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Difference methods for parabolic functional

differential problems of the Neumann type

by K. Kropielnicka (Gdańsk)

Abstract. Nonlinear parabolic functional differential equations with initial boundary
conditions of the Neumann type are considered. A general class of difference methods
for the problem is constructed. Theorems on the convergence of difference schemes and
error estimates of approximate solutions are presented. The proof of the stability of the
difference functional problem is based on a comparison technique. Nonlinear estimates
of the Perron type with respect to the functional variable for given functions are used.
Numerical examples are given.

1. Introduction. For any two metric spaces X and Y we denote by
C(X, Y ) the class of all continuous functions defined on X and taking
values in Y . Let M [n] denote the set of all n × n real matrices. We will
use vectorial inequalities, understanding that the same inequalities hold be-
tween the corresponding components. Let E = [0, a] × [−b, b], where a > 0,
b = (b1, . . . , bn), bi > 0 for 1 ≤ i ≤ n, and

∂0E = [0, a] × ([−b, b] \ (−b, b)).

Write Σ = E × C(E, R) × R
n × M [n] and

∂0Ej = {(t, x) ∈ ∂0E : xj = bj} ∪ {(t, x) ∈ ∂0E : xj = −bj}, 1 ≤ j ≤ n,

and suppose that

f : Σ → R, ϕ : [−b, b] → R, ϕj : ∂0Ej → R, 1 ≤ j ≤ n,

are given functions. We consider the functional differential equation

(1) ∂tz(t, x) = f(t, x, z, ∂xz(t, x), ∂xxz(t, x))

together with the initial boundary condition of Neumann type

2000 Mathematics Subject Classification: 65M12, 35R10.
Key words and phrases: functional differential equations, difference methods, stability

and convergence.

[163] c© Instytut Matematyczny PAN, 2007



164 K. Kropielnicka

z(0, x) = ϕ(x) for x ∈ [−b, b],(2)

∂xj
z(t, x) = ϕj(t, x) for (t, x) ∈ ∂0Ej , 1 ≤ j ≤ n,(3)

where ∂xz = (∂x1z, . . . , ∂xnz), and ∂xxz = [∂xixj
z]i,j=1,...,n.

For t ∈ [0, a] we write Et = [0, t]×[−b, b]. The function f is said to satisfy
the Volterra condition if for each (t, x, q, s) ∈ E × R

n × M [n] and z, z ∈
C(E, R) such that z(τ, y) = z(τ, y) for (τ, y) ∈ Et we have f(t, x, z, q, s) =
f(t, x, z, q, s). Note that the Volterra condition means that the value of f

at the point (t, x, z, q, s) of the space Σ depends on (t, x, q, s) and on the
restriction of z to the set Et.

In this paper we assume that f satisfies the Volterra condition and we
consider classical solutions of (1)–(3).

We are interested in approximating classical solutions to problem (1)–(3)
by solutions of associated difference functional equations and in estimation
of the difference between these solutions.

Finite difference approximations of initial boundary value problems for
parabolic differential or functional equations were considered by many au-
thors under various assumptions. Difference methods for nonlinear parabolic
differential equations with initial boundary conditions of the Dirichlet type
were considered in [4], [6], [8]. Numerical treatment of the Cauchy problem
can be found in [1], [5], [10], [16].

The paper [3] is concerned with initial boundary value problems of the
Neumann type.

Difference methods for nonlinear parabolic equations with nonlinear
boundary conditions are investigated in [7], [9], [14], [15].

The papers [11]–[13] deal with numerical methods for the reaction-dif-
fusion-convection equations. The implicit difference methods proposed in
those papers have the following property: almost linear parabolic equations
without mixed derivatives are transformed into nonlinear systems of differ-
ence equations which require some kind of iterative schemes for the com-
putation of numerical solutions. Various monotone iterative methods are
presented in [11]–[13].

The main problem in the study of explicit difference methods is to find
a difference or difference functional equation which is stable and satisfies
consistency conditions with respect to the original problem.

The method of difference inequalities or theorems on linear recurrent in-
equalities are used in the study of stability of difference schemes. The proofs
of convergence are also based on error estimates of approximate solutions
to functional difference equations of the Volterra type with initial boundary
conditions and with an unknown function of several variables.

It is usually assumed that the given functions have partial derivatives
with respect to all variables except for (t, x). Our assumptions are more
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general. We introduce nonlinear estimates of the Perron type with respect
to the functional variable. Note that our theorems are new also in the case
of parabolic equations without a functional variable.

