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A deomposition of omplex Monge�Ampère measuresby Yang Xing (Umeå)
Abstrat. We prove a deomposition theorem for omplex Monge�Ampère measuresof plurisubharmoni funtions in onnetion with their pluripolar sets.1. Introdution. The purpose of this paper is to give a deomposi-tion of omplex Monge�Ampère measures assoiated to pluripolar sets ofplurisubharmoni funtions in the lass F(Ω) de�ned in [C1℄. We denote byPSH(Ω) the lass of plurisubharmoni funtions in a hyperonvex domain

Ω and by PSH−(Ω) the sublass of negative funtions. Reall that a set
Ω ⊂ C

n is said to be a hyperonvex domain if it is open, bounded, onnetedand there exists ̺ ∈ PSH−(Ω) suh that {z ∈ Ω; ̺(z) < −c} ⊂⊂ Ω forany c > 0. The lass F(Ω) onsists of all plurisubharmoni funtions u in Ωsuh that there exists a sequene uj ∈ E0(Ω) with uj ց u as j → ∞ and
supj

T
Ω(ddcuj)

n <∞, where E0(Ω) is the lass of bounded plurisubharmonifuntions v with limz→ζ v(z) = 0 for all ζ ∈ ∂Ω and TΩ(ddcv)n < ∞. Wealso need the sublass Fa(Ω) of funtions from F(Ω) whose Monge�Ampèremeasures put no mass on pluripolar subsets of Ω. It is known that Monge�Ampère measures (ddcu)n for u ∈ F(Ω) are well-de�ned �nite measures in Ω(see [C1℄ for details).Our main result is the following: Restrition of the omplex Monge�Ampère measure of a funtion u ∈ F(Ω) onto its pluripolar set is still aMonge�Ampère measure of some funtion in F(Ω). As an appliation we�nd that every Monge�Ampère measure of a funtion in F(Ω) an be writ-ten as a sum of two Monge�Ampère measures, one of whih has zero masson any pluripolar set and the other is arried by the pluripolar set of theorresponding funtion.It is a great pleasure for me to thank Urban Cegrell for many fruitfulomments.2000 Mathematis Subjet Classi�ation: Primary 32W20, 32U15.Key words and phrases: omplex Monge�Ampère operator, plurisubharmoni funtion.[191℄ © Instytut Matematyzny PAN, 2007



192 Y. Xing2. Theorems and proofs. We need an inequality.
Lemma ([X2℄). Let u, v ∈ PSH(Ω) ∩ L∞(Ω) be suh that

lim inf
z→∂Ω

(u(z) − v(z)) ≥ 0.Then for any −1 ≤ w ∈ PSH−(Ω) we have
(n!)−2

\
u<v

(v − u)n(ddcw)n +
\

u<v

(−w)(ddcv)n ≤
\

u<v

(−w)(ddcu)n.Reall [X2℄ that a sequene {uj} of funtions in PSH(Ω) is said to beonvergent in Cn to a funtion u on a subset E of Ω if for any δ > 0 we have
Cn{z ∈ E; |uj(z) − u(z)| > δ} → 0 as j → ∞, where Cn denotes the innerapaity introdued by Bedford and Taylor in [BT℄.We denote by χA the harateristi funtion of the set A.
Theorem 1. Let v ∈ F(Ω). Then there exists u ∈ F(Ω) with u ≥ v in

Ω suh that
(ddcu)n = χ{v=−∞}(dd

cv)n in Ω.Furthermore, let g be the unique funtion in Fa(Ω) with (ddcg)n =
χ{v>−∞}(dd

cv)n. Then v ≥ u+ g in Ω.Proof. By Theorem 2.1 in [C1℄ we an take a sequene vj ∈ E0(Ω)suh that vj ց v as j → ∞. By [C2℄, [K℄ there exist ukj ∈ E0(Ω) suhthat (ddcukj )
n = −max(v/k,−1)(ddcvj)

n. From the omparison theorem[BT℄ it follows that uk+1
j ≥ ukj ≥ vj ≥ v. By passing to a subsequeneif neessary, we assume that ukj → uk ∈ F(Ω) weakly as j → ∞, and

uk ր u ∈ F(Ω) as k → ∞. Then Theorem 2 below shows that (ddcuk)n =
−max(v/k,−1)(ddcv)n, whih implies (ddcu)n = χ{v=−∞}(dd

cv)n. If fur-thermore χ{v>−∞}(dd
cv)n = (ddcg)n for g ∈ Fa(Ω), then we take gkj ∈ E0(Ω)suh that

