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Applications of global bifurcation to
existence theorems for Sturm—Liouville problems

by JACEK GULGOWSKI (Gdansk)

Abstract. We prove an existence theorem for Sturm-Liouville problems

() { u” () + o(t,u(t),v' (t)) =0 for a.e. t € (a,b),
l(u) =0,
where ¢ : [a,b] x R¥ x R¥ — RF is a Carathéodory map.

We assume that ¢(t, z,y) = mipo(t, z,y) +o(|z| +y|) as |z|+ |y| — 0 and p(¢, z,y) =
mawo(t,z,y) + o(|x| + |y|) as |z| + |y| — oo, where m1, mo are positive constants and ¢g
belongs to a class of nonlinear maps. The proof bases on global bifurcation results. We
define a map f : (0,00) x C([a, b],R*) — C*([a,b], R¥) such that if f(1,u) = 0, then u is
a solution of (x). Then we show that there exists a connected set C of nontrivial zeroes of
f such that there exist (A1, u1), (A2, u2) € C with A1 < 1 < Ag. In the last section we give
examples of maps ¢g leading to specific existence theorems.

1. Preliminaries. We consider the Banach space C'([a,b], R¥) with
the norm [lully = S, (Juillo + llwjllo), w = (u1,...,ug), where || - o is
the supremum norm in Cfa,b]. Moreover, we set |z| = Zle |x;| for x =
(z1,...,25) € RF.

Recall that ¢ : [a,b] x RF x R¥ x (0,00) — R¥ is a Carathéodory map
if for almost every t € [a,b] the map ¥(¢t,-,-,-) : RF x R* x (0,00) — R¥
is continuous; for every (z,y,)\) € RF x R¥ x (0,00) the map (-, z,y, \) :
[a,b] — R* is measurable; and for every R > 0 there exists mgr € L'(a,b)
such that (¢, z,y, \)| < mpg(t) for |x| + |y| + [N < R.

We call a set A C L'((a,b), R¥) integrably bounded if there exists ma €
L'(a,b) such that |u(t)| < ma(t) for u € A and a.e. t.

In the next section we deal with the problem of existence of solutions of
the boundary value problem

u’(t) + (t,u(t),v'(t),\) =0 for a.e. t € (a,b),
(1.1) {l(u) 0,
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where 1 : [a,b] x RF x RF x (0,00) — R¥ is a Carathéodory map and
1: CY([a,b],R¥) — RF x R* corresponds to Sturm-Liouville boundary con-
ditions, given by

(1.2) lugy ..o ug) = (L(ug), ... le(ug)),
where
1i(uj) = (uj(a)sin o — uj(a) cos oy, uj(b) sin B; + uj(b) cos 5;),
and «aj, 3; € [0,7/2], a? —1—5]2 >0(j=1,...,k).
Let us recall some properties of the problem

u'(t)+ h(t)=0 for ae. t € [a,b],
(3) Lo

where h € L'((a,b), R¥).

We call u € C'([a,b], R¥) a solution of (1.3) if v’ : [a,b] — R¥ is abso-
lutely continuous and satisfies (1.3). It is known (cf. [H]) that there exists a
continuous linear map T : L'((a,b), R¥) — C([a, b], R¥) such that Th = u
iff u is a solution of (1.3). Let us now recall some properties of the map 7.
(1.4) (cf. H]) Ifue Cl([a b] Rk) and h € L'((a,b),R¥), then (u, Th);, =

(Tu, h), where (w,v) S SOk wi () () d.
(1.5) (cf. [P]) If A C Ll((a, b), R¥) is integrably bounded, then T(A4) C
C'([a, b], R¥) is relatively compact.

Moreover, if ¥ : (0,00) x C1([a, b], R¥) — L'((a,b), R¥) is the Nemytskii
map associated with the Carathéodory map 1 : [a, b)) x RF xR* x (0, 00) — R¥,
given by U(\ u)(t) = ¥(t,u(t),u'(t),\), then the map T o ¥ : (0,00) X
C'([a, ], R¥) — C'([a, b], R¥) is completely continuous.

Let f: (0,00) x C'([a, ], RF) — C([a, b], RF) be given by f(\,u) =u —
T (A, u). Assume that ¢(-,0,0,-) = 0. Then f(X,0) =0 for any A € (0, 00).
Let Ry denote the closure of the set of nontrivial zeroes of f, i.e.

