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Positive solutions with given slope
of a nonlocal second order boundary value problem

with sign changing nonlinearities

by P. Ch. Tsamatos (Ioannina)

Abstract. We study a nonlocal boundary value problem for the equation x′′(t) +
f(t, x(t), x′(t)) = 0, t ∈ [0, 1]. By applying fixed point theorems on appropriate cones, we
prove that this boundary value problem admits positive solutions with slope in a given
annulus. It is remarkable that we do not assume f ≥ 0. Here the sign of the function f
may change.

1. Introduction. This paper discusses the nonlinear equation

(1.1) x′′(t) + f(t, x(t), x′(t)) = 0, t ∈ I := [0, 1],

with the initial condition

(1.2) x(0) = 0

and the nonlocal boundary condition

(1.3) x′(1) =
1�

0

x′(s) dg(s),

where f : I×R×R→ R is a continuous function, g : I → R is an increasing
function and the integral in (1.3) is a Riemann–Stieltjes integral.

Condition (1.3) is obviously the continuous version of the multipoint
boundary condition

(1.4) x′(1) =
m∑

i=1

αix
′(ξi),

where ξi ∈ (0, 1), i = 1, . . . ,m and the real numbers α1, . . . , αm have the
same sign. The boundary value problem (1.1), (1.2), (1.4) appeared early
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in the literature (see [16] and the references therein) and has recently been
studied e.g. in [13, 14]. Also the problem of the existence of positive solutions
for the nonlocal boundary value problem (1.1)–(1.3) has been dealt with by
Karakostas and Tsamatos in several papers [17–20]. We note that the inter-
est in the existence of positive solutions for ordinary differential equations
comes from the corresponding problems in partial differential equations.
Indeed, the problem of the existence of positive solutions for partial semi-
linear elliptic equations is very old, has many applications and has been
widely studied. (See the review article by Lions [23].) H. Wang [27] showed
how such a problem can be reduced to a second order boundary value prob-
lem for ordinary differential equations with two-point boundary conditions.
Since then, the problem of existence of positive solutions for second order
ordinary differential equations, with various boundary conditions, has been
dealt with by many authors. (See e.g. [1, 4–10, 12, 15, 17–20, 22, 24–26].)
The book of Agarwal, O’Regan and Wong [2] gives a good overview on this
issue.

A very common assumption in the study of positive solutions for bound-
ary value problems for equation (1.1), especially when Krasnosel’skĭı’s fixed
point theorem is applied, is that f ≥ 0. (See e.g. [8–10, 15, 17–20, 22, 24–27].)
This assumption is very helpful in proving that such a boundary value prob-
lem has at least one positive and concave solution. There are fewer papers in
which f is allowed to change sign. (See [1, 4, 5, 12, 22].) Motivated mainly
by [12, 17–20, 22], in the present paper we establish sufficient conditions
under which the boundary value problem (1.1)–(1.3) has positive solutions
in the case when f can change sign. To obtain our results, apart from the
well known Krasnosel’skĭı fixed point theorem (see Theorem 1.2 below), we
also use another fixed point theorem on a Banach space ordered by an ap-
propriate cone (see Theorem 1.1 below). The concept of a cone in a Banach
space is essential to formulate and apply both these theorems.

Definition. Let B be a real Banach space. A cone in B is a nonempty,
closed set K ⊂ B such that

(i) κu+ λv ∈ K for all u, v ∈ K and all κ, λ ≥ 0,
(ii) u,−u ∈ K implies u = 0.

In a Banach space B we set

B% := {x ∈ B : ‖x‖ < %}, ∂B% := {x ∈ B : ‖x‖ = %}.
Theorem 1.1 ([3, p. 661]). Let B a Banach space, K a cone in B and

h : K ∩ B% → K a compact map such that h(x) 6= λx for all x ∈ K ∩ ∂B%
and λ ≥ 1. Then h has a fixed point in K ∩B%.

Theorem 1.2 ([11, 21]). Let B be a Banach space and let K be a cone
in B. Assume that Ω1 and Ω2 are open bounded subsets of B, with 0 ∈ Ω1 ⊂
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Ω1 ⊂ Ω2, and let
T : K ∩ (Ω2 \Ω1)→ K

be a completely continuous operator such that either

‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω1, ‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω2,

or
‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω1, ‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω2.

