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Matrix inequalities and the complex
Monge–Ampère operator

by Jonas Wiklund (Ume̊a)

Abstract. We study two known theorems regarding Hermitian matrices: Bellman’s
principle and Hadamard’s theorem. Then we apply them to problems for the complex
Monge–Ampère operator. We use Bellman’s principle and the theory for plurisubharmonic
functions of finite energy to prove a version of subadditivity for the complex Monge–
Ampère operator. Then we show how Hadamard’s theorem can be extended to polyradial
plurisubharmonic functions.

1. Introduction. We begin our study with a matrix equality that is
reasonably well known in pluripotential theory, nevertheless the proof is not
as simple as it may appear, so we give a careful proof of all steps.

Lemma 1.1 (Bellman’s principle [Gav77]). Let A denote the family of
all positive definite n × n Hermitian matrices with determinant 1. For any
positive definite Hermitian matrix B we have

(detB)1/n =
1
n

inf
A∈A

tr(AB).

To prove the equality in Lemma 1.1 one first shows that for an arbitrary
matrix A ∈ A the left-hand side is less than the right-hand side, which
would surely be a simple matter if the product of two symmetric matrices
were symmetric. Since it is symmetric only if the matrices commute, some
preliminary work is necessary.

The proof of the lemma above is based on conjunctive reduction of two
matrices. The principle of conjunctive reduction can be found in the liter-
ature (see e.g. [MM64].) Furthermore a careful proof of Lemma 1.1 gives
explicit algorithms for calculating the matrix A for a given matrix B.
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Theorem 1.2. Let A and B be two Hermitian matrices, and let A be
positive definite. Then there is a nonsingular matrix Q such that

Q∗AQ = I,(1.1)

Q∗BQ = diag(k1, . . . , kn) = Dk,(1.2)

where Dk is the diagonal matrix with the eigenvalues of A−1B as entries.

Proof. Note that A1/2 and A−1/2 are both positive semidefinite Hermi-
tian matrices. Thus A−1/2BA−1/2 is Hermitian. Since

det(A−1B − λI)

= det(A1/2) det(A−1B − λI) det(A−1/2) = det(A1/2(A−1B − λI)A−1/2)

= det(A−1/2BA−1/2 − λI),

it follows that A−1B has real eigenvalues (k1, . . . , kn). Let P be a unitary
matrix such that P ∗A−1/2BA−1/2P = diag(k1, . . . , kn). Finally, let Q =
A−1/2P .

1.1. Proof of Lemma 1.1. Let A and B be as in Theorem 1.2, with
detA = 1. With the above notation,

detB = det(A−1B) =
∏

ki

≤
(

1
n

∑
ki

)n
=
(

1
n

tr(Dk)
)n

=
(

1
n

tr(Q∗BQ)
)n

=
(

1
n

tr(QQ∗B)
)n

=
(

1
n

tr(A−1B)
)n
,

where the second to last equality follows from the fact that tr(FG) = tr(GF )
for any two matrices F and G. The last equality follows from the definition
of Q.

To show that the infimum is attained, supposeB is diagonal. If detB 6= 0,
we take A as the diagonal matrix with diagonal elements aii = b−1

ii (detB)1/n.
On the other hand, if detB = 0, then—since B is diagonal—we have bii = 0
if i ∈ Λ, for some index set Λ ⊂ {1, . . . , n}. Let k be the number of elements
in Λ. Take A to be a diagonal matrix. With this notation we have

tr(AB) =
∑

i6∈Λ
aiibii.

So if we choose aii = 1/k if i ∈ Λ, we have tr(AB) = k−1 tr(B). Take
aii = k(n−p)/p for i 6∈ Λ; then detA = 1.

If B is not diagonal we simply diagonalize B. Let T be the matrix that
diagonalizes B, i.e. B = T ∗DBT, where DB has the eigenvalues of B on the
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diagonal. Now

detB = detDB =
(

1
n

inf
A∈A
{tr(ADB)}

)n
=
(

1
n

inf
A∈A
{tr(AT ∗BT )}

)n

=
(

1
n

inf
A∈A
{tr(TAT ∗B)}

)n
=
(

1
n

inf
A′∈A
{tr(A′B)}

)n
.

The last equality is just change of coordinates.