The paper is organized as follows. In Section 2 we construct a class of
difference schemes for (1)–(3). Error estimates for approximate solutions
of difference functional problems are proved in Section 3. In Section 4 we
prove a theorem on the convergence of a difference method for (1)–(3). This
is the main part of the paper. Numerical examples are presented in the last
section.

Differential equations with deviated variables and differential integral
problems can be obtained from our general model by a natural specification
of operators.

2. Discretization of mixed problems. We will denote by F (X, Y )
the class of all functions defined on X and taking values in Y , where X and
Y are arbitrary sets. For x, y ∈ R

n where x = (x1, . . . , xn), y = (y1, . . . , yn),
we write ‖x‖ = |x1| + · · · + |xn| and x ∗ y = (x1y1, . . . , xnyn).

We now formulate a difference problem corresponding to (1)–(3). We
define a mesh on E in the following way. Let (h0, h

′) where h′ = (h1, . . . , hn)
stand for steps of the mesh. For h = (h0, h

′) and (r, m) ∈ Z
1+n where

m = (m1, . . . , mn) we define nodal points as follows:

t(r) = rh0, x(m) = m ∗ h′, x(m) = (x
(m1)
1 , . . . , x(mn)

n ).

Let H be the set of all h = (h0, h
′) such that there exists (N1, . . . , Nn) =

N ∈ N
n satisfying the condition N ∗h′ = b. We write ‖h‖ = h0+h1+· · ·+hn.

Let N0 ∈ N be defined by the relation N0h0 ≤ a ≤ (N0 + 1)h0. For h ∈ H

we put

R
1+n
h = {(t(r), x(m)) : (r, m) ∈ Z

1+n}

and
Eh = E ∩ R

1+n
h , ∂0Eh = ∂0E ∩ R

1+n
h ,

∂0Eh.j = ∂0Ej ∩ R
1+n
h , j = 1, . . . , n,

E′
h = {(t(r), x(m)) ∈ Eh : 0 ≤ r ≤ N0 − 1},

Σh = E′
h × F (Eh, R) × R

n × M [n].

For z : Eh → R we write z(r,m) = z(t(r), x(m)). Put Eh.r = Eh∩([0, t(r)]×R
n),

where 0 ≤ r ≤ N0, and

‖z‖h.r = max{|z(r̃,m)| : (t(r̃), x(m)) ∈ Eh.r}, 0 ≤ r ≤ N0.

Let ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ R
n be the vector with 1 in the ith position.

Write

J = {(i, j) : 1 ≤ i, j ≤ n, i 6= j}
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and suppose that we have defined sets J+, J− ⊂ J such that J+ ∪ J− = J,

J+ ∩ J− = ∅ (in particular, it may happen that J+ = ∅ or J− = ∅). We
assume that (i, j) ∈ J+ when (j, i) ∈ J+.

For each m ∈ Z
n such that x(m) ∈ [−b, b] \ (−b, b) we consider the class

of α = (α1, . . . , αn) ∈ Z
n satisfying the conditions:

(i) ‖α‖ = 1 or ‖α‖ = 2,

(ii) if m = (m1, . . . , mn) and there is j, 1 ≤ j ≤ n, such that mj = Nj

then αj ∈ {0, 1},
(iii) if m = (m1, . . . , mn) and there is j, 1 ≤ j ≤ n, such that mj = −Nj

then αj ∈ {−1, 0}.

The set of α ∈ Z
n satisfying the above conditions will be denoted by A(m).

Define

∂E+
h = {(t(r), x(m+α)) : 0 ≤ i ≤ N0, (t(r), x(m)) ∈ ∂0Eh and α ∈ A(m)},

E+
h = ∂E+

h ∪ Eh.

Let z : E+
h → R and −N ≤ m ≤ N . We define

δ+
i z(r,m) =

1

hi
(z(r,m+ei) − z(r,m)), δ−i z(r,m) =

1

hi
(z(r,m) − z(r,m−ei)),

where 1 ≤ i ≤ n. We apply the difference operators δ0 and δ = (δ1, . . . , δn)
given by

δ0z
(r,m) =

1

h0
(z(r+1,m) − z(r,m)),

δiz
(r,m) =

1

2
(δ+

i z(r,m) + δ−i z(r,m)), 1 ≤ i ≤ n.