Then T has a fixed point in K ∩ (Ω2 \Ω1).

2. The assumptions and main results. We denote by R the real line
and by R+, I the intervals [0,∞), [0, 1] respectively. Also, C1

0 (I) denotes the
space of all functions x : I → R with x′ continuous on I and x(0) = 0. The
norm

‖x‖10 := sup{|x′(t)| : t ∈ I}
makes C1

0 (I) a Banach space.
For the function g we assume the following:

(H1) g : I → R is an increasing function such that

g(0) = 0, g(1) 6= 1.

Consider equation (1.1) with the boundary conditions (1.2), (1.3). By
a solution of the boundary value problem (1.1)–(1.3) we mean a function
x ∈ C1

0 (I) satisfying condition (1.3) and equation (1.1) for all t ∈ I.
Searching for solutions we shall reformulate the problem (1.1)–(1.3) to

obtain an operator equation of the form x = Ax, for an appropriate opera-
tor A. To find A consider an equation of the form

x′′(t) + z(t) = 0, t ∈ I,
subject to conditions (1.2), (1.3). By integration we get

(2.1) x′(t) = x′(1) +
1�

t

z(s) ds.

Then, from (1.3), it follows that

x′(1) = γ

1�

0

1�

t

z(s) ds dg(t),

where

γ :=
1

1− g(1)
.
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Integrating (2.1) once again we obtain

x(t) = γt

1�

0

1�

s

z(r) dr dg(s) +
t�

0

1�

s

z(r) dr ds, t ∈ I.

This process shows that solving the boundary value problem (1.1)–(1.3) is
equivalent to solving the operator equation x = Ax in C1

0 (I), where A is the
operator defined by

(2.2) (Ax)(t) = γt

1�

0

1�

s

f(r, x(r), x′(r)) dr dg(s) +
t�

0

1�

s

f(r, x(r), x′(r)) dr ds

for x ∈ C1
0 (I) and t ∈ I.

Before presenting our results we state our assumptions as well as intro-
duce some useful notations:

(H2) There exist nonnegative real-valued functions p, q, r in L1(I) and
nonnegative, nondecreasing real-valued functions Φ, Ψ , locally inte-
grable on R+ and such that

|f(t, u, v)| ≤ p(t) + q(t)Φ(|u|) + r(t)Ψ(|v|)
for all (t, u, v) ∈ I × R × R. Moreover, p, q and r are not equal to
zero almost everywhere.

Next define the continuous functions

P (t) :=
1�

t

p(s) ds, Q(t) :=
1�

t

q(s) ds, R(t) :=
1�

t

r(s) ds, t ∈ I,

Qm(t) :=
1�

t

q(θ)Φ(θm) dθ, t ∈ I, m ∈ R+,

and

F (m) := γ

1�

0

1�

s

f(r,mr,m) dr dg(s), m ∈ R+.

Moreover, if w : I → R is a continuous function, we define

wg =
1�

0

w(s) dg(s).

(H3) There exists T > 0 such that

|γ|(Pg + (QT )g + Ψ(T )Rg) + P (0) +QT (0) +R(0)Ψ(T ) < T.

(H4) The function γf(t, u, v) is nonincreasing with respect to the vari-
ables u, v.

Now we are in a position to prove our first main result:
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Theorem 2.1. Let assumptions (H1)–(H4) be satisfied , and suppose that

(H5) there exists Θ>T such that F (Θ)−P (0)−QΘ(0)−Ψ(Θ)R(0) ≥ 0.

Then there exists a solution x ∈ C1
0 (I) of the boundary value problem (1.1)–

(1.3) such that 0 ≤ x(t) ≤ Tt for t ∈ I, where T is defined by (H3).

Proof. We intend to apply Theorem 1.1. For this purpose consider the
set

K := {x ∈ C1
0 (I) : x′(t) ≥ 0, t ∈ I},

which is a cone in C1
0 (I), and the set

BΘ = {x ∈ C1
0 (I) : ‖x‖10 < Θ},

where Θ is the positive constant ensured by assumption (H5). We will prove
that

A(K ∩BΘ) ⊂ K.
Indeed, if x ∈ K ∩ BΘ, then 0 ≤ x′(t) ≤ Θ and 0 ≤ x(t) ≤ Θt for t ∈ I.
Moreover, by (H2), (H4) and (H5), for every t ∈ I we have