Ry = {(\u) € (0,00) x CL([a, b], RF) | f(\,u) = 0, u £ 0}.

We will use the global bifurcation theorem 1 given below. We recall
that (A\o,0) € (0,00) x C1([a,b],R¥) is a bifurcation point of f : (0,00) x
C'([a,b],R¥) — C'([a,b],R¥) if for any open set U C (0, 00) x C'([a, b], R¥)
such that (A\g,0) € U, there exists (A, u) € U with u # 0 and f(A\,u) =0
The set of all bifurcation points of f will be denoted by Bj.

If [a,b] C (0,00) and By C [a, b] x {0}, then we may define the bifurcation
index of f in the interval [a, ] as

s[f,a,b] = lim ds(X\) — /\limﬁ d¢(N),

A—bt

where df(\) = deg(f(A,-), B(0,7),0) for (A\,0) € By and r > 0 small enough.
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The theorem given below is a direct consequence of the theorem given
in [LS] (see also [CH]).

THEOREM 1. Let F : (0,00) x CY([a,b],R*) — C1([a,b],R¥) be a com-
pletely continuous map such that F(-,0) = 0, and let f : (0,00) xC*([a, b], RF)
— CY([a,b],R¥) be given by f(A\u) = u — F(\u). If [a,b] C (0,00),
By C [a,b] x {0} and s[f,a,b] # 0, then there exists a noncompact com-
ponent C C Ry U ([a,b] x {0}) such that C N By # 0.

2. Existence theorem. In this section we will be assuming that ¢ :
[a,b] x RE x RF — R* oo = (¢o.1,-..,¢0k), is a Carathéodory map, satis-
fying the following conditions (A1)-(A3):

(A1) @o(t,mz, my) = myo(t,z,y) for all (z,y) € R?*, m > 0 and almost
every t € [a,b].

(A2) The set A of A € (0,00) for which there exists u € C([a, b], RF),
u # 0, such that (A, u) is a solution of

o) () + Ao(t, u(t), o (1) = 0,
' l(u) =0,
is nonempty and bounded.

(A3) There exist a positive constant & > 0 and a nonzero solution (uo, uo)
€ (0,00) x C*([a,b],R¥), ug = (up1,---,upx), of (2.1) such that

k k
Y w0tz yuoi(t) > a ) i fuoi(t)]
i=1 i=1

for all (z,y) € R?* and almost every ¢ € [a, b].

Observe that 0 € A because of the boundary conditions. Moreover, there
exists 7 > 0 such that A C (r,00). To prove this assume, contrary to our
claim, that there exists a sequence {(\n,u,)} C (0,00) x C1([a, b], R¥) of so-
lutions of (2.1) such that \,, — 0 and ||u,||x = 1. Then the sequence T'®¢(uy,)
contains a convergent subsequence and the corresponding subsequence of
{un} = { AT Py(un)} converges to 0, which contradicts our assumption.
A similar reasoning shows that A is a closed subset of R.

THEOREM 2. Assume 0 < mp < min A < max A < mg and Carathéodo-
ry map o : [a,b] x R¥ x R¥ — RF satisfies (A1)—(A3). Assume moreover
that o : [a,b] x R¥ x R¥ — R* is a Carathéodory map satisfying
(2.2)  Vez0 3550 V(g y)er2r Viea)

(2.3)  Ve=0 Ir>0 v(:c,y)eR% vte[a,b}
| +lyl =2 R = o, z,y) — mjpo(t,z,y)| < e(|z] + |y]),
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where (i,7) = (1,2) or (2,1). Then there exists a nonzero solution of the
boundary value problem

(2.4) {;‘(:f)@:af(t u(t),u'(t)) =0 for a.e. t € (a,b),

where 1 : CY([a, b], R¥) — R?* is given by (1.2).

Proof. Without loss of generality we may assume that the constant « in
(A3) satisfies & € (0, 1). Fix v > max A/mya. Let ¢1,¢2 : (0,00) — [0,00) be
a partition of unity associated with the covering Uy = (0,2v), Uy = (v, 00)
of (0,00). Let 9 : [a,b] x R* x R* x (0,00) — R* be the Carathéodory map
given by

w(ta z,y, /\) = )\QI <)\)§0(ta xZ, y) + AqQ()\)rrnj()OO(t: xz, y)
Let ¥ : (0,00) x C'([a,b],R*) — L'((a,b),R¥) be the Nemytskii map
associated with . Define f : (0,00) x C'([a,b],R*) — C*([a,b],R¥) by
fu) =u—T¥(\ u). We can see that if f(1,u) = 0, then u is a solution
of (2.4).