The difference operator δ(2) = [δij]i,j=1,...,n of the second order is defined in
the following way:

δiiz
(r,m) = δ+

i δ−i z(r,m) for 1 ≤ i ≤ n

and

δijz
(r,m) =

1

2
(δ+

i δ−j z(r,m) + δ−i δ+
j z(r,m)) for (i, j) ∈ J−,

δijz
(r,m) =

1

2
(δ+

i δ+
j z(r,m) + δ−i δ−j z(r,m)) for (i, j) ∈ J+.

Suppose that the functions

fh : Σh → R, ϕh : [−b, b] → R, ϕh.j : ∂0Eh.j → R, 1 ≤ j ≤ n,
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are given. We consider the difference equations

(4) δ0z
(r,m) = fh(t(r), x(m), z, δz(r,m), δ(2)z(r,m)), −N ≤ m ≤ N,

(5) z(t(r), x(m+α)) = z(t(r), x(m−α))

+ 2

n∑

j=1

αjhjϕh.j(t
(r), x(m)) on ∂0Eh, α ∈ A(m),

with the initial condition

(6) z(0,m) = ϕ
(m)
h for x(m) ∈ [−b, b].

We assume that fh satisfies the Volterra condition: for each (t(r), x(m), q, s)
∈ Σ′

h × R
n × M [n] and z, z ∈ F (Eh, R) such that z(τ, y) = z(τ, y) for

(τ, y) ∈ Eh.r we have

fh(t(r), x(m), z, q, s) = fh(t(r), x(m), z, q, s).

Then there exists exactly one solution uh : E+
h → R of problem (4)–(6).

3. Approximate solutions of difference functional problems. We
will denote by Fh the Nemytskĭı operator corresponding to (4), i.e.

Fh[z](r,m) = fh(t(r), x(m), z, δz(r,m), δ(2)z(r,m)), (t(r), x(m)) ∈ E′
h.

Suppose that uh : E+
h →R is the solution of problem (4)–(6) and vh : E+

h →R

satisfies the following conditions:

(7) |δ0v
(r,m)
h − Fh[vh](r,m)| ≤ γ(h) on E′

h,

(8)
∣∣∣v(r,m+α)

h −v
(r,m−α)
h −2

n∑

j=1

αjhjϕ
(r,m)
j.h

∣∣∣≤ γ1(h)‖h′‖2 on ∂0Eh, α∈A(m),

(9) |ϕ(m) − ϕ
(m)
h | ≤ γ0(h), x(m) ∈ [−b, b],

where γ, γ0, γ1 : H → R+ and

(10) lim
h→0

γ(h) = 0, lim
h→0

γ0(h) = 0, lim
h→0

γ1(h) = 0.

The function vh satisfying the above relations is considered to be an approx-
imate solution of problem (4)–(6). We prove an estimate of the difference
between the exact and approximate solutions of (4)–(6). Put

Ih = {t(r) : 0 ≤ r ≤ N0)}, I ′h = Ih \ {t(N0)}.

For a function η : Ih → R we write η(r) = η(t(r)).

Assumption H[σh]. The function σh : I ′h × R+ → R+ is such that

1) σh is nondecreasing with respect to the second variable and σh(t, 0)
= 0 for t ∈ I ′h,
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2) the difference problem

η(r+1) = η(r) + h0σh(t(r), η(r)), 0 ≤ r ≤ N0 − 1,(11)

η(0) = 0,(12)

is stable in the following sense: if γ, γ0 : H → R+ are functions such
that

lim
h→0

γ(h) = 0, lim
h→0

γ0(h) = 0

and ηh : Ih → R+ is a solution of the difference problem

η(r+1) = η(r) + h0σh(t(r), η(r)) + h0γ(h), 0 ≤ r ≤ N0 − 1,(13)

η(0) = γ0(h),(14)

then there is α̃ : H → R+ such that η
(r)
h ≤ α̃(h) for t(r) ∈ Ih and

limh→0 α̃(h) = 0.

Assumption H[fh]. The function fh : Σh → R of variables (t, x, w, q, s),
where q = (q1, . . . , qn), s = [sij ]i,j=1,...,n, satisfies the conditions:

1) fh(t, x, z, ·, ·) ∈ C(Rn × M [n], R) and the derivatives

∂qfh = (∂q1fh, . . . , ∂qnfh), ∂sfh = [∂sij
fh]i,j=1,...,n,

exist on Σh and ∂qfh(t, x, z, ·, ·) ∈ C(Rn ×M [n], Rn), ∂sfh(t, x, z, ·, ·)
∈ C(Rn × M [n], M [n]) for each (t, x, z) ∈ E′

h × F (Eh, R),
2) the matrix ∂sfh is symmetric and

∂sij
fh(P ) ≥ 0 for (i, j) ∈ J+, ∂sij

fh(P ) ≤ 0 for (i, j) ∈ J−,(15)

