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Difference methods for parabolic functional
differential problems of the Neumann type

by K. KROPIELNICKA (Gdansk)

Abstract. Nonlinear parabolic functional differential equations with initial boundary
conditions of the Neumann type are considered. A general class of difference methods
for the problem is constructed. Theorems on the convergence of difference schemes and
error estimates of approximate solutions are presented. The proof of the stability of the
difference functional problem is based on a comparison technique. Nonlinear estimates
of the Perron type with respect to the functional variable for given functions are used.
Numerical examples are given.

1. Introduction. For any two metric spaces X and Y we denote by
C(X,Y) the class of all continuous functions defined on X and taking
values in Y. Let Mn] denote the set of all n x n real matrices. We will
use vectorial inequalities, understanding that the same inequalities hold be-
tween the corresponding components. Let E = [0, a] x [—b, b], where a > 0,
b= (b1,...,bn), b >0 for 1 <i<n,and

OE = [0,a] x ([=b,0] \ (—=b,b)).
Write ¥ = E x C(E,R) x R™ x M[n| and
OE; ={(t,x) € E :x; =bj} U{(t,x) € OE : z; = —bj}, 1<j<n,
and suppose that
[: X =R, @:[-bb—=R, ¢j:0E;—-R, 1<j<n,
are given functions. We consider the functional differential equation
(1) Oz(t,x) = f(t,x,z,0,2(t, ), Oz 2(t, ))

together with the initial boundary condition of Neumann type
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2) 0.0 = o) orae (b3
(3) Oz, 2(t,x) = @j(t,x) for (t,z) € 80 ,1<j5<n,
where 0,2 = (02,2, ..., 0z,2), and Opz2 = [Op,0;2)i j=1,...n

For t € [0, a] we write E; = [0,¢] x[—b, b]. The function f is said to satisfy
the Volterra condition if for each (t,x,q,s) € E x R" x M[n] and 2,z €
C(E,R) such that z(7r,y) = Z(1,y) for (r,y) € E; we have f(t,z,2,q,s) =
f(t,x,z,q,s). Note that the Volterra condition means that the value of f
at the point (t,x, z,q,s) of the space X' depends on (t,x,q,s) and on the
restriction of z to the set Ej;.

In this paper we assume that f satisfies the Volterra condition and we
consider classical solutions of (1)-(3).

We are interested in approximating classical solutions to problem (1)—(3)
by solutions of associated difference functional equations and in estimation
of the difference between these solutions.

Finite difference approximations of initial boundary value problems for
parabolic differential or functional equations were considered by many au-
thors under various assumptions. Difference methods for nonlinear parabolic
differential equations with initial boundary conditions of the Dirichlet type
were considered in [4], [6], [8]. Numerical treatment of the Cauchy problem
can be found in [1], [5], [10], [16].

The paper [3] is concerned with initial boundary value problems of the
Neumann type.

Difference methods for nonlinear parabolic equations with nonlinear
boundary conditions are investigated in [7], [9], [14], [15].

The papers [11]-[13] deal with numerical methods for the reaction-dif-
fusion-convection equations. The implicit difference methods proposed in
those papers have the following property: almost linear parabolic equations
without mixed derivatives are transformed into nonlinear systems of differ-
ence equations which require some kind of iterative schemes for the com-
putation of numerical solutions. Various monotone iterative methods are
presented in [11]-[13].

The main problem in the study of explicit difference methods is to find
a difference or difference functional equation which is stable and satisfies
consistency conditions with respect to the original problem.

The method of difference inequalities or theorems on linear recurrent in-
equalities are used in the study of stability of difference schemes. The proofs
of convergence are also based on error estimates of approximate solutions
to functional difference equations of the Volterra type with initial boundary
conditions and with an unknown function of several variables.

It is usually assumed that the given functions have partial derivatives
with respect to all variables except for (¢,z). Our assumptions are more
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general. We introduce nonlinear estimates of the Perron type with respect
to the functional variable. Note that our theorems are new also in the case
of parabolic equations without a functional variable.

