgebraic.

(4) For any α > 0 there exists M > 0 such that if δ(P, X) > α for some linear hyperplane X and a line P then X is the graph of a linear map φ : P[⊥] → P satisfying ||φ|| ≤ M.

LEMMA 5 ([4, Lem. 3]). For any nonnegative integers r, n there exist $\varepsilon, m > 0$ such that for any hyperplanes X_1, \ldots, X_r in \mathbb{R}^n there exists a line P such that for any hyperplanes Y_1, \ldots, Y_r satisfying $\delta(X_i, Y_i) < \varepsilon$ we have $\delta(P, Y_i) > m$.

4. Closure of a cell. The closure of a definable cell is also definable. In this section we shall give a description of the closure of a cell. We shall consider separately cells of graph and band types.

EXAMPLE 6. Consider the following cell of graph type in \mathbb{R}^3 :

 $Q = \{(x, y, z) : 0 < x < 1, 0 < y < 1, z = x/y\}.$

The closure \overline{Q} of Q is **not** a graph, its fiber over any point from the closure of the projection of $\overline{\pi(Q)} = [0,1]^2$ different from (0,0) consists of one point, whereas the fiber over (0,0) is the half-line $[0,\infty)$.

We shall show that for any cell of graph type the set of points over which the fiber of the closure is infinite has small dimension.

LEMMA 7. Let $f: Q \to \mathbb{R}$ be a continuous definable function defined on a cell of dimension d in \mathbb{R}^n . There is a definable set $Z \subset \partial Q$ of dimension $\leq d-2$ such that f has a continuous extension to $\overline{Q} \setminus Z$.

Proof. Let $Z := \{x \in \partial Q : \lim_{y \to x, y \in Q} f(y) \text{ does not exist}\}$. To prove that dim $Z \leq d-2$, assume to the contrary that Z contains a cell W of dimension d-1. The boundary of the graph of f has dimension smaller than d, so the set of points in the closure of Q for which the fiber of the closure of the graph is infinite (i.e. the function has infinitely many accumulation points) has dimension smaller than d-1.

Using the cell decomposition we may assume that at any $x \in Z$ the function f has finitely many accumulation points and that the definable functions $\limsup_{y\to x, y\in Q} f(y)$ and $\liminf_{y\to x, y\in Q} f(y)$ are continuous on Z. Fix $x_0 \in Z$ and set $a = \limsup_{y\to x_0, y\in Q} f(y)$, $b = \liminf_{y\to x_0, y\in Q} f(y)$. There exist numbers $c \in (a, b)$ and e > 0 such that |f(y) - c| > e in a neighborhood of x_0 in \overline{Q} . Let $Q_1 \subset Q$ be a cell such that \overline{Q}_1 is a neighborhood of x_0 in \overline{Q} and |f(x) - c| > e on Q_1 . This contradicts the connectedness of Q_1 .

If

$$Q = \{ (x, x_n) \in \mathbb{R}^{n-1} \times \mathbb{R} : x \in Q_1, \ f(x) < x_n < g(x) \}$$

is a *cell of band type* then

 $\overline{Q} = Q \cup \operatorname{graph} f \cup \operatorname{graph} g \cup (\overline{Q} \cap (\partial Q_1 \times \mathbb{R})).$

The cell Q is "bounded from below and above" by cells of graph type, graph g and graph f, which we shall call the *top* and *bottom decks* of Q. The closure \overline{Q} of Q is bounded by the closures of the top and bottom decks. In the case of cells of band type with only one deck or without a deck the closure is described similarly.

LEMMA 8. Under the assumptions of Theorem 1, for any $\varepsilon > 0$ there exists a cell decomposition \mathcal{T} of $\mathbb{R}^k \times \mathbb{R}^n$ compatible with A_1, \ldots, A_s and satisfying the following conditions:

(1) for any cell $Q \in \mathcal{T}$ such that $\dim Q_y = n - 1$ and any points $(x', y'), (x'', y'') \in Q$ we have

$$\delta(T_{x'}Q_{y'}, T_{x''}Q_{y''}) < \varepsilon,$$

(2) for any cell $Q \in \mathcal{T}$ such that $\dim Q_y = n$ for some $y \in \pi Q$ there exist cells $B_1, \ldots, B_p \in \mathcal{T}$ $(p \leq 2n)$ such that $\dim (B_i)_y = n - 1$, $(B_i)_y \subset \overline{Q}_y \setminus Q_y$ and the set $\partial Q_y \setminus \bigcup (B_i)_y$ is a finite union of cells of dimension $\leq n - 2$.