1 − 2h0

n∑

j=1

1

h2
j

∂sjj
fh(P ) + h0

∑

(i,j)∈J

1

hihj
|∂sij

fh(P )| ≥ 0,(16)

−
1

2
|∂qi

fh(P )|+
1

hi
∂sii

fh(P )−
∑

j=1,j 6=i

1

hj
|∂sij

fh(P )| ≥ 0, 1≤ i≤ n,(17)

where P = (x, y, z, q, s) ∈ Σh,
3) there is a function σh satisfying Assumption H[σh] such that

‖fh(t, x, z, q, s) − fh(t, x, z, q, s)‖ ≤ σh(t, ‖z − z‖h.r)

on Σh.

Remark 1. It is assumed in condition 2) of H[fh] that the functions

gh.ij = sign∂sij
fh, (i, j) ∈ J,

are constant on Σh. Relations (15) can be considered as definitions of the
sets J+ and J−.



Functional differential problems of the Neumann type 169

Remark 2. Suppose that

(i) conditions 1), 2) of Assumption H[fh] are satisfied,
(ii) there is p̃ > 0 such that

∂sii
fh(P ) −

n∑

j=1
j 6=i

|∂sij
fh(P )| ≥ p̃, i = 1, . . . , n,

where P = (t, x, z, q, s) ∈ Σh.

Then there is ε̃ > 0 such that for ‖h′‖ < ε̃ assumption (17) is satisfied.

Theorem 3.1. Suppose that Assumption H[fh] is satisfied and

1) uh : E+
h → R is a solution of (4)–(6) and the function vh : E+

h → R

satisfies (7)–(9),
2) there is c̃ > 0 such that ‖h′‖2 ≤ c̃h0.

Then there is α : H → R+ such that

|(uh − vh)(r,m)| ≤ α(h) on Eh

and

lim
h→0

α(h) = 0.

Proof. Let Γh : E′
h → R, Γ0.h : E0.h → R, and Γ∂.h : ∂0Eh → R be

defined by the relations

δ0v
(r,m)
h = Fh[vh](r,m) + Γ

(r,m)
h on E′

h,

v
(r,m+α)
h − v

(r,m−α)
h = 2

n∑

j=1

αjhjϕ
(r,m)
j.h + Γ

(r,m)
∂.h on ∂0Eh, α ∈ A(m),

v
(0,m)
h = ϕ

(m)
h + Γ

(m)
0.h , x(m) ∈ [−b, b].

It follows from (7)–(10) that

|Γ
(r,m)
h | ≤ γ(h) on E′

h, |Γ
(r,m)
∂.h | ≤ γ1(h)‖h′‖2 on ∂0Eh,

|Γ
(m)
0.h | ≤ γ0(h) for x(m) ∈ [−b, b]

and
lim
h→0

γ(h) = 0, lim
h→0

γ0(h) = 0, lim
h→0

γ1(h) = 0.

Write zh = uh − vh and

Ξ
(r,m)
h = z

(r,m)
h + h0[fh(t(r), x(m), vh, δu

(r,m)
h , δ(2)u

(r,m)
h )

− fh(t(r), x(m), vh, δv
(r,m)
h , δ(2)v

(r,m)
h )],

Λ
(r,m)
h = (t(r), x(m), uh, δu

(r,m)
h , δ(2)u

(r,m)
h )

− fh(t(r), x(m), vh, δu
(r,m)
h , δ(2)u

(r,m)
h ).
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Thus we have

(18) z
(r+1,m)
h = Ξ

(r,m)
h + h0Λ

(r,m)
h − h0Γ

(r,m)
h on E′

h

and

z
(r,m+α)
h = z

(r,m−α)
h + Γ

(r,m)
∂.h on ∂0Eh, α ∈ A(m).