Remark. The proof of Lemma 1.1 gives an algorithm for calculating the
matrix A:

(1) Suppose B is a Hermitian matrix. Calculate the diagonalization ma-
trix T such that T ∗BT = diag(λ1, . . . , λn), where λk ≤ λk+1.

(2) (a) If detB 6= 0 let A′ = (detB)1/n diag(1/λ1, . . . , 1/λn).
(b) If detB = 0, and B has rank n− p, let

A′k = kn−p diag(k, . . . , k, 1/k, . . . , 1/k),

with p k’s.
(3) (a) If detB 6= 0, let A = TAT ∗, and we have

detB =
(

1
n

tr(AB)
)n
.

(b) If detB = 0, let Ak = TAkT
∗, and we have

detB = lim
k→∞

(
1
n

tr(AkB)
)n
.

The algorithm above must of course be improved if used in a numerical
calculation.

2. Some applications of Bellman’s principle to the complex
Monge–Ampère operator. The complex Monge–Ampère operator,
(ddcu)n, can be defined on quite general sets of plurisubharmonic functions
(see e.g. [BT76], [Ceg98]). If u ∈ C2(Ω) then

(ddcu)n = 4n det
(

∂2u

∂zj∂zk

)
dV,(2.1)

where dV is the volume measure in Cn. Let us denote the above determinant
by M(u).

If u is a C1,1 function, then u is twice differentiable almost everywhere,
and the second partial derivatives of u defined pointwise as locally bounded
functions coincide with distributional derivatives. Furthermore (2.1) holds
for u ∈ C1,1 (see [B lo96]).
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For every complex n×n Hermitian positive matrix A, consider the Kähler
form

∆A =
1
n

∑

j,k

aij∂
2

∂zj∂zk
.(2.2)

Then
M(u(z)) = ( inf

A∈A
∆Au(z))n if u ∈ PSH ∩ C1,1.(2.3)

As it is written, (2.3) does not hold on less smooth plurisubharmonic
functions since the right hand side is a distribution, and it is generally hard
to multiply distributions.

2.1. Examples

Example 2.1. Let u(z) = |z1z2|2. Then the Hessian Hu is given by

Hu(z) =

[
|z1|2 z1z2

z2z1 |z2|2

]
,(2.4)

and the Monge–Ampère operator of u is zero everywhere.
Hu has eigenvalues λ1 = 0 and λ2 = |z1|2 + |z2|2, and away from both

coordinate axes, is diagonalized by

Tu =




− z2

z1
√

1 + |z2/z1|2
1√

1 + |z2/z1|2
z1

z2
√

1 + |z1/z2|2
1√

1 + |z1/z2|2
.


 .(2.5)

Since

D = TuHuT
∗
u =

[
0 0

0 |z1|2 + |z2|2

]

we choose, according to the proof of Lemma 1.1,

A =

[
k 0

0 1/k

]
.

Straightforward calculations give

tr(T ∗uATuHu) =
|z1|2 + |z2|2

k
.

The Monge–Ampère operator of u is zero and there is an eigenvalue λ1 = 0
everywhere. Our choice of Tu is a change of coordinates in C2 such that in
the new coordinate z′ = Tu(z) we have ∂2

z′1z
′
1
u = 0. That is, u is harmonic

on the line {z′2 = 0}.
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Example 2.2. Let u = |z1 + z3|4 + |z2|4. Then the Hessian Hu is given
by

Hu(z) =




4|z1 + z3|2 0 4|z1 + z3|2
0 4|z2|2 0

4|z1 + z3|2 0 4|z1 + z3|2


 ,(2.6)

and the Monge–Ampère operator of u is zero everywhere. Suppose we stay
away from z2 = 0. Then Hu has eigenvalues λ1 = 0, λ2 = 4|z2|2, and
λ3 = 8|z1 + z3|2, and is diagonalized by

Tu =



−1/2 0 1/2

0 1 0

1/2 0 1/2


 .(2.7)

We choose, according to the proof of Lemma 1.1,

A = diag(k2, 1/k, 1/k).

Straightforward calculations give

tr(T ∗uATuHu) =
4|z2|2 + 4|z1 + z3|2

k
.

If z2 = 0 we get the eigenvalues λ1,2 = 0 and λ3 = 8|z1 + z3|2, and Hu

is diagonalized by exactly the same matrix Tu as above. Choosing A =
diag(k, k, 1/k2), we get

tr(T ∗uATuHu) =
8|z1 + z3|2

k
.