Proof. We use induction on n.

There exists a cell decomposition of $\mathbb{R}^k \times \mathbb{R}^n$ compatible with A_1, \ldots, A_s and such that the corresponding decomposition of $\mathbb{R}^k \times \mathbb{R}^{n-1}$ satisfies the assertion of the lemma. Consequently, condition (1) holds for any cell of band type. For any cell $Q \subset \mathbb{R}^k \times \mathbb{R}^n$ such that dim $Q_y = n-1$ and Q_y is of graph type consider the map

$$Q \ni (x, y) \mapsto T_x Q_y \in \mathbb{G}(n-1, n).$$

Since this map is definable we can assume, after refining the decomposition in $\mathbb{R}^k \times \mathbb{R}^{n-1}$, that condition (1) holds for any cell Q such that dim $Q_y = n-1$ and Q_y is of graph type.

Fix a cell Q such that Q_y is an open cell. Clearly Q is of band type, so

$$Q = \{(y, x) \in Q_1 \times \mathbb{R} : f(y, x_1, \dots, x_{n-1}) < x_n < g(y, x_1, \dots, x_{n-1})\}$$

where Q_1 is the projection of Q onto $\mathbb{R}^k \times \mathbb{R}^{n-1}$.

By Lemma 7 there exists a definable subset $Z \subset \partial Q_1$ such that for any y we have dim $Z_y < n-2$ and the functions $f(y, \cdot)$ and $g(y, \cdot)$ extend continuously to $(\partial \overline{Q}_1 \setminus Z)_y$. After refining we may assume that the decomposition of $\mathbb{R}^k \times \mathbb{R}^{n-1}$ is compatible with Q_1 , \overline{Q}_1 and Z and satisfies the assertions of the lemma.

We have constructed a cell decomposition of $\mathbb{R}^k \times \mathbb{R}^n$ such that

- for any cell Q of this decomposition such that Q_y is of graph type and dim $Q_y = n - 1$ condition (1) holds,
- for any cell Q such that Q_y is open,

$$Q = \{(y, x) \in Q_1 \times \mathbb{R} : f(y, x_1, \dots, x_{n-1}) < x_n < g(y, x_1, \dots, x_{n-1})\},\$$

there exist definable cells $\widetilde{B}_1, \ldots, \widetilde{B}_p$ such that $(\widetilde{B}_i)_y \subset \partial(Q_1)_y$ and $(\partial Q_1)_y \setminus \bigcup (\widetilde{B}_i)_y$ is a union of cells of dimension < n-2 and the functions $f(y, \cdot), g(y, \cdot)$ have continuous extensions $\widetilde{f}(y, \cdot), \widetilde{g}(y, \cdot)$ onto $(Q_1)_y \cup \bigcup (\widetilde{B}_i)_y$.

 Put

$$B_i = \{(y, x) \in \mathbb{R}^k \times \mathbb{R}^n : (y, x_1, \dots, x_{n-1}) \in \widetilde{B}_i, \\ \widetilde{f}(y, x_1, \dots, x_{n-1}) < x_n < \widetilde{g}(y, x_1, \dots, x_{n-1})\}$$