We first estimate Ξ
(r,m)
h . Write

Ai.+(Q) =
1

2hi
∂qi

fh(Q) +
1

h2
i

∂sii
fh(Q) −

n∑

j=1
j 6=i

1

hihj
|∂sij

fh(Q)|,

Ai.−(Q) = −
1

2hi
∂qi

fh(Q) +
1

h2
i

∂sii
fh(Q) −

n∑

j=1
j 6=i

1

hihj
|∂sij

fh(Q)|,

B(Q) = 1 − 2
n∑

i=1

h0

h2
i

∂sii
fh(Q) +

n∑

(i,j)∈J

h0

hihj
|∂sij

fh(Q)|,

Ci(Q) =

n∑

j=1
j 6=i

1

hihj
|∂sij

fh(Q)|,

where Q ∈ Σh and 1 ≤ i ≤ n. It follows from the definition of difference
operators and from condition 1) of Assumption H[fh] that there is Q ∈ Σh

such that

(19) Ξ
(r,m)
h = B(Q)z

(r,m)
h

+ h0

n∑

i=1

Ai.+(Q)z
(r,m+ei)
h + h0

n∑

i=1

Ai.−(Q)z
(r,m−ei)
h

+ h0

n∑

i=1

Ci(Q)[z
(r,m+ei+ej)
h + z

(r,m−ei−ej)
h + z

(r,m+ei−ej)
h + z

(r,m−ei+ej)
h ]

where (t(r), x(m)) ∈ E′
h. We conclude from (15)–(17) that

Ai.+(Q) ≥ 0, Ai.−(Q) ≥ 0, B(Q) ≥ 0, Ci(Q) ≥ 0.

It is important in our considerations that

(20) h0

n∑

i=1

Ai.+(Q) + h0

n∑

i=1

Ai.−(Q) + B(r,m) + 2h0

n∑

i=1

Ci(Q) = 1.

Write

ε
(r)
h = max{|z

(r,m)
h | : (t(r), x(m)) ∈ Eh.r)},

ε̃
(r)
h = max{|z

(r,m)
h | : (t(r), x(m)) ∈ E+

h ∩ ([0, t(r)] × R
n)},
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where 0 ≤ r ≤ N0. It follows from (19)–(20) that

|Ξ
(r,m)
h | ≤ ε̃

(r)
h on E′

h.

Next, according to condition 3) of Assumption H[fh] we have

|Λ
(r,m)
h | ≤ σh(t(r), ‖z‖h.r) on E′

h.

The above estimates and (18) imply

ε
(r+1)
h ≤ ε̃

(r)
h + h0σh(t(r), ε

(r)
h ) + h0γ(h),

where 0 ≤ r ≤ N0 − 1. It is easily seen that

ε̃
(r)
h ≤ ε

(r)
h + h0γ1(h)c̃, 0 ≤ r ≤ N0 − 1.

Thus we see that the function εh satisfies the recurrent inequality

ε
(r+1)
h ≤ ε

(r)
h + h0σh(t(r), ε

(r)
h ) + h0(γ(h) + c̃γ1(h)), 0 ≤ r ≤ N0 − 1,

and ε
(0)
h ≤ γ0(h). Let us denote by ηh : Ih → R+ the solution of

η
(r+1)
h = η

(r)
h + h0σh(t(r), η

(r)
h ) + h0(γ(h) + c̃γ1(h)), 0 ≤ r ≤ N0 − 1,

η
(0)
h = γ0(h).

It follows easily that ε
(r)
h ≤ η

(r)
h for 0 ≤ r ≤ N0. Then the assertion of the

theorem follows from the stability of problem (11), (12).

4. Convergence of implicit difference methods. For any z∈C(E, R)
we put

‖z‖t = max{|z(τ, x)| : (τ, x) ∈ Et}, 0 ≤ t ≤ a.

Now we give an example of an operator fh associated with (1)–(3), and
we prove that the corresponding difference method is convergent.

Equation (1) contains the function variable z which is an element of
the space C(E, R). So we need an interpolating operator Th : F (Eh, R) →
C(E, R). We give an example of such an operator as follows. Put

ℑ = {λ = (λ1, . . . , λn) : λi ∈ {0, 1} for 0 ≤ i ≤ n}.

Let z ∈ F (Eh, R) and (t, x) ∈ E, t ≤ N0h0. There exists (r, m) ∈ Z
1+n such

that t(r) ≤ t ≤ t(r+1), x(m) ≤ x ≤ x(m+1) and (t(r), x(m)), (t(r+1), x(m+1)) ∈
Eh where m + 1 = (m1 + 1, . . . , mn + 1). We define

Th[z](t, x) =
t − t(r)

h0

∑

λ∈ℑ

z(r+1,m+λ)

(
x − x(m)

h′

)λ(
1 −

x − x(m)

h′

)1−λ

+

(
1 −

t − t(r)

h0

)∑

λ∈ℑ

z(r,m+λ)

(
x − x(m)

h′

)λ(
1 −

x − x(m)

h′

)1−λ
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where (
x − x(m)

h′

)λ

=
n∏

i=1

(
xi − x

(mi)
i

hi

)λi

,

(
1 −

x − x(m)

h′

)1−λ

=
n∏

i=1

(
1 −

xi − x
(mi)
i

hi

)1−λi

,

and we take 00 = 1 in the above formulas. If (t, x) ∈ E and N0h0 < t ≤ a

then we put Th[z](t, x) = Th[z](N0h0, x). Thus we have defined Thz on E. It
follows easily that Thz ∈ C(E, R), and that ‖Th[z]‖t(r) = ‖z‖h.r, 0 ≤ r ≤ N0.