The paper is organized as follows. In Section 2 we construct a class of
difference schemes for (1)—(3). Error estimates for approximate solutions
of difference functional problems are proved in Section 3. In Section 4 we
prove a theorem on the convergence of a difference method for (1)—(3). This
is the main part of the paper. Numerical examples are presented in the last
section.

Differential equations with deviated variables and differential integral
problems can be obtained from our general model by a natural specification
of operators.

2. Discretization of mixed problems. We will denote by F(X,Y)
the class of all functions defined on X and taking values in Y, where X and
Y are arbitrary sets. For z,y € R™ where z = (z1,...,25), ¥y = (Y1,---,Yn),
we write ||z|| = |z1]| + - + |zn| and x xy = (z1y1, - - -, TnYn)-

We now formulate a difference problem corresponding to (1)-(3). We
define a mesh on F in the following way. Let (ho, h') where b’ = (hq, ..., hy)
stand for steps of the mesh. For h = (hg,h’) and (r,m) € Z'™" where
m = (m1,...,my) we define nodal points as follows:

t0) =rho, 2™ =muh!, @™ = @™, afm),

Let H be the set of all h = (hg, h’) such that there exists (Ny,...,N,) =
N € N” satisfying the condition Nxh' = b. We write ||h|| = ho+hi+---+hy,.
Let Ny € N be defined by the relation Nohg < a < (Ng + 1)hg. For h € H
we put

Ry = {(t",a™) : (r,m) € 2147}

and
Ey=ENR™™,  9E,=0ENR",

ath.j = 80Ej ﬂR}f”, ji=1,...,n,
B, ={t",2™) e By :0<r < Ny — 1},
Xh = E;, x F(Ep,R) x R" x M|n).

For z : Ej, — R we write 2"™) = z(¢t(") 2(™). Put E,, = E,n([0, )] xR™),
where 0 < r < Ny, and
|zllny = max{|z™)] - (¢T) 2t € By}, 0<r <N
Let ¢; = (0,...,0,1,0,...,0) € R™ be the vector with 1 in the ith position.
Write
J={(ni) 1 <i,j <ni £}
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and suppose that we have defined sets J,J_ C J such that JL UJ_ =J,
J+ NJ_ = 0 (in particular, it may happen that J, = ) or J_ = (). We
assume that (7,7) € J+ when (j,1) € J4.

For each m € Z" such that (™) € [~b,b] \ (—b,b) we consider the class

of a = (a1,...,a,) € Z" satisfying the conditions:
(i) flafl = Lor flef = 2,
(ii) if m = (m1,...,my) and there is j, 1 < j < n, such that m; = N;
then o € {0, 1},
(iii) if m = (ma,...,my) and there is j, 1 < j < n, such that m; = —Nj

then a; € {—1,0}.

The set of a € Z"™ satisfying the above conditions will be denoted by A,
Define

Ef =0E} UE,.

Letz:E}fﬁRand —N <m < N. We define

6;—Z(r,m) _ i (Z(r,m+e¢) - Z(r,m)) &—Z(r,m) _ i (Z(r,m) o Z(r,mfei))

h; o h;

)

where 1 < i < n. We apply the difference operators dy and § = (d1,...,05)
given by

L praim) _ em)y

0

1
§;2(rm) — 3 (5;%(”’7”) + 5{2(7"””)), 1<i<n.

502(T’m) =

The difference operator 62 = [0i5]i j=1,....n Of the second order is defined in
the following way:

;2 = (5;"(5;2(T’m) forl1<i<n
and

32 = = (8072 4 676 F 2 for (i, 5) € J-,

— N =

5’i Az(rvm) -

+ s+ _(rim —s—(rm s
_5(5i5jz< V407072 for (i, 5) € Jy.

Suppose that the functions
o =R, op:[=bb] =R, ¢nj:00E,; R, 1<j<n,
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are given. We consider the difference equations
(4) 5oz = fh(t(T),m(m), z, 52(T’m),5(2)z(’"’m)), —-N<m<N,
(5)  2(tM, g(mFe)y = (1) g(m=a))

n
+ QZajhjgoh.j(t(T),m(m)) on QEy, a€ A(m),
j=1
with the initial condition
(6) 2(0m) — gogm) for 2™ € [—b, b].