for $i = 1, \ldots, p$, and

 $B_{p+1} = \operatorname{graph} f, \quad B_{p+2} = \operatorname{graph} g.$

Clearly $(B_1)_y, \ldots, (B_{p+2})_y$ are cells of dimension n-1, and $p+2 \leq 2n$. We now show that $\dim(\partial Q_y \setminus \bigcup(\widetilde{B}_i)_y) < n-1$. Assume that $\partial Q_y \setminus \bigcup(\widetilde{B}_i)_y$ contains a cell C of dimension n-1; we can assume (after refining the decomposition) that C is a cell of the decomposition. If $C \subset (\overline{B_{p+1}})_y \cup (\overline{B_{p+2}})_y$ then by Lemma 7 we would get $C \subset (B_{p+1})_y$ or $C \subset (B_{p+2})_y$, contrary to our assumptions. Consequently, $C \cap ((\overline{B_{p+1}})_y \cup (\overline{B_{p+2}})_y) = \emptyset$. This means that the projection of C onto \mathbb{R}^{n-1} is contained in one of the sets $(\widetilde{B_i})_y, i = 1, \ldots, p$. But then $C \subset (B_i)_y \cup \operatorname{graph} \widetilde{g}|(\widetilde{B_i})_y \cup \operatorname{graph} \widetilde{f}|(\widetilde{B_i})_y$, which contradicts the choice of C.

LEMMA 9. Let $A \subset \mathbb{R}^k \times \mathbb{R}^n$ be a definable set and let $d := \max \dim A_y$. For any $\varepsilon > 0$ there exists a cell decomposition \mathcal{T} of $\mathbb{R}^k \times \mathbb{R}^n$ compatible with A such that for any cell Q of \mathcal{T} satisfying $\dim Q_y = d$ and any points $(x', y'), (x'', y'') \in Q$ we have

$$\delta(T_{x'}Q_{y'}, T_{x''}Q_{y''}) < \varepsilon.$$

Proof. The proof is similar to the proof of (1) in Lemma 8.

5. Proof of Theorem 1. We shall prove the theorem using induction on n. Since in \mathbb{R} every cell is a point, segment, half-line or line, the theorem is obvious for n = 1.

We shall construct a sequence \mathcal{T}_i of definable stratifications compatible with sets A_1, \ldots, A_s and such that for each stratum $Q \in \mathcal{T}_i$ with dim Q >n+k-i and any point $y \in \pi(Q)$ the fiber Q_y is a cell satisfying the Whitney property with exponent 1. We can take as \mathcal{T}_0 any definable stratification compatible with A_1, \ldots, A_s . Then \mathcal{T}_{i+1} is constructed by refinement of strata from \mathcal{T}_i of dimension at most n+k-i.

Using Lemmata 8 and 9 it is enough to prove that for any cell Q satisfying the assertions of the lemma there are subsets $Q_1, \ldots, Q_r \subset Q$ such that $\dim(Q \setminus \bigcup_i Q_i) < \dim Q$ and for any point $y \in \pi(Q_i)$ the fiber $(Q_i)_y$ is a cell satisfying the Whitney property with exponent 1. CASE I. If dim $Q_y = n$ (i.e. Q_y is an open cell in \mathbb{R}^n) then there exist cells B_1, \ldots, B_p $(p \leq 2n)$ such that

• for any points $(x', y'), (x'', y'') \in B_i$ we have

$$\delta(T_{x'}(B_i)_{y'}, T_{x''}(B_i)_{y''}) < \varepsilon,$$

- dim $(B_i)_y = n 1$,
- $\partial Q_y \setminus \bigcup (B_i)_y$ is a finite sum of cells of dimension $\leq n-2$.

By Lemma 5 there exists a line L in \mathbb{R}^n such that for any point $(x, y) \in Q$ we have $\delta(L, T_x(B_i)_y) > \alpha$, where $i = 1, \ldots, p$, and α is a constant depending only on n. Changing coordinates in \mathbb{R}^n we can assume that L is the x_n -axis. Every cell $(B_i)_y$ is locally the graph of a definable function with derivative bounded by a constant M_n depending only on n.