(ddcgkj )
n = max((v + k)/k, 0)(ddcvj)

n

= max((v + k)/k, 0)(ddcmax(vj ,−k − 1))n.By the omparison theorem [BT℄ we have 0 > gkj ≥ max(vj ,−k−1) ≥ v. ByTheorem 2 again, we assume that gkj onverges to a bounded psh funtion
gk in Cn on eah E ⊂⊂ Ω. Letting j → ∞ we get
(ddcgk)n = max((v+ k)/k, 0)(ddcv)n = max((v+ k)/k, 0)(ddcg)n ≤ (ddcg)n,whih implies 0 > gk ≥ g. Hene gk dereases to some g1 ∈ Fa(Ω). ByTheorem 5.15 in [C1℄ we have g1 = g. Sine (ddc(gkj + ukj ))

n ≥ (ddcgkj )
n +

(ddcukj )
n = (ddcvj)

n we get vj ≥ gkj + ukj and hene v ≥ g + u. The proof ofTheorem 1 is omplete.
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Theorem 2. Suppose that v ∈ F(Ω), vj ∈ E0(Ω) and −1 ≤ ψ ∈

PSH−(Ω) are suh that vj ց v as j → ∞ and v is bounded on {z ∈
Ω; ψ(z) 6= −1}. If uj ∈ E0(Ω) are suh that (ddcuj)

n = −ψ(ddcvj)
n and

uj → u ∈ PSH(Ω) weakly in Ω, then (ddcu)n = −ψ(ddcv)n, u ≥ v and hene
u ∈ F(Ω).Proof. By the omparison theorem [BT℄ we get 0 ≥ uj ≥ vj ≥ v. Hene
u ≥ v and u ∈ F(Ω). To prove (ddcu)n = −ψ(ddcv)n, by Theorem 7 in [X1℄or [C1℄ we have −ψ(ddcvj)

n → −ψ(ddcv)n weakly as j → ∞, and hene itis enough to show that uj → u in Cn on eah E ⊂⊂ Ω as j → ∞. Take
t < inf{ψ 6=−1} v. Sine

(ddcvj)
n = χ{vj>t}(dd

cvj)
n + χ{vj≤t}(dd

cvj)
n

≤ (ddcmax(vj, t))
n + (ddcuj)

n ≤ (ddc(max(vj , t) + uj))
n,we have vj ≥ uj + max(vj , t) and thus v ≥ u + t. Given E ⊂⊂ Ω and

0 < ε < −t, Theorem 6.10 of [BT℄ shows that there exists 0 < δ < 1 suhthat Cn{z ∈ E; (1−δ)v ≤ −ε} < ε. By quasiontinuity of psh funtions andHartogs' lemma, we only need to show that
Cn{z ∈ E; u(z) > uj(z) + 3ε} → 0 as j → ∞.Let lj := minΩ(δuj + ε). Sine Cn{z ∈ E; uj(z) ≤ δuj(z) − ε} ≤ Cn{z ∈ E;

(1 − δ) v ≤ −ε} < ε, we have
Cn{z ∈ E; u(z) > uj(z) + 3ε} ≤ Cn{z ∈ Ω; u(z) > δuj(z) + 2ε} + ε,whih, by the de�nition of Cn, does not exeed

sup

{

1

εn

\
u>δuj+ε

(u− δuj − ε)n(ddcw)n; w ∈ PSH(Ω), 0 < w < 1

}

+ ε

= sup

{

1

εn

\
max(u,lj)>δuj+ε

(max(u, lj) − δuj − ε)n(ddcw)n;

w ∈ PSH(Ω), 0 < w < 1

}

+ ε,whih by the Lemma is less than
(n!)2δn

εn

\
max(u,lj)>δuj+ε

(ddcuj)
n + ε ≤

(n!)2δn

εn

\
u>δuj+ε

(ddcvj)
n + ε

≤
(n!)2δn

εn

\
u>δuj+ε

φ(ddcvj)
n + 2ε

for some φ ∈ C∞
0 (Ω) with 0 ≤ φ ≤ 1, where we have used the fat thatthere exists E1 ⊂⊂ Ω suh that TΩ\E1

(ddcvj)
n ≤ εn+1/(n!)2δn for all j,whih follows from (ddcvj)

n → (ddcv)n weakly and limj→∞

T
Ω(ddcvj)

n =T
Ω(ddcv)n < ∞. Sine v − t ≥ u ≥ v and uj ≥ v, we have {u > δuj + ε} ⊂
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{v > a} for a := (ε+ t)/(1 − δ) < 0. So the last integral equals\

max(u,a)>δmax(uj ,a)+ε

φ(ddcvj)
n

≤
1

ε

\
max(u,a)>δmax(uj ,a)+ε

φ(max(u, a) − max(uj , a))(dd
cvj)

n.