(Ax)′(t) = γ

1�

0

1�

s

f(θ, x(θ), x′(θ)) dθ dg(s) +
1�

t

f(θ, x(θ), x′(θ)) dθ(2.3)

≥ γ
1�

0

1�

s

f(θ, x(θ), x′(θ)) dθ dg(s)−
1�

t

|f(θ, x(θ), x′(θ))| dθ

≥ γ
1�

0

1�

s

f(θ,Θθ,Θ) dθ dg(s)

−
1�

0

(p(θ) + q(θ)Φ(|x(θ)|) + r(θ)Ψ(|x′(θ)|)) dθ

≥ F (Θ)−
1�

0

(p(θ) + q(θ)Φ(θΘ) + r(θ)Ψ(Θ)) dθ

≥ F (Θ)− P (0)−QΘ(0)− Ψ(Θ)R(0) ≥ 0.

Now we define the open set

BT = {x ∈ C1
0 (I) : ‖x‖10 < T},

where T is the positive constant ensured by assumption (H3). Since, by
(H5), T < Θ, we have K ∩BT ⊂ K ∩BΘ and thus

A(K ∩BT ) ⊂ K.
Furthermore, we will show that λx 6= Ax for every λ ≥ 1 and x ∈ K with
‖x‖10 = T . Suppose that, on the contrary, x ∈ K, ‖x‖10 = T and λx = Ax for
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some λ ≥ 1. Then 0 ≤ x′(t) ≤ T and 0 ≤ x(t) ≤ Tt for t ∈ I. Thus, taking
into account assumption (H2), for every t ∈ I we have

x′(t) ≤ λx′(t) = (Ax)′(t)(2.4)

≤ |γ|
1�

0

1�

s

|f(θ, x(θ), x′(θ))| dθ dg(s) +
1�

t

|f(θ, x(θ), x′(θ))| dθ

≤ |γ|
1�

0

1�

s

(p(θ) + q(θ)Φ(x(θ)) + r(θ)Ψ(x′(θ))) dθ dg(s)

+
1�

0

(p(θ) + q(θ)Φ(x(θ)) + r(θ)Ψ(x′(θ))) dθ

≤ |γ|Pg + |γ|
1�

0

1�

s

q(θ)Φ(θT ) dθ dg(s) + |γ|
1�

0

1�

s

r(θ)Ψ(T ) dθ dg(s)

+ P (0) +
1�

0

q(θ)Φ(θT ) dθ +
1�

0

r(θ)Ψ(T ) dθ

= |γ|(Pg + (QT )g + Ψ(T )Rg) + P (0) +QT (0) +R(0)Ψ(T ).

Therefore we have

T =‖x‖10 =sup
t∈I
|x′(t)|≤|γ|(Pg+(QT )g+Ψ(T )Rg)+P (0)+QT (0)+R(0)Ψ(T ),

which contradicts (H3).
The above statements ensure that Theorem 1.1 is applicable and the

assertion of our theorem follows.

In order to prove our second main result we need the following lemma.

Lemma 2.2. Let assumptions (H1)–(H3) be satisfied , and suppose that

(H6) F (0)− P (0)−Q(0)Φ(0)−R(0)Ψ(0) > 0.

Then there exists M ∈ (0, T ) such that

(2.5) F (M) = P (0) +QM (0) +R(0)Ψ(M) +M,

where T is defined by (H3).

Proof. Define the continuous real-valued function L by

L(m) := F (m)− P (0)−Qm(0)−R(0)Ψ(m)−m, m ≥ 0.

By assumption (H6) we have L(0) > 0. Therefore, since F and L are con-
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tinuous, it is enough to show that L(T ) < 0. To this end observe that

F (T ) = γ

1�

0

1�

s

f(θ, θT, T ) dθ dg(s) ≤ |γ|
1�

0

1�

s

|f(θ, θT, T )| dθ dg(s)

≤ |γ|
1�

0

1�

s

(p(θ) + q(θ)Φ(θT ) + r(θ)Ψ(T )) dθ dg(s)

≤ |γ|Pg + |γ|
1�

0

1�

s

q(θ)Φ(θT ) dθ dg(s) + |γ|
1�

0

1�

s

r(θ)Ψ(T ) dθ dg(s)

= |γ|(Pg + (QT )g +RgΨ(T )).