First we prove that By C {A/m; | A € A}. To show this take a sequence
{(Mnyun)} C (0,00) x C*([a, b], R¥) such that A, — Ao € [0,00), u, # 0 and
up, — 0. Set vy, = up/||un||x. Then
@(un) — miéo(un)

[[eem I
By (2.2) the first term on the right hand side converges to 0. Since {@(vy,) } is
integrably bounded, {T'®y(v,)} contains a convergent subsequence. So the
corresponding subsequence of {v,} converges to some vy € C'([a,b], R¥).
Then vg = Ao(miq1(Xo) + m]‘QQ()\Q))T@O(Uo).

Therefore Ag(miq1(Xo) + mjg2(Xo)) € A. Because m;qi(Ao) + mjga(Ao)
€ [m1,me], we must have A\g < maxA/m; < v, and ¢g2(N\g) = 0. Hence
mi)\o c A, and Bf C {)\/mz ‘ A E /1}

Now we show that s[f, min A/m;, max A/m;] = —1. First observe that by
(2.2) and the homotopy property of the topological degree, s[f, min A/m;,
max A/m;] = s[fo, min A/m;, max A/m;], where fq : (0,00) x C*([a,b], R¥)
— C1([a, b], R¥) is given by

foh uw) = u — Xmigr(A) + mjga(N)TPo(u).

Let A € (0,min A/m;) U (max A/m;,00) and r > 0. The map fo(\,-) :
B(0,7) — C([a,b],R¥) is homotopic to f1(A,-) : B(0,7) — C'([a,b], R¥)
given by fi(\u) = u — Am;TPy(u). Indeed, for A < v the maps are just

equal. Let now A > v. Then the required homotopy h : [0,1] x B(0,r) —
C'([a,b],R¥) is given by

h(t,u) = u — A(t(miqi(A) + mjga(N)) + (1 — t)m;) TPo(u).

Uy, = Anq1 ()‘n)T

+ )\n(miQ1(>\n) + ij2(>\n))T¢0(Un)-
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Observe that for h(t,u) =0 and u # 0,
A(t(migi(A) + mjga(N) + (1 —t)m;) € A.
Because miqi(\) + mjga(A) > mq, we must have
max A > A(tmq + (1 — t)mq1) = dmy,
which contradicts A > v. So we conclude that
s[fo, min A/m;, max A/m;| = s[f1, min A/m;, max A/m;].

Now fix A € (0, min A/m;). Because for ¢t € [0,1] the maps fi(tA,-) :
B(0,7) — C'([a,b],R*) do not have nontrivial zeroes, f1(},-) is homotopic
to the identity map, so deg(f(A,-), B(0,r),0) = 1.

Assume now that A > maxA/m;. As above, f(A1,-) ~ f(A2,-) for
all A1, 2 € (maxA/m;,00), so we may assume that A > maxA/am;.
Now the map fi(\,-) may be joined by a homotopy to fo : B(0,r) —
C'(la,b],RF) given by fo(u) = u — dm;TPo(u) — ug, where ug is given
in (A3); the homotopy ho : [0,1] x B(0,7) — C'([a,b],R¥) is given by
hg(t, u) =Uu-— )\miT@O(u) — t'LL().

We now show that ha(t,u) # 0 for t € (0,1] and v € B(0,7). Assume,
contrary to our claim, that ha(t,u) = 0. Then

u— Am;Tdg(u) = tuy,
<u, ’U,()>]C — )\mi<T¢0<’UJ), ’Ll,()>]C = t(uo, U()>k.
So

A4 (), o)
0

0< <’LL, U0>k — )\mi<T(P0(u), u0>k = <u,u0>k —

bk i Bk g
< 50 ) 0 = 222 T3 o 1 ) ' (o0
o N
<90 o) a0 i — TS a0 o0
a i1=1 a i=1
axm; P
- (1 - T) 3 0ot .