We assume that f;, satisfies the Volterra condition: for each (t(T), (M), ¢, s)
€ X x R" x M[n] and z,Z € F(Ep,R) such that z(r,y) = z(7,y) for
(1,y) € Ep. we have

fh(t(r)’ ‘/L’(m)’ Z’ Q7 S) = fh(t(r)’ $(m)7 27 q’ S)'
Then there exists exactly one solution uy, : E;” — R of problem (4)—(6).

3. Approximate solutions of difference functional problems. We
will denote by Fj, the Nemytskii operator corresponding to (4), i.e.

Fh[z](hm) — fh(t(f”)jgc(m)jZ’(52,(1”,771)7(5(2)2(73”1))7 "), 2y e E}.

Suppose that wj, : E;” —R is the solution of problem (4)—(6) and vy, : E}" =R
satisfies the following conditions:

(7) 1600"™ — Fi[on) ™| < y(h)  on Ej,

(8) [off ™ ol =23 iyl < n@IWIE - on By, ac A,
j=1

(9) ™ — o™ < yo(h), 2™ € [-b,8],
where ~v,79,71 : H — Ry and
(10) lim»(h) =0, limyo(h) =0,  lim~(h) =0.

The function vy, satisfying the above relations is considered to be an approx-
imate solution of problem (4)—(6). We prove an estimate of the difference
between the exact and approximate solutions of (4)—(6). Put

I ={t":0<r<Ny}, I=1I\{tM)}.
For a function 7 : I, — R we write (") = n(¢(")).
AssuMPTION Hloy]. The function oy, : I; x Ry — Ry is such that

1) oy, is nondecreasing with respect to the second variable and oy,(t,0)
=0fortelj,
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2) the difference problem

(11) n(TH) = n(r) + hOUh(t(r)777(r))7 0 S r S NO - 17
(12) n® =0,

is stable in the following sense: if 7,7, : H — R4 are functions such
that

lim y(h) = lim 5, (h) =
lim75(h) =0,  lim7,(h) =0

and 7y, : I, — Ry is a solution of the difference problem

(13) " =0 4 hoon (87, 1) + ho(h), 0 <7< N1,
(14) 0 =7,(h),
then there is @ : H — Ry such that 77}(:) < a(h) for t0) € I, and
limh_>0 a(h) =0.
AssuMPTION H[f;]. The function fy, : X, — R of variables (¢, z, w, q, s),
where ¢ = (q1,...,4n), S = [Sijlij=1,...n, satisfies the conditions:
1) fu(t,z,2,-,-) € C(R" x M[n],R) and the derivatives
Ogfn = Og [+ 00, f1),  Osfn = [0s; frlij=1,..n;

exist on Xy, and 0y fy(t, z, 2, -,-) € C(R™ x M[n],R"™), Osfn(t,x, 2, -, )
€ C(R™ x M|n], M[n]) for each (t,z,z) € E} x F(Ep,R),
2) the matrix Oy f is symmetric and

(15) sy, fu(P) > 0 for (i,§) € Jy, Dy, fn(P) <0 for (i,5) € J_,
1

"1
(16)  1=2h0 Y 35 Ds; fa(P) +ho D 5= 105, fu(P)| 2 0,
j=1""17 (ijyes

1 1 1 ,
! j=1j#i 7

where P = (z,y,2,q,5) € X,
3) there is a function oy, satisfying Assumption H[oy] such that

[fn(ts 2, 2,6, 8) = fu(t, 2, 2,4, 8) || < on(t, ||z = Z[[nr)
on My,
REMARK 1. It is assumed in condition 2) of H|[f;] that the functions
gn.ij = sign s, fn,  (i,4) € J,

are constant on Xj,. Relations (15) can be considered as definitions of the
sets J4 and J_.
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REMARK 2. Suppose that

(i) conditions 1), 2) of Assumption H[f}] are satisfied,
(ii) there is p > 0 such that

Dsyi [ (P Z |05, fn(P)| > D,
j#i
where P = (t,x,2,q,8) € Xy.