The above operator Th was first applied in [2] to construct difference
methods for first order partial differential functional equations.

We approximate solutions of (1)–(3) with solutions of the difference equa-
tion

(21) δ0z
(r,m) = f(t(r), x(m), Th[z], δz(r,m), δ(2)z(r,m))

with initial boundary condition (5), (6).

Lemma 1. Suppose that z : E → R and

1) z(t, ·) : [−b, b] → R is of class C2 for t ∈ [0, a] and zh = z|Eh
,

2) d̃ ∈ R+ is a constant such that

|∂xjxk
z(t, x)| ≤ d̃, (t, x) ∈ E, j, k = 1, . . . , n,

3) there is L ∈ R+ such that

(22) |z(t, x) − z(t, x)| ≤ L|t − t|.

Then

‖Th[zh] − z‖t ≤ Lh0 + d̃‖h′‖2, t ∈ [0, N0h0].

Proof. Let (t, x) ∈ E and t(r) ≤ t ≤ t(r+1), x(m) ≤ x ≤ x(m+1) where
(t(r), x(m)), (t(r+1), x(m+1)) ∈ Eh. Write

U(t, x) =
t − t(r)

h0

×

{∑

λ∈ℑ

z(r+1,m+λ)

(
x− x(m)

h′

)λ(
1−

x − x(m)

h′

)1−λ

−z(t(r+1), x)

}
,

V (t, x) =

(
1 −

t − t(r)

h0

)

×

{ ∑

λ∈ℑ

z(r,m+λ)

(
x − x(m)

h′

)λ(
1 −

x − x(m)

h′

)1−λ

− z(t(r), x)

}
,

W (t, x) =
t− t(r)

h0
[z(t(r+1), x)−z(t, x)]+

(
1−

t − t(r)

h0

)
[z(t(r), x) − z(t, x)].
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Thus we have

Th[z](t, x) − z(t, x) = U(t, x) + V (t, x) + W (t, x).

It follows from ([2, Theorem 5.27]) that

|U(t, x)| + |V (t, x)| ≤ d̃‖h′‖2.

According to condition (22) we have |W (t, x)| ≤ Lh0. Hence, the proof is
complete.

Assumption H[σ]. The function σ : [0, a] × R+ → R+ is such that

1) if (t, p), (t, p) ∈ [0, a] × R+ and t ≤ t, p ≤ p then σ(t, p) ≤ σ(t, p),
2) σ(t, 0) = 0 for t ∈ [0, a], and the maximal solution of the Cauchy

problem
ζ ′(t) = σ(t, ζ(t)), ζ(0) = 0,

is ζ(t) = 0 for t ∈ [0, a].

Assumption H[f ]. The function f : Σ → R of variables (t, x, z, q, s)
satisfies the conditions:

1) f(t, x, z, ·, ·) ∈ C(Rn × M [n], R), the derivatives

∂qf = (∂q1f, . . . , ∂qnf), ∂sf = [∂sij
f ]i,j=1,...,n,

exist on Σ and

∂qf(t, x, z, ·, ·) ∈ C(Rn × M [n], Rn),

∂sf(t, x, z, ·, ·) ∈ C(Rn × M [n], M [n])

for each (t, x, z) ∈ E′ × F (Eh, R),
2) the matrix ∂sf is symmetric and

∂sij
f(P ) ≥ 0 for (i, j) ∈ J+, ∂sij

f(P ) ≤ 0 for (i, j) ∈ J−

1 − 2h0

n∑

j=1

1

h2
j

∂sjj
f(P ) + h0

∑

(i,j)∈J

1

hihj
|∂sij

f(P )| ≥ 0,

−
1

2
|∂qi

f(P )| +
1

hi
∂sii

f(P ) −
∑

j=1,j 6=i

1

hj
|∂sij

f(P )| ≥ 0, 1≤ i≤ n,

where P = (t, x, z, q, s) ∈ Σ,
3) there is a function σ satisfying Assumption H[σ] such that

‖f(t, x, z, q, s) − f(t, x, z, q, s)‖ ≤ σ(t, ‖z − z‖t)

on Σh.