Hence A < max A/am;, a contradiction. So f1(A,-) ~ fo and fo(u) # 0
for uw € B(0,r). Hence deg(f2, B(0,7),0) = 0 and s[f, min A/m;, max A/m;]
=—1.

By Theorem 1 there exists a noncompact component

oL ([min/ljmax/l} § {0}>

my my;
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containing [min A/m;, max A/m;] x {0}. Now we show that there exists a
sequence {(Ap,un)} C C such that |u,||z — oco. Assume, contrary to our
claim, that {u,} is bounded. Then, because C is not compact, either A, — 0
or \, — 00.

First consider the case of A\,, — 0. Since {u,} is bounded, {TW¥ (A, u,)}
has a convergent subsequence. Because u,, = \,T®(u,,) for large n € N, the
corresponding subsequence of {u,} converges to 0. But this contradicts our
earlier observation that for u,, — 0, the sequence {\,} cannot converge to 0.

Now let A\, — co. We may assume that ¥(\,, upn) = \ym;TPo(uy), so
up = AomjTPo(uyn). By (A2), A, € {A/m; | A € A}, which contradicts
Ap — 00.

So there exists a sequence {(A,,u,)} C C such that |uy||rz — oco. We
now show that A\, — Xg € {A\/m; | A € A}. Assume that \,, — A\ € [0, 00).
Then

Up = T (Apyun),
Up = )\n(h ()‘n)T(@(un) - mj¢0(un)) + An(Ql(An) + Q2(>\n))ij@O(Un),
and if we set v, = uy,/||un||x, then
P(un) — m;Po(un)
[[n |k
Observe that the set {®(uy,) —m;Po(uy,)} is integrably bounded. Hence
mT(@(un) — m;Po(u,)) — 0 in C'([a,b],R¥). Because {®(v,)} is in-
tegrably bounded as well, {T'®y(v,)} has a convergent subsequence. So we
may assume that v, — vg and then
vo = Aom; TP (vp)
for vg # 0. This implies \g € {\/m; | A € A}.
Because {A\/m1 | A € A} C (1,00) and {A\/m2a | A € A} C (0,1), there
must exist pairs (A, u1), (A2, u2) € C such that A\; < 1 < Ag. From the

connectedness of C we conclude that there exists (1,u) € C. Because 1 < v,
the function w is a solution of (2.4). O

Un = )\nch()\n)T + )\nijé[)(Un)'

3. Examples. In this section we give examples of Carathéodory maps
©o : [a,b] x R¥ x R¥ — RF satisfying (A1)-(A3), so leading to different
versions of Theorem 2. First, we recall the basic spectral properties of the
scalar linear Sturm-Liouville problem (cf. [H])

" —
(3.1) v"(t) + Av(t) =0 fort € [a,b],
ls(v) =0,
where v € Cl[a,b], A € R and I5 : C'[a,b] — R! x R! is given by (cf. (1.2))
Is(v) = (v(a) sinas — v'(a) cos ag, v(b) sin Bs + v'(b) cos Bs).
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Problem (3.1) has a minimal eigenvalue ps € R. Let vy denote an eigen-
vector associated with us. Then pg € (0,00) and vy does not change sign in
(a,b). Additionally |vg| is the only nonzero and nonnegative solution of (3.1).

Let g : R¥ — R¥ be given by ¢ (21, ..., 25) = (&1, - - -, &k|2r]), where
€1y, & € [0,00) for €2 4+ €2 > 0, and let A = {us/& | & > 0,5 =
1,...,k}.

THEOREM 3. Let @qg be as above. Assume moreover 0 < my < min A <
max A < mao and the Carathéodory map ¢ : [a,b] x RF x RF — R* satisfies

Ves0 Js>0 v(x,y)eR% vtE[a,b]
2]+ |yl <0 = o(t,z,y) — mipo(t, ,y)| < e(lz] + [y)),
Ves0 dr>0 V(o y)er2r Viela,b)
[ +lyl = R = et z,y) —mjeo(t, z,y)| < e(lz| + |y]),
where (i,7) = (1,2) or (2,1). Then there exists a nonzero solution of

{u”(t) + o(t,u(t),u/'(t)) =0 for a.e. t € (a,b),
l(u) =0,

where | : C1([a,b], R¥) — R* x R¥ is given by (1.2).