@
|
\‘H

s

Then there is £ > 0 such that for |A’|| < & assumption (17) is satisfied.
THEOREM 3.1. Suppose that Assumption H[f}] is satisfied and
1) w, : B — R is a solution of (4)-(6) and the function vy, : E;f — R

satisfies (7)—(9),
2) there is ¢ > 0 such that |h'||> < Cho.

Then there is o : H — Ry such that
|(up, —vp) ™| < a(h)  on Ey
and

li =0.
hli%a(h) 0

Proof. Let Iy, : E; — R, I'vy, : Egp, — R, and I'py : OoEp — R be
defined by the relations

1) U}(Lr,m) = Fh['l}h](r’m) + F’gr,m) on E;w

p{rmte) g (rm=a) _zza] hig M+ T on B, a € AU,

vgo,m) (m) + F0(72)7 x(m) c [—b, b]
It follows from (7)—(10) that
L) on B TS < @I on 0B,
Ty < y0(h)  for 2™ € [~b,b]
and

] h li h) = li h) = 0.
hlg(l)'y() 0, hli%%() 0, hl_{l%vl() 0

Write zp, = up, — vy, and
Ei(zr’m) = Zf(;’m) + hol fu (¢, 20 Uh,5u(rm) 5Py (Tm))
- fh(t(r) x(m) » Uh, 6U(T m)75(2)U}(LT m))]v

A,(f’m) = (t(T),x(m) up, 5u(r m),5(2)u,(:’m))

- fh(t(r ) QE( )7 Uh, 6U2T7m)) 5(2)U§:7m))
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Thus we have
(18) Arthm) = =iem) o AT por™™ o B,
and

z}(f’m“‘) = z}(fm @) 4 F(.gr ™ on OoEn, a€ A,

We first estimate = ”(T m). Write

4i4(Q) = % 0. In(@Q) + h2 Do f1n(Q Zhh s Fr(Q)
J#l
Ai.f(Q): 2h 8q2fh(Q) h2 amfh hh Sij ( )’7
J#Z
n hO n hO
B(Q)=1—2Z s, f1(Q) + Z 7 105, Fn(Q)],
= b (meJ hi

G|
Ci(@Q)=>_ T |05, fn(Q)],
j=1"""
J#
where Q € X, and 1 < i < n. It follows from the definition of difference

operators and from condition 1) of Assumption H|f,]| that there is Q € X,
such that

(19) =" =B@)z"™

"‘hOZAz-i— rerel -f-h ZA }(lrmfei)
i=1
T ho Z C rm—i—ez—&-ej) + Z}(Lr,m—ei—ej) + Z}(Lr,m-i—ei—ej) + Z}(Lr,m—ei-l—e]-)]

where (¢(" ),:c( )) € E},. We conclude from (15)-(17) that
A (Q) >0, A,_(Q) >0, B(Q) >0, Ci(Q)=>D0.
It is important in our considerations that

(200 ho > Aiy(Q +hOZA +B’"m+2h020

=1
Write

6§:) _ max{]z}(f’m” : (t(r)’x(m)) c Eh.r)}v
gELT) _ maX{’Z}(f’m” : (t(r),l'(m)) c E}J; N ([O,t(T)] x R™)},
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where 0 < r < Np. It follows from (19)—(20) that
=<8 o,
Next, according to condition 3) of Assumption H[f}] we have
A7 < ot Jlzllr) o B,
The above estimates and (18) imply
e ™ <& + hoow(t) ) + hov(R),
where 0 < r < Ny — 1. It is easily seen that
A{r) <£§L + hoyi(h)e, 0<r<Np-—1.

Thus we see that the function e satisfies the recurrent inequality

e < e 4 ooy (80, ) 4+ ho(y(h) + e (R), 0<r< Ny—1,
and 520) < 7o(h). Let us denote by 7y, : I, — R the solution of

my T = 4 hoon (6.0 + ho(y(h) + @ (), 0<r < No—1,

n;(LO) =0(h).

It follows easily that sg) < 77,(1T) for 0 < r < Ny. Then the assertion of the
theorem follows from the stability of problem (11), (12).