Hence it suffices to prove that

|γ|(Pg + (QT )g +RgΨ(T ))− P (0)−QT (0)−R(0)Ψ(T )− T < 0,

which, in view of (H3), is obvious.

Theorem 2.3. Let assumptions (H1)–(H6) be satisfied. Then there ex-
ists a solution x ∈ C1

0 (I) of the boundary value problem (1.1)–(1.3) such that
M ≤ ‖x‖01 ≤ T , where M and T are defined by (2.5) and (H3), respectively.

Proof. Our purpose is to apply Theorem 1.2. Indeed, consider the cone
K and the set BΘ as in the proof of Theorem 2.1 and define the open sets

Ω1 := BM = {x ∈ C1
0 (I) : ‖x‖10 < M}

Ω2 := BT = {x ∈ C1
0 (I) : ‖x‖10 < T}.

Let also A be the operator defined by (2.2) on the cone K. As in the proof
of Theorem 2.1, we can show that

A(K ∩BΘ) ⊂ K.
Since M < T < Θ, we have K ∩ (Ω2 \Ω1) ⊂ K ∩BΘ and thus

A(K ∩ (Ω2 \Ω1)) ⊂ K.
Now consider an x ∈ K ∩ ∂Ω1. Then ‖x‖10 = M , and following the same
argument as in (2.3), we derive

(Ax)′(t) ≥ F (M)− P (0)−QM (0)− Ψ(M)R(0).

Therefore, taking into account (2.5) we have

(Ax)′(t) ≥M = ‖x‖10, t ∈ I,
which means that

‖Ax‖10 ≥ ‖x‖10, x ∈ K ∩ ∂Ω1.
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Now consider a point x ∈ K ∩ ∂Ω2. Then ‖x‖10 = T , and following the
same argument as in (2.4) and taking into account (H3), we obtain

‖Ax‖10 = sup
t∈I
|(Ax(t))′|

≤ |γ|Pg + P (0)|γ|Qg(T ) +QT (0) + Ψ(T )(|γ|Rg +R(0)) ≤ T,
i.e.

‖Ax‖10 ≤ ‖x‖10, x ∈ K ∩ ∂Ω2.

The above statements ensure that Theorem 1.2 is applicable and the
assertion of our theorem follows.

3. Applications

The sublinear case. Here we suppose that f satisfies the following con-
dition:

(Ĥ2) There exist nonnegative real-valued functions p, q, r in L1(I), not
equal to zero almost everywhere and such that

|f(t, u, v)| ≤ p(t) + q(t)|u|+ r(t)|v|
for all (u, v) ∈ R× R and all t ∈ I.

This is, obviously, the case of assumption (H2) when Φ and Ψ are both the
identity functions. Then we have

Qm(t) = m

1�

t

θq(θ) dθ, (Qm)g = m

1�

0

1�

s

θq(θ) dθ dg(s),

and thus assumption (H3) takes the form:

(Ĥ3) There exists T > 0 such that

(3.1) |γ|
(
Pg+T

1�

0

1�

s

θq(θ)dθdg(s)+TRg
)

+P (0)+T
1�

0

θq(θ)dθ+TR(0) < T.

Now we set

q̂(t) = tq(t), Q̂(t) =
1�

t

q̂(s) ds,

and by (3.1) we obtain

T (1− |γ|Q̂g − |γ|Rg − Q̂(0)−R(0)) > |γ|Pg + P (0).

Then, if

(3.2) |γ|(Q̂g +Rg) + Q̂(0) +R(0) < 1,
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we can take

(3.3) T >
|γ|Pg + P (0)

1− |γ|(Q̂g +Rg)− Q̂(0)−R(0)
=: K.

Moreover assumptions (H5) and (H6) become:

(Ĥ5) there exists Θ > K such that F (Θ)−P (0)−QΘ(0)−ΘR(0) ≥ 0,

and

(Ĥ6) F (0) > P (0),

respectively.
Therefore we have the following corollaries of Theorems 2.1 and 2.3 re-

spectively.

Corollary 3.1. Let assumptions (H1), (Ĥ2), (H4), (Ĥ5) be satisfied ,
and suppose that (3.2) holds. Then there exists a solution x ∈ C1

0 (I) of the
boundary value problem (1.1)–(1.3) such that 0 ≤ x(t) ≤ Tt for t ∈ I, where
T > K and K is defined by (3.3).