Proof. By Theorem 2 it is enough to check that ¢ satisfies (A1)—(A3).
Condition (A1) is obvious.

We show that if (A, u) is a solution of (1.2) such that u # 0, then A € A.
If u # 0 then there exists s € {1,...,k} such that us # 0 and

ul(t) + Xslus(t)| =0 for a.e. t € (a,b),
ls(us) = 0.

From the maximum principle (cf. [PW]) we conclude that us > 0, so
A = ps. This implies £ # 0 and A € A.

Because the set A is finite and nonempty, condition (A2) is satisfied as
well.

Let s € {1,...,k} be such that £ > 0 and (us, vo) is a solution of (3.1)
such that vg(t) > 0 for ¢ € (a,b). Let up = (0,...,vp,...,0), where the sth
coordinate is the only nonzero one. Observe that

k k
> poult, w)uo(t) = Eslslvo(t) = &Y |zl |uou(t)]-
=1 =1

Hence condition (A3) is satisfied as well. m

Now consider the scalar (kK = 1) Picard problem. Fix m € N and let
om : [0,7] x Rt — R! be given by

(32) enltia) = {

|z|  if sin(mt) > 0,
—|z| if sin(mt) < 0.
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LEMMA 1. There exists a constant v > 0 such that if (A\,u) € (0,00) X
C'a,b] is a solution of

U (t) + Apm(t,u(t)) =0  for a.e. t €[0,7],
(3.3) { w(0) = u(m) = 0.

such that u # 0, then \ € [r, m?].

Proof. First observe that for A = 0 problem (3.3) has no solution u # 0.
Also, there is no sequence {(\y,un)} C (0,00) x Cl([a,b],R¥) such that
An — 0 and u,, # 0 (see the remark after (A3)).

From steps (A)—(D) of Lemma 3.1 of [G] we conclude that all zeroes of
u are isolated (in the set of zeroes of u), and at each of them w changes
sign. Assume now, contrary to our claim, that A > m?2. By (A) of the above
mentioned Lemma 3.1 of [G] we can see that if u(t)sinmt < 0, then

&) u(t) = AVt 4 eV
and if u(t) sinmt > 0, then
(T) u(t) = Asin(VAt) + B cos(VAt)

for some constants A, B € R. We see that if A > m?, then half the period of
(7) is less than m/m. So if there exists tg € (Im/m, (I + 1)m/m) such that
u(tp) sinmtog > 0, then the interval (Iw/m, (I + 1)m/m) contains a zero of
u. Thus for any [ € {1,...,m} there exists a left hand neighbourhood of
Im/m such that u restricted to this neighbourhood is given by (£). So there
must exist tg € ((m — 1)7/m, ) such that u is given by (€) in (tp,7) and
u(tp) = u(mw) = 0. This implies that u = 0 for t € (¢g, 7), which contradicts
the fact that all zeroes of u are isolated (in the set of zeroes of u). m

THEOREM 4. Let o, : [0, 7] x Rt — R be given by (3.2),

ro = inf{A € (0,00) | e (japrr) ¥ # 0 and (A u) is a solution of (3.3)}

and 0 < m; < 19 < m? < my. Assume moreover the Carathéodory map

¢ [a,b] x R x Rt — R! satisfies
Ves0 Js>0 v(az,y)ERQ vte[0,7r]
|+ |yl <0 = [o(t,z,y) — mipm(t, 2)| < (|| + [y]),
Ve>0 Fr>0 V(zy)er? Vic[o,n]
[zl +lyl =2 R = |o(t,z,y) — miem(t,z)| < e(|z] + [y]),

for (i,7) = (1,2) or (2,1). Then there exists a nonzero solution of the prob-
lem

{ (()—Hptu "(t)) =0 forae.te€ (a,b),

sult), u
0) = u(m) = 0.
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Proof. First observe that ro > 0 by Lemma 1, and condition (A2) is
satisfied.

Condition (A1) is obvious. Because (m
up(t) = sinmt, then

2 sinmt) is a solution of (3.3), if

wo(t, x)up(t) = |z||sinmt|,
which proves (A3). =

REMARK (cf. [G]). For m = 2 we have rog = A\*, where \* € (1,4) is the
only solution of tan(v/A\* 7/2) = — tanh(v/A* /2).
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