4. Convergence of implicit difference methods. For any z € C(E, R)
we put
I2lle = max{|z(7,2)| : (,2) € By}, 0<t<a.

Now we give an example of an operator f, associated with (1)—(3), and
we prove that the corresponding difference method is convergent.

Equation (1) contains the function variable z which is an element of
the space C(E,R). So we need an interpolating operator Ty, : F(Ep,R) —
C(E,R). We give an example of such an operator as follows. Put

%:{)\:(}\1,,)\n)AZE{O,l}fOI'OSZSTL}

Let z € F(Ep,R) and (t,z) € E, t < Nohg. There exists (r,m) € Z*™ such
that t() < ¢ <0+ 20m) < g < 2D and (1), 207), ((0+D g(m+1)) ¢
Ej where m+1=(m; +1,...,m, + 1). We define

t —t) rlm z —z(m\* z — pm\ 172
e = 1 S oo (1Y (=)

0 Xes

t — ) z — M\ z — pm\ 172
1 — (T7m+>‘) - 1 N
) R G i

AES
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<x—mm> (azz—x i)>)‘i
:U—x() 1-X x( N 1=)\;
1- " ,

and we take 0° = 1 in the above formulas. If (t,2) € E and Noho <t < a
then we put T [z](t, x) = Th[2](Noho, ). Thus we have defined T}z on E. It
follows easily that Tpz € C'(E,R), and that | T} [2]|l,) = |2]lhr, 0 < 7 < Np.
The above operator T, was first applied in [2] to construct difference
methods for first order partial differential functional equations.
We approximate solutions of (1)—(3) with solutions of the difference equa-
tion
(21) 802" = F(t™) 2 Ty (2], 62(mm) 52 (rm)y
with initial boundary condition (5), (6).

where

I
(-

LEMMA 1. Suppose that z : E — R and
1) 2(t,) : [=b,b] — R is of class C? fort € [0,a] and z, = 2|g,,
2) d € Ry is a constant such that
Do 2(tx)| < d,  (tx) € B, jk=1,...,n,
3) there is L € Ry such that
(22) |z(t, ) — z(t,z)| < LIt —{].
Then B
| Th[2n) — 2|le < Lho +d||R'||?,  t € [0, Noh).

Proof. Let (t,z) € E and t(") <t < ¢t 2m) < < 200D where
(), )y (¢4 2 (mH)y ¢ B Write

t — )
ho

(r+1,m4+x) [ £~ p(m A z—am\1™ (r+1)
X Zz ’ — 1— — —2(t ,x) P,

AES

— ¢
V(t,x) = (1—t ht )
0
(e (£ = 2™\ z —alm )1 (r)

U(t,z) =

AES
) 40
Wit 2) = — [z(t<r+1>,x)_z(t,x)1+<1—t N )[z(t(r)’x)—z(t,:n)].
0 0
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Thus we have
Ty [2](t, x) — 2(t,z) = U(t,x) + V(t,z) + W(t, z).
It follows from ([2, Theorem 5.27]) that
U(t2)| + |[V(t,2)| < d|W|]*.

According to condition (22) we have |W (t,z)| < Lhgy. Hence, the proof is
complete.

AssuMPTION H[o]. The function o : [0, a] x Ry — Ry is such that

1) if (t,p), (¢,P) € [0,a] x Ry and ¢ < ¢, p <P then o(t,p) < o(t,D),

2) o(t,0) = 0 for ¢t € [0,a], and the maximal solution of the Cauchy
problem

¢(t) =o(t,¢(t),  ¢(0)=0,
is ¢(t) = 0 for t € [0, a.
AssumpTION H[f]. The function f : ¥ — R of variables (t,z, z,q, s)
satisfies the conditions:
1) f(t,z,z,-,-) € C(R" x M[n],R), the derivatives

8qf = (athfv cee vaqnf)7 asf = [asz'jf]i,j=17-~-,n’
exist on X and
Ogf(t,z, 2,-,-) € C(R" x M[n],R"),
Osf(t,z,2,-,-) € C(R" x M[n], M[n])
for each (t,z,z2) € E' x F(Ep,R),
2) the matrix Jsf is symmetric and

Os; f(P) >0 for (i,5) € Jy, 0s,f(P) <0 for (i,j) € J-

n

1 1
1— QhOZﬁasjjf(P) +ho Y w10, f(P) 20,
j=1"J (ij)et
1 1 1 .
’ i=lj#i

where P = (t,z,z,q,8) € X,

3) there is a function o satisfying Assumption H[o] such that
||f(t)l'a %, 4, 5) - f(t,ac,z_, q, S)H < U(tv ||Z - ZHt)

on Zh'

We can now formulate our main results.