If z3 + z1 = 0, we get the eigenvalues 0 and 4|z2|2, and

tr(T ∗uATuHu) =
4|z2|2
k2 .

In my opinion the examples above show quite clearly why the following
theorem is true:

Theorem 2.3 ([BK77]). Let p ∈ C2 and assume u ∈ PSH ∩ C3, and
(ddcu)2 = 0 in a neighbourhood of p. If ddcu(p) 6= 0, then there is a complex
manifold M through p such that u|M is harmonic on M.

Proof. Let Hu be the complex Hessian of u. The null space of Hu is
a complex subspace of C2. Thus the integral curves of the vector field of
eigenvectors corresponding to the eigenvalue 0 over every point form the
required complex manifold M . Since 0 = Mu = limk→0 tr(A′kHu), where
A′k = T ∗u diag(k, 1/k)Tu, and Tu is the matrix that diagonalizes Hu, it is
clear that u is harmonic along M .
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Using estimates for the energy class F of plurisubharmonic functions
with bounded (classical) energy, developed in the papers [Ceg98], [Ceg01],
and [Ceg02] we can generalize two theorems by Błocki [B lo96].

Theorem 2.4. Let Ω be a hyperconvex set and suppose u ∈ F(Ω). Fur-
thermore assume that ν is a positive measure absolutely continuous with
respect to the Lebesgue measure on Ω. Then the following are equivalent :

(1) (ddcu)n ≥ ν,
(2) ∆Au ≥ ν1/n for all A ∈ A,

(3) (ddcuδ)n ≥ (ν1/n∗%δ)n, where u = %δ is the usual regularization with
an approximative identity.

Proof. Part of this proof is just a line by line copy of the proof of Theorem
3.10 in [B lo96].

We begin by showing that (3)⇒(1). Since (ddcuδ)n → (ddcu)n weakly
as δ → 0, the implication follows from the convergence of ν1/n ∗ %δ.

Assume ∆Au ≥ ν1/n for all A ∈ A. From (2.3) it follows that (ddcuδ)n =
(inf ∆Auδ)n = (inf(∆Au) ∗ %δ)n ≥ ν1/n. Note that since u ∈ F, u has finite
classical energy so the second to last equality holds. Hence (2)⇒(3).

To show that (1)⇒(2), fix A ∈ A and take any plurisubharmonic ψ ∈
E0 ∩ C∞. Set G := (ddcψ)n. Then G1/n is smooth. Let B be any ball in Ω
and solve the equation ∆Aϕ = G1/n with boundary data ϕ = ψ on ∂B. It is
clear that ϕ ∈ C∞(B), and from (2.3) it follows that (ddcϕ)n ≤ G wherever
ϕ is plurisubharmonic. According to [B lo96, Theorem 3.9, p. 735] it follows
that ψ ≤ ϕ, and so

�
B ∆Aψ ≥

�
B∆Aϕ ≥

�
B G

1/n dV.

Let u ∈ F(Ω). Then there is a sequence {ψj}j ⊂ E0 ∩ C∞(Ω) such that

ψj → u in capacity (see [Ceg02]). Let Gj = (ddcψj)n. Then ∆Aψj ≥ G
1/n
j

and since (ddcψj)n converges weak∗ to (ddcu)n as j → ∞, we get ∆Au
≥ νn.

Using the fact that the mapping (detB)1/n is concave on the set of
positive definite Hermitian matrices, together with Theorem 2.4 one gets
the following subadditivity theorem:

Theorem 2.5. Let Ω be a hyperconvex set and suppose u, v ∈ F(Ω).
Furthermore assume that ν and µ are positive measures absolutely continu-
ous with respect to the Lebesgue measure on Ω, and that (ddcu)n ≥ µ and
(ddcv)n ≥ ν. Then

(ddc(u+ v))n ≥ (µ1/n + ν1/n)n.(2.8)

Note how this contrasts with the following lemma:



Monge–Ampère operator 217

Lemma 2.6. Suppose Ω is a hyperconvex domain in Cn and that u, v ∈
F(Ω). Then�

Ω

(ddc(u+ v))n ≤
[(

�

Ω

(ddcu)n
)1/n

+
(

�

Ω

(ddcv)n
)1/n]n

.(2.9)

For a proof see [CW03].