Sine vj ≥ uj + t and vj ≥ v ≥ u+ t we have max(u, a) − max(uj, a) = 0 if
vj ≤ a+ t. By the quasiontinuity of u there exists an open subset Oε ⊂ Ωsuh that Cn(Oε) < εn+2 and u ∈ C(Ω \Oε). It then follows from Hartogs'lemma that εn+2 + max(u, a) ≥ max(uj , a) on suppφ \ Oε for all j largeenough. Hene by the de�nition of Cn, for all j large enough we have
Cn{z ∈ E; u(z) > uj(z) + 3ε}

≤
(n!)2δn

εn+1

\
Ω

φ(εn+2 + max(u, a) − max(uj , a))(dd
cvj)

n

+ 2ε+ ε(n!)2(εn+2 − a)(−a− t)n sup
Ω

|φ|

=
(n!)2δn

εn+1

\
Ω

φ(max(u, a) − max(uj, a))((dd
cmax(vj, a+ t))n

− (ddcmax(v, a+ t))n)

+
(n!)2δn

εn+1

\
Ω

φ(max(u, a) − max(uj , a))(dd
cmax(v, a+ t))n + O(ε)

= O(ε) as j → ∞,where the last estimate follows from Theorem 1 and Corollary 1 in [X1℄or [C2℄. By the arbitrariness of ε > 0 we see that uj → u in Cn on E as
j → ∞, whih onludes the proof of Theorem 2.
Corollary 1. A positive measure µ in Ω an be written as µ = (ddcv)nfor v ∈ F(Ω) if and only if

µ = (ddcu1)
n + χ{u2=−∞}(dd

cu2)
nfor some u1 ∈ Fa(Ω) and u2 ∈ F(Ω).Proof. The �only if � part . By [C2℄, [K℄ there exists a dereasing sequene

gk ∈ E0(Ω) suh that gk ≥ v in Ω and (ddcgk)
n = χ{v>−k}(dd

cv)n. Then
u1 := limk→∞ gk ∈ Fa(Ω) and (ddcu1)

n = χ{v 6=−∞}(dd
cv)n. Hene we have

µ = (ddcu1)
n + χ{v=−∞}(dd

cv)n .The �if � part . From Theorem 1 it turns out that there exists h ∈ F(Ω)suh that µ = (ddcu1)
n + (ddch)n. By Theorem 5.11 in [C1℄ there exist

ψ ∈ E0(Ω) and f ∈ Lloc((dd
cψ)n) suh that (ddcu1)

n = f(ddcψ)n. Take asequene hj ∈ E0(Ω) suh that hj ց h as j → ∞. Sine min(f, kn)(ddcψ)n+
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(ddchj)

n ≤ (ddc(kψ + hj))
n, by [C2℄, [K℄ there exist vkj ∈ E0(Ω) suh that

(ddcvkj )
n = min(f, kn)(ddcψ)n + (ddchj)

n and hene the omparison theo-rems in [BT℄, [C1℄ imply that 0 > vkj ≥ k ψ + h ≥ u1 + h. Repeating theproof of Theorem 2 we obtain an inreasing sequene vk in F(Ω) suh that
(ddcvk)n = min(f, kn)(ddcψ)n + (ddch)n and 0 > vk ≥ u1 + h. Therefore,
v := (limk→∞ vk)∗ ∈ F(Ω) and µ = (ddcv)n. The proof of Corollary 1 isomplete.
Corollary 2. For any set B = {z1, . . . , zm} of points in Ω and nonneg-ative onstants c1, . . . , cm there exists a funtion u ∈ PSH(Ω) ∩ L∞

loc(Ω \B)suh that u = 0 on ∂Ω and (ddcu)n =
∑m

j=1 cjδzj
in Ω, where δzj

denotesthe Dira measure at zj.Proof. Take the pluriomplex Green funtion gzj
of Ω with logarithmipole at zj and set v =

∑m
j=1 c

1/n
j gzj

. Then v ∈ F(Ω)∩L∞
loc(Ω \B) and v = 0on ∂Ω. By Lemma 5 in [X3℄, (ddcv)n has zero mass at any point z 6∈ B andhas mass cj at zj . Therefore, by Theorem 1 we get the required funtion uand the proof is omplete.
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