We can now formulate our main results.

Theorem 4.1. Suppose that Assumption H[f ] is satisfied and Ω ⊂ R
1+n

is an open and bounded set such that E ⊂ Ω and

1) the function v : Ω → R is the solution of (1)–(3),
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2) v(·, x) is of class C1 and v(t, ·) is of class C2,
3) the function uh : E+

h → R is a solution of (5), (6), (21), where

ϕh.j = ϕj |∂0Eh
for 1 ≤ j ≤ n and there is γ0 : H → R+ such that

|ϕ
(m)
0 − ϕ

(m)
h | ≤ γ0(h) for x(m) ∈ [−b, b] and lim

h→0
γ0(h) = 0,

4) there exist c, c̃ > 0 such that hk ≤ chj for 1 ≤ k, j ≤ n, and ‖h′‖2 ≤
c̃h0.

Then there exist ε0 > 0 and a function α : H → R+ such that for ‖h‖ < ε0,
h ∈ H we have

(23) |(uh − vh)(r,m)| ≤ α(h) on Eh and lim
h→0

α(h) = 0,

where vh is the restriction of v to Eh.

Proof. We will use Theorem 3.1 on the error estimation. Write

fh(t, x, z, q, s) = f(t, x, Th[z], q, s) on Σh, σh(t, p) = σ(t, p) on I ′h×R+.

It follows that conditions (7)–(9) are satisfied. Now we prove that problem
(11), (12) is stable. Let ηh : Ih → R+ be a solution of (13), (14) where
γ0, γ : H → R+ and limh→0 γ0(h) = limh→0 γ(h) = 0. Let η̃h : [0, a] → R+

be the maximal solution of the Cauchy problem

(24) ζ ′(t) = σ(t, ζ(t)) + γ(h), ζ(0) = α0(h).

Then limh→0 η̃h(t) = 0 uniformly on [0, a]. The function η̃h is convex on
[0, a], therefore we have

η̃
(r+1)
h ≥ η̃

(r)
h + h0σ(t(r), η̃

(r)
h ) + h0γ(h), 0 ≤ r ≤ N0 − 1.

Since ηh satisfies (13) we have η
(r)
h ≤ η̃

(r)
h ≤ η̃h(a) for 0 ≤ i ≤ N0, which

completes the proof of the stability of problem (11), (12). It follows from
Assumption H[f ] that

|fh(t, x, z, q, s) − fh(t, x, z, q, s)| = |f(t, x, Th[z], q, s) − f(t, x, Th[z], q, s)|

≤ σ(t, ‖Th[z] − Th[z]‖t) ≤ σ(t, ‖z − z‖h.r) = σh(t, ‖z − z‖h.r).

Thus all the assumptions of Theorem 3.1 are satisfied and the proof of (23)
is complete.

Remark 3. Suppose that Assumption H[f ] is satisfied with

σ(t, p) = Lp, (t, p) ∈ [0, a] × R+, where L ∈ R+

and f satisfies the Lipschitz condition with respect to the function variable.
Then we obtain the following error estimates:

‖u
(i,m)
h − v

(i,m)
h ‖ ≤ α0(h)eLa + γ(h)

eLa − 1

L
on Eh if L > 0
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and

‖u
(i,m)
h − v

(i,m)
h ‖ ≤ α0(h) + aγ(h) on Eh if L = 0.

The above inequality follows from (23) with α(h) = η̃h(a) where η̃h :
[0, a] → R+ is a solution of (24).

5. Numerical examples

Example 1. Write

E = [0, 0.2] × [−1, 1] × [−1, 1],

∂0E = [0, 0.2] × [([−1, 1] × [−1, 1]) \ ((−1, 1) × (−1, 1))].

Consider the differential equation with deviated variables

∂tz(t, x, y) = ∂xxz(t, x, y) + ∂yyz(t, x, y) +
1

4
∂xyz(t, x, y)(25)

+ z(t, x, y) + z

(
t,

x + y

2
,
x − y

2

)
+ f(t, x, y)

and the initial boundary conditions

z(0, x, y) = 0 for (x, y) ∈ [−1, 1] × [−1, 1],(26)

∂xz(t, x, y) = 0 for t ∈ [0, 0.2], y ∈ [−1, 1], x = 1 or x = −1,(27)

∂yz(t, x, y) = 0 for t ∈ [0, 0.2], x ∈ [−1, 1], y = 1 or y = −1,(28)

where

f(t, x, y)

= 4(1 − et)((3x2 − 1)(y2 − 1)2 + (3y2 − 1)(x2 − 1)2 + xy(x2 − 1)(y2 − 1))

+ (x2 − 1)2(y2 − 1)2 + (1 − et)((x2 − y2)2 − 8(x2 + y2 − 2))2 : 162

The function

v(t, x, y) = (1 − et)(x2 − 1)2(y2 − 1)2

is a solution of problem (25)–(28).