3. Lelong numbers. The Lelong number of a function u at x ∈ Cn is
defined as

ν(u, x) = lim
r→0

1
(2π)n

�

‖z−x‖≤r
ddcu ∧ (ddc log ‖z − x‖)n−1.(3.1)

Let ωn be the (2n − 1)-volume of the unit sphere in Cn. Let B(r;x) be
the ball of radius r with center x, and write ∂B(r;x) = S(r;x). Furthermore
let B(r) = Br = B(r; 0), and the same for the sphere. If we define

M(u, r, x) = sup
z∈B(r;x)

u(z),

λ(u, r, x) =
1
ωn

�

S(1;0)

u(x+ rz) dS1(z),

we have

ν(u, x) = lim
r→0

M(u, r, x)
log r

= lim
r→0

λ(u, r, x)
log r

(3.2)

(see e.g. [Kis79]).
Given a function u : Cn ⊃ Ω → R ∪ {−∞} we define the slice of u

through 0 and p ∈ Cn by up(ζ) := u(ζp), ζ ∈ C, wherever this expression
makes sense.

Lemma 3.1. If u : Cn ⊃ Ω → R ∪ {−∞} and 0 ∈ Ω, then ν(up, 0) ≥
ν(u, 0).

Proof. Since log r < 0 if r < 1, we have

lim
r→0

sup‖z‖≤r u(z)

log r
≤ lim

r→0

sup‖ζ‖≤r u(ζp)

log r
.

Using this lemma we can prove that the reverse inequality holds almost
everywhere.

Lemma 3.2. If u ∈ PSH(B), then ν(uq, 0) = ν(u, 0) for all q ∈ B \ A,
where A is a set of Lebesgue measure zero.

Proof. This follows from

ν(u, 0) =
1
ωn

�

S(1)

ν(u(ζy), 0) dS1(y),

and from Lemma 3.1 above.
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For functions radial in at least one variable Lemma 3.2 above can be
considerably strengthened.

Lemma 3.3. Assume u : C2 ⊃ B → R ∪ {−∞}, u ∈ PSH(B), and
u(|z|, w) = u(z, w). Suppose that ν(u, 0) = 0. Then for all y = (y1, y2) ∈ B
such that y1y2 6= 0, ν(uy, 0) = 0.

Proof. Take p= (z, w), q= (z′, w′)∈C2 with |z|< |z′| and |w|= |w′|=R.
Since u(r, w) is an increasing function in the radial variable we have

sup
|w|=R

u(|z|, w) ≤ sup
|w′|=R

u(|z′|, w′).

That is, ν(up, 0) ≥ cν(uq, 0) for some constant c. Take y = (y1, y2) such
that neither y1 nor y2 is zero. According to Lemma 3.2 there is a point
y′ = (y′1, y2) with |y′1| < |y1| such that ν(uy′, 0) = 0, but then 0 ≥ ν(uy, 0).

4. Bellman’s principle for polyradial functions. In Cn it is well
known that the Lelong number is dominated by the Monge–Ampère operator
in the following way:

(2πν(u, x))n ≤ (ddcu)n({x}).(4.1)

Note that if u(z1, z2) = max {1/k log |z1|, k log |z2|}, then one can show
that (ddcu)2(0) = 4π2δ0, and ν(u, 0) = 1/k, so inequality (4.1) cannot be
reversed.

For polyradial functions at least, it seems that the “correct” version of
(4.1) should be in the flavor of Bellman’s principle.

We begin with a simple lemma, concerning subharmonic functions in the
complex plane.

Lemma 4.1. Let D denote the unit disc in C1, and suppose u ∈ SH(D),
u 6≡ −∞, is radial (i.e. u(|z|) = u(z)). Take ε > 0, and let Dε = {z : u(z) >
(k + ε) log |z|} ∪ {0}. Then ν(u, 0) = k = const · ∂∂u({0}) if and only if Dε

is a disc of positive radius centered at the origin.

Proof. Since u is radial and u 6≡ −∞, it is a convex function in log r,
continuous except for a possible pole at the origin. The result follows.

The following theorem, for polyradial functions, is an analogue to Bell-
man’s principle for plurisubharmonic twice differentiable functions.