Corollary 3.2. Let assumptions (H1), (Ĥ2), (H4), (Ĥ5), (Ĥ6) be sat-
isfied , and suppose that (3.2) holds. Then there exists a solution x ∈ C1

0 (I)
of the boundary value problem (1.1)–(1.3) such that M ≤ ‖x‖01 ≤ T , where
T > K and K, M are defined by (3.3), (2.5), respectively.

An example. Consider the following nonlocal boundary value problem:

x′′(t) + bx′(t) + btx(t)− 1 = 0, t ∈ I,(3.4)

x(0) = 0, x′(1) =
1�

0

x′(s) dg(s),(3.5)

where b is a positive constant and g(s) = 5
4s

2.

We wish to check the applicability of Corollary 3.2 to this boundary
value problem. In the present case we have f(t, u, v) = −1 + btu + bv and
thus |f(t, u, v)| ≤ 1 + b|u|+ b|v|. So it is clear that assumptions (H1), (H2)
are satisfied, and moreover, p(t) = 1 and q(t) = r(t) = b. Furthermore we
have

γ = −4, F (0) = −4
1�

0

1�

s

(−1) dθ dg(s) =
5
3
, P (0) =

1�

0

p(s) ds = 1.

Observe that F (0) = 5/3 > 1 = P (0), so assumption (Ĥ6) is satisfied. Also,
since γf(t, u, v) = 4 − 4btu − 4bv, γf is nonincreasing with respect to the
variables u, v, i.e. assumption (H4) is satisfied. Moreover, we have

Q̂(t) =
1�

t

bs ds =
1− t2

2
b, Q̂g =

1�

0

Q̂(s) dg(s) =
5b
16
,
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R(t) = (1− t)b, R(0) = b, Rg =
5b
12
.

Thus, inequality (3.2) takes the form b < 12/53. Moreover we have

P (t) = 1− t, Pg =
5
12

and thus, since b < 12/53, by (3.3) we obtain

T >
32

12− 53b
.

It remains to prove that assumptions (Ĥ3), (Ĥ5) hold. To do this we
observe that

F (Θ) = γ

1�

0

1�

s

(−1 + bθ2Θ + bΘ) dθ dg(s) =
5− 8bΘ

3
,

P (0) = 1, QΘ(0) =
bΘ

2
, Ψ(Θ) = Θ.

Hence (Ĥ5) becomes:

there exists Θ > K =
32

12− 53b
such that Θ ≤ 4

25b
.

Finally, using (2.5), we deduce that M = 4/(25b+ 6).
Since we must have M < T < Θ, we must also have

4
25b+ 6

= M ≤ 32
12− 53b

< T < Θ ≤ 4
25b

.

It is clear that this inequality can hold if 0 < b < 48/1022. In conclusion,
if 0 < b < 48/1022, then all assumptions of Corollary 3.2 are satisfied, and
thus we have proved the following result:

If 0 < b < 48/1022, then there exists a solution x ∈ C1
0 (I) of the bound-

ary value problem (3.4), (3.5) such that

4
25b+ 6

≤ ‖x‖01 <
4

25b
.
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[21] M. A. Krasnosel’skĭı, Positive Solutions of Operator Equations, Noordhoff, Gronin-
gen, 1964.

[22] Y. Li, Positive solutions for second order boundary value problems with sign chang-
ing nonlinear terms, J. Math. Anal. Appl. 282 (2003), 232–240.

[23] P. L. Lions, On the existence of positive solutions of semilinear elliptic equations,
SIAM Rev. 24 (1982), 441–467.

[24] B. Liu, Positive solutions of a nonlinear three-point boundary value problem, Com-
put. Math. Appl. 44 (2002), 201–211.

[25] R. Ma, Positive solutions for a nonlinear three-point boundary-value problem, Elec-
tron. J. Differential Equations 1998, no. 34, 1–8.



242 P. Ch. Tsamatos

[26] R. Ma and H. Wang, Positive solutions of nonlinear three-point boundary-value
problems, J. Math. Anal. Appl. 279 (2003), 216–227.

[27] H. Wang, On the existence of positive solutions for semilinear elliptic equations in
the annulus, J. Differential Equations 109 (1994), 1–4.

Department of Mathematics
University of Ioannina
451 10 Ioannina, Greece
E-mail: ptsamato@cc.uoi.gr
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