We found approximate solutions of (25)–(28) using our numerical
method, and taking the following steps of the mesh: h0 = 0.00005, h1 = 0.02,
h2 = 0.02.

Let uh denote the approximate solution of (25)–(28) which is obtained
by the difference scheme.

The average errors of the method are

(29) ε
(r)
h =

1

(2N1 + 1)(2N2 + 1)

N1∑

i=−N1

N2∑

j=−N2

|u
(r,i,j)
h − v

(r,i,j)
h |

where N1h1 = 1, N2h2 = 1 and vh is the restriction of v to the mesh.
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A list of the average errors εh for fixed t(r) is given in Table 1.

Table 1. Errors εh

(h0 = 0.00005, h1 = 0.02, h2 = 0.02)

t(r) ε
(r)
h

t = 0.01 0.00002

t = 0.05 0.00028

t = 0.10 0.00105

t = 0.15 0.00222

t = 0.20 0.00375

The differential equation (25) contains the deviated variables
(
t, x+y

2 , x−y
2

)

and the example has the following property: if (t(r), x(m1), y(m2)) is a grid
point then

(t(r), 0.5(x(m1) + y(m2)), 0.5(x(m1) − y(m2)))

is not in general a grid point. We approximate the value z(t(r), 0.5(x(m1)

+ y(m2)), 0.5(x(m1) − y(m2))) using the interpolating operator Th with
n = 2.

Example 2. Consider the integral differential equation

(30) ∂tz(t, x, y) = ∂xxz(t, x, y) + ∂yyz(t, x, y) + ∂xyz(t, x, y)

+
π4

4

x\
−x

y\
−y

z(t, τ, s) ds dτ +

t\
0

z(τ, x, y)dτ + 2π2z(t, x, y) + cos πx cosπy

with the initial boundary conditions

z(0, x, y) = 0 for (x, y) ∈ [−1, 1] × [−1, 1],(31)

∂xz(t, x, y) = 0 for t ∈ [0, 0.2], y ∈ [−1, 1], x = 1 or x = −1,(32)

∂yz(t, x, y) = 0 for t ∈ [0, 0.2], x ∈ [−1, 1], y = 1 or y = −1,(33)

The function v(t, x, y) = sin t cosπx cos πy is a solution of (30)–(33).

Let uh denote the approximate solution of (30)–(33) which is obtained

by the difference scheme. The average errors of the method ε
(r)
h are defined

by (29), where vh is the restriction of v to the mesh.

We found approximate solutions of (30)–(33) using the numerical
method, and taking the following steps of the mesh: h0 = 0.00005, h1 =
0.02, h2 = 0.02. The method is also convergent and gives the average errors
as in Table 2.
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Table 2. Errors εh

(h0 = 0.00005, h1 = 0.02, h2 = 0.02)

t(r) ε
(r)
h

t = 0.01 0.0000004

t = 0.05 0.0000098

t = 0.10 0.0000396

t = 0.15 0.0000972

t = 0.20 0.0001695

The differential equation (30) contains integrals of the unknown func-
tion z. The corresponding difference equation includes the terms

x(m1)\
−x(m1)

y(m2)\
−y(m2)

z(t(r), τ, s) ds dτ and

t(r)\
0

z(τ, x(m1), y(m2)) dτ

where z(t(r), x(m1), y(m2)) is a grid point. The above integrals are approxi-
mated by

x(m1)\
−x(m1)

y(m2)\
−y(m2)

Th[zh](t(r), τ, s) ds dτ and

t(r)\
0

Th[zh](τ, x(m1), y(m2)) dτ

where zh is a solution of the difference equation. The above method is equiv-
alent to the trapezoidal rule.

The computation was performed on a PC computer. Numerical results
are consistent with our mathematical theory.

In difference schemes obtained by discretization of problem (1)–(3) a
large number of previous values z(r,m) must be preserved, because they are
needed to compute an approximate solution with t = t(r+1).
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[7] M. Malec, Schéma explicite des différences finies pour un système d’équations non
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