Theorem 4.2. Let Ω be a domain in Cn, containing the origin. Assume
u : Cn → R is plurisubharmonic and polyradial on Ω. Take any point pj on
the zj-axis, and set

vj = νpj (u, 0).

Then (ddcu)n ≤ (2π)nv1 · · · vn.
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Proof. For simplicity, assume that the unit polydisc D1 × · · · × D1 is
contained in Ω.

Fix ε > 0. According to Lemma 4.1 there is a disc D1
ε ⊂ C1 such

that u(z) ≥ (v1 + ε) log |z1| on D1
ε × {0} × · · · × {0}. Using the maximum

principle in one complex variable, and the fact that u is polyradial, we
clearly obtain u(z) ≥ (v1 + ε) log |z1| on D1

ε × D1 × · · · × D1. As a result,
max {u(z), (v1 + ε) log |z1|} = u(z) on D1

ε ×D1 × · · · ×D1.
By repeating this reasoning one gets

max {u(z), (v1 + ε) log |z1|, . . . , (vn + ε) log |zn|} = u(z)

on D1
ε × · · · ×D1

ε . On the other hand

max {u(z), (v1 + ε) log |z1|, . . . , (vn + ε) log |zn|}
≥ max {(v1 + ε) log |z1|, . . . , (vn + ε) log |zn|}.

Let uε(z) = max {u(z), (v1 + ε) log |z1|, . . . , (vn + ε) log |zn|} for ε > 0.
Then uε = u on D1

ε × · · · ×D1
ε , hence�

D1
ε×···×D1

ε

(ddcu)n =

�

D1
ε×···×D1

ε

(ddcuε)n ≤

�

D1×···×D1

(ddcuε)n.

By the approximation theorem in [Ceg01] and monotone convergence, for
every ε > 0 we have (ddcuε)n → (2π)nv1 · · · vn as ε→ 0.

To sum up, given a polyradial plurisubharmonic function u, we have

(2πν(u, 0))n ≤ (ddcu)n({0}) ≤ (2π)nv1 · · · vn,(4.2)

where vk is the Lelong number along the kth axis.
(4.2) is perhaps not so surprising if we consider the following special case

of the Hadamard inequality:

Proposition 4.3. Let B = (bij) be a positive semidefinite Hermitian
matrix. Then detB ≤∏ bii.

Proof. Since we might as well assume that detB 6= 0, all diagonal ele-
ments bii are nonzero. Let D = diag(b−1/2

11 , . . . , b
−1/2
nn ). Since (DBDx, x) =

(BDx,Dx), we see that DBD is positive semidefinite and thus

detB∏
bii

= det(BD2) = det(DBD) ≤
(

1
n

tr(DBD)
)n

= 1,

where the inequality follows, as in the proof of Lemma 1.1, by comparison
between arithmetic and geometric means.

Note that Proposition 4.3 above is a nice analogue to Theorem 4.2 if
we interpret detB as the residual Monge–Ampère mass at the origin of a
polyradial function u, and bii as ν(ui, 0), where u1 : C → R ∪ {−∞} is the
slice of u along the z1-axis, defined by u1(ζ) = u(ζ, 0, . . . , 0) and so forth.
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It is well known that for a large class of functions u, the determinant
of the Hessian, det ∂2

jk
u, can be generalized to a measure. However it is not

at all clear to me how to generalize
∏
∂2
kk
u for plurisubharmonic functions

from some reasonable class.
We finish with an application of Proposition 4.3 to a very simple case.

Let u = max(a1 log |z1|, . . . , an log |zn|), and set um = max(u,−m). Let ujm
be a family of smooth plurisubharmonic functions, decreasing to um. Then
(ddcujm)n → (ddcum)n. Furthermore�

M(ujm) ≤

�
∏

∂2
kk
ujm(4.3)

by Proposition 4.3. Note that, in measure, ∂2
11u

j
m → 2πa1λ1, where λ1 is

Lebesgue measure on the segment |z1| = e−m/a1, and |zk| ≤ e−m/ak . Thus
it follows from (4.3) that�

(ddcum)n ≤ (2π)n
∏

ak,

and using Bellman’s principle on the sequence ujm above we obtain an in-
equality in the other direction. Hence (ddcu)n{0} = (2π)n

∏
ak. Note that

with the notation of Theorem 4.2, νk = ak.
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