THEOREM 4.1. Suppose that Assumption H[f] is satisfied and 2 C R1T"
is an open and bounded set such that E C {2 and

1) the function v : £2 — R is the solution of (1)—(3),
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2) v(-,x) is of class C' and v(t,-) is of class C?,
3) the function up : E;" — R is a solution of (5), (6), (21), where
©nhj = @jlaok, for 1 < j < n and there is vo : H — Ry such that

6" = o1 < v0(h)  for 2™ € [<b,B] and limo(h) = 0,

4) there exist ¢,¢ > 0 such that hy, < chj for 1 < k,j <n, and |[W|]* <
chy.

Then there exist g > 0 and a function o : H — Ry such that for ||h|| < eo,
h € H we have

(23) [(up, — vh)(r’m)| <a(h) onEy and lima(h)=0,

1
h—0
where vy, s the restriction of v to Ej,.

Proof. We will use Theorem 3.1 on the error estimation. Write

fnlt,z, 2,q,8) = f(t,z,Ty[2],q,8) on Xy, op(t,p) =0o(t,p) on I xR,.

It follows that conditions (7)-(9) are satisfied. Now we prove that problem
(11), (12) is stable. Let n, : I;, — Ry be a solution of (13), (14) where
0.7 : H — Ry and limy_,o7y(h) = lim,_o5(h) = 0. Let 7, : [0,a] — Ry
be the maximal solution of the Cauchy problem

(24) ¢(t) = a(t,C(t) +7(h),  ¢(0) = ag(h).
Then limy,_g7,(t) = 0 uniformly on [0,a]. The function 7, is convex on
[0, a], therefore we have

i > a0 4 hoo (10, 37) + hov(h),  0<r < No—1.

Since 7y, satisfies (13) we have n}(f) < ﬁ,(f) < mn(a) for 0 < i < Ny, which
completes the proof of the stability of problem (11), (12). It follows from
Assumption H[f] that

[fu(t,2,2,q,8) — fult, 2, 2,q,8)| = |[(t, 2, Tu[z], 4, 8) — f(t, 2, Th[2], ¢, 5)
< ot [Thlz] = TwlZlll) < ot |2 = Zllnr) = on(t, |2 = Zl|n.r)-
Thus all the assumptions of Theorem 3.1 are satisfied and the proof of (23)
is complete.
REMARK 3. Suppose that Assumption H[f] is satisfied with
o(t,p)=Lp, (t,p)€[0,a] xRy, where L € R}

and f satisfies the Lipschitz condition with respect to the function variable.
Then we obtain the following error estimates:

ele _ 1

L

||u,(f’m) - vff’m)ll < ag(h)e™ +7(h) on Ej, if L >0
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and ‘
[ul™™ — o™ < ag(h) + a(h)  on By if L= 0.

The above inequality follows from (23) with a(h) = n,(a) where 7, :
[0,a] — Ry is a solution of (24).

5. Numerical examples

EXAMPLE 1. Write

E =10,0.2] x [-1,1] x [-1,1],
0B = [0,0.2] x [([=1,1] x [~1, 1)\ (—1,1) x (—1,1))].
Consider the differential equation with deviated variables
1

(25) atz(t’ €, y) = axxz(tv z, y) + 8yyz(t7 z, y) + Z axyz(ta z, y)

rTt+y r—y
2 )

+z(t,a:,y)+z<t, >+f(t7xay)

and the initial boundary conditions

(26) 2(0,z,y) =0 for (z,y) € [-1,1] x [-1,1],

(27)  Opz(t,x,y)=0 forte0,0.2], ye[-1,1], z=10orz=—1,
(28)  Oyz(t,z,y) =0 forte0,0.2], z€[-1,1], y=1ory=—1,
where

fltz,y)
=4(1 - e) (32 = (¥ — D> + By — D(@® — 1)* + ay(a® - 1)(y* — 1))
+ (@ = 1Dy" —1)? + (1= e)((@® - y*)? = 8(a” + 4 — 2))* : 162
The function
U(t,[l?, y) = (1 - et)(an - 1)2(y2 - 1)2
is a solution of problem (25)—(28).