Using cell decomposition and the inductive hypothesis we get a cell decomposition \mathcal{C} of $\mathbb{R}^k \times \mathbb{R}^n$ compatible with Q and B_i such that the induced decomposition \mathcal{C}_1 of $\mathbb{R}^k \times \mathbb{R}^{n-1}$ satisfies the assertion of the theorem. Let $\widetilde{\mathcal{C}}$ be a cell decomposition of $\mathbb{R}^k \times \mathbb{R}^n$ given by the cell decomposition \mathcal{C}_1 of $\mathbb{R}^k \times \mathbb{R}^{n-1}$ and the sets B_i (this means that for any cell of $\widetilde{\mathcal{C}}$ its projection is an element of \mathcal{C}_1 , and each cell of graph type is a subset of some B_i).

For any cell $K \in \tilde{\mathcal{C}}$ of graph type such that dim $K_y = n - 1$ we have $K_y \subset (B_i)_y$ for some *i*, and so K_y is the graph of a function with derivative bounded by the constant M_n and defined on some cell in \mathbb{R}^{n-1} satisfying the Whitney property with exponent 1 and coefficient $L_n := L_{n-1}\sqrt{1 + M_{n-1}^2}$ depending only on *n*.

Consequently, each cell $K \in \widetilde{\mathcal{C}}$ satisfies the Whitney property with exponent 1 and coefficient depending only on n because its projection and decks satisfy the Whitney property.

Let Q_1, \ldots, Q_r be cells of the decomposition $\widetilde{\mathcal{C}}$ such that dim $(Q_i)_y = n$ and $Q_i \cap Q \neq \emptyset$. Clearly dim $(Q_y \setminus \bigcup_i (Q_i)_y) \leq n-1$ and $(Q_i)_y$ satisfies the Whitney property with exponent 1 and coefficient depending only on n. Since $\partial Q_y \setminus \bigcup (B_j)_y$ is a finite sum of cells of dimension $\leq n-2$ and $Q_i \cap B_j = \emptyset$ we get $Q_i \subset Q$.

CASE II. If $d = \dim Q_y < n$ then there exists a line L in \mathbb{R}^n such that $\delta(L, T_x Q_y) \ge 1 - \varepsilon$ for any $(x, y) \in Q$. After a change of variables in \mathbb{R}^n we can assume that $L = (x_1 = \cdots = x_{n-1} = 0)$. Then every Q_y is the graph of a \mathcal{C}^1 function with derivative bounded by an arbitrarily small positive constant (depending on ε) defined on the set \widetilde{Q}_y , where \widetilde{Q} is the projection of Q onto $\mathbb{R}^k \times \mathbb{R}^{n-1}$.

Applying the inductive hypothesis we can find $\widetilde{Q}_1, \ldots, \widetilde{Q}_r \subset \widetilde{Q}$ which are definable cells satisfying the Whitney property with exponent 1 and coefficient depending only on d, and such that $\dim(\widetilde{Q} \setminus \bigcup_i \widetilde{Q}_i) < \dim \widetilde{Q}$. Now, put $Q_i = Q \cap (\widetilde{Q}_i \times \mathbb{R})$.

B. Kocel-Cynk

Acknowledgements. The author would like to thank W. Pawłucki for suggesting the problem and for his help during the preparation of this paper.

References

- L. van den Dries, Tame Topology and o-Minimal Structures, London Math. Soc. Lecture Note Ser. 248, Cambridge Univ. Press, 1998.
- [2] L. van den Dries and C. Miller, Extending Tamm's theorem, Ann. Inst. Fourier (Grenoble) 44 (1994), 1367-1395.
- [3] R. M. Hardt, Some analytic bounds for subanalytic sets, in: Differential Geometric Control Theory, Progr. Math. 27, Birkhaüser, 1983, 259-267.
- [4] K. Kurdyka, On a subanalytic stratification satisfying a Whitney property with exponent 1, in: Real Algebraic Geometry (La Tourballe, 1991), Lecture Notes in Math. 1524, Springer, 1992, 316-322.
- J. Stasica, The Whitney condition for subanalytic sets, Zeszyty Nauk. Uniw. Jagiell. Prace Mat. 23 (1982), 211-221.

Institute of Mathematics Cracow University of Technology Warszawska 24 31-155 Kraków, Poland E-mail: bkocel@pk.edu.pl

> Received 19.12.2006 and in final form 30.4.2007

(1758)