We found approximate solutions of (25)—(28) using our numerical
method, and taking the following steps of the mesh: hg = 0.00005, h; = 0.02,
ho = 0.02.

Let uy denote the approximate solution of (25)—(28) which is obtained
by the difference scheme.

The average errors of the method are

Ny
29 (T) — Tﬂ‘:] T”La])
(29 & (2N1+1 )(2Ns £ 1) Z;V]Z |
"N, =N

where N1hy = 1, Noho = 1 and vy, is the restriction of v to the mesh.
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A list of the average errors ¢, for fixed ¢(") is given in Table 1.

Table 1. Errors €,
(ho = 0.00005, hy = 0.02, ha = 0.02)

() 55:)

t=0.01 0.00002
t=0.05 0.00028
t=0.10 0.00105
t=0.15 0.00222
t=0.20 0.00375

The differential equation (25) contains the deviated variables (¢, ££¥, £=¥)
and the example has the following property: if (t("), z(™1) y(m2)) is a grid
point then

(t7,0.5(2™) 4 (m2)), 0.5(2m1) — y(m2)))

is not in general a grid point. We approximate the value z(t(T),0.5(x(m1)
+ y(m2)) 0.5(x(m) — y(m2))) using the interpolating operator 7T}, with
n = 2.

ExAMPLE 2. Consider the integral differential equation

(30)  Owz(t,z,y) = Opa2(t, ,y) + Oyyz(t, x,y) + Opyz(t, x,y)
7T4 x Y t

Z S S z(t,T,s)dsdr + S 2(7, x,y)dr + 2m%2(t, x, y) + cos Tx cos Ty
0

with the initial boundary conditions

(31) 2(0,z,y) =0 for (z,y) € [-1,1] x [-1,1],

(32) Opz(t,z,y) =0 forte[0,0.2],ye[-1,1],z=10rz=—1,
(33) Oyz(t,z,y) =0 forte[0,0.2],z€[-1,1,y=1o0ory=—1,

The function v(t, z,y) = sint cos mx cos my is a solution of (30)—(33).

Let uj, denote the approximate solution of (30)—(33) which is obtained
(r)

by the difference scheme. The average errors of the method ¢, are defined
by (29), where v}, is the restriction of v to the mesh.

We found approximate solutions of (30)—(33) using the numerical
method, and taking the following steps of the mesh: hg = 0.00005, h; =
0.02, hy = 0.02. The method is also convergent and gives the average errors
as in Table 2



Functional differential problems of the Neumann type 177

Table 2. Errors ¢,
(ho = 0.00005, h1 = 0.02, he = 0.02)

¢ egf)

t=0.01 0.0000004
t=0.05 0.0000098
t=0.10 0.0000396
t=0.15 0.0000972
t=0.20 0.0001695

The differential equation (30) contains integrals of the unknown func-
tion z. The corresponding difference equation includes the terms

z(m1)  y(m2) ()
S S z(t(r), 7,8)dsdr and S z(T, (M) y(mQ)) dr
—x(ml) —y(mQ) 0

where z(t(’”), x(ml),y(mQ)) is a grid point. The above integrals are approxi-
mated by

2(m1) y(M2) £(r)
I | T, 7,5)dsdr and | Ty[e)(r, 20, y"D) ar
—x(m1) _y(mg) 0

where zj, is a solution of the difference equation. The above method is equiv-
alent to the trapezoidal rule.

The computation was performed on a PC computer. Numerical results
are consistent with our mathematical theory.

In difference schemes obtained by discretization of problem (1)—(3) a
large number of previous values z("™) must be preserved, because they are
needed to compute an approximate solution with ¢ = ¢("+1).
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