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On the existence of solutions
of nonlinear integral equations in Banach spaces

and Henstock–Kurzweil integrals

by Aneta Sikorska-Nowak (Poznań)

Abstract. We prove some existence theorems for nonlinear integral equations of
the Urysohn type x(t) = ϕ(t) + λ

� a
0
f(t, s, x(s)) ds and Volterra type x(t) = ϕ(t) +� t

0
f(t, s, x(s)) ds, t ∈ Ia = [0, a], where f and ϕ are functions with values in Banach

spaces. Our fundamental tools are: measures of noncompactness and properties of the
Henstock–Kurzweil integral.

1. Introduction. The Henstock–Kurzweil integral encompasses the
Newton, Riemann and Lebesgue integrals ([8], [9], [14]). A particular feature
of this integral is that integrals of highly oscillating functions such as F ′(t),
where F (t) = t2 sin t−2 on (0, 1] and F (0) = 0, can be defined. This integral
was introduced by Henstock and Kurzweil independently in 1957–58 and has
since proved useful in the study of ordinary differential equations ([6], [7],
[13], [17], [18]).

It is well known that Henstock’s Lemma plays an important role in the
theory of the Henstock–Kurzweil integral in the real-valued case. On the
other hand, in connection with the Henstock–Kurzweil integral for Banach
space valued functions, S. S. Cao pointed out in [5] that Henstock’s Lemma
holds for the case of finite dimensions, but it does not always hold in infinite
dimensions.

In this paper we will use the HL integral which satisfies Henstock’s
Lemma and which is more general than the Bochner integral.

Let E be a Banach space, E1 a separable Banach space, and let Ia = [0, a],
a ∈ R+. We will prove some existence theorems for the Urysohn integral

2000 Mathematics Subject Classification: Primary 34G20, 28B05, 45D05.
Key words and phrases: existence of solution, measure of noncompactness, nonlin-

ear Volterra integral equation, nonlinear Urysohn integral equation, Henstock–Kurzweil
integral, HL integral.

[257]



258 A. Sikorska-Nowak

equation

(1.1) x(t) = ϕ(t) + λ

a�

0

f(t, s, x(s)) ds, λ > 0, t ∈ Ia,

and for the Volterra integral equation

(1.2) x(t) = ϕ(t) +
t�

0

f(t, s, x(s)) ds, t ∈ Ia,

where f and ϕ are functions with values in the Banach space E (or in the
separable Banach space E1) and the integral is the HL integral. Our funda-
mental tools are the Kuratowski and Hausdorff measures of noncompactness
([12], see also [3]), and the properties of the HL integral ([5], [17]).

The result presented in this paper contains several results concerning the
Bochner integral (e.g. Januszewski [10], Krzyśka [11]) and the Henstock–
Kurzweil integral for real-valued functions (Bugajewski [4]).

For any bounded subset A of E we denote by α(A) the Kuratowski
measure of noncompactness of A, i.e. the infimum of all ε > 0 such that
there exists a finite covering of A by sets of diameter smaller than ε.

For any bounded subset A of E we denote by α1(A) the Hausdorff mea-
sure of noncompactness of A, i.e. the infimum of all ε > 0 such that A can
be covered by a finite number of balls of radius smaller than ε.

The properties of the measures of noncompactness γ = α, α1 are:

(i) if A ⊂ B then γ(A) ≤ γ(B);
(ii) γ(A) = γ(A), where A denotes the closure of A;
(iii) γ(A) = 0 if and only if A is relatively compact;
(iv) γ(A ∪B) = max{γ(A), γ(B)};
(v) γ(λA) = |λ|γ(A) (λ ∈ R);
(vi) γ(A+B) ≤ γ(A) + γ(B);

(vii) γ(convA) = γ(A);
(viii) α1(A) ≤ α(A) ≤ 2α1(A).

We will need the following lemma:

Lemma 1.1 ([2]). Let H ⊂ C(Ia, E) be a family of strongly equicontinu-
ous functions. Then

αC(H) = sup
t∈Ia

α(H(t)) = α(H(Ia)),

where αC(H) denotes the measure of noncompactness in C(Ia, E) and the
function t 7→ α(H(t)) is continuous.

2. Henstock–Kurzweil integral in Banach spaces. In this part we
define the Henstock–Kurzweil integral in a Banach space and we give some
properties of this integral.
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Definition 2.1 ([8]). Let δ(·) be a positive function defined on the in-
terval [a, b]. A tagged interval (x, [c, d]) consists of an interval [c, d] ⊂ [a, b]
and a point x ∈ [c, d]. The tagged interval (x, [c, d]) is subordinate to δ
if [c, d] ⊂ [x − δ(x), x + δ(x)]. The letter P will be used to denote finite
collections of nonoverlapping tagged intervals. Let

P = {(si, [ci, di]) : 1 ≤ i ≤ n}, n ∈ N
be such a collection in [a, b].

(i) The points {si : 1 ≤ i ≤ n} are called the tags of P .
(ii) The intervals {[ci, di] : 1 ≤ i ≤ n} are called the intervals of P .

(iii) If {(si, [ci, di]) : 1 ≤ i ≤ n} is subordinate to δ for each i, then we
say that P is sub δ.

(iv) If [a, b] =
⋃n
i=1[ci, di] then P is called a tagged partition of [a, b].

(v) If P is a tagged partition of [a, b] and P is sub δ, then P is sub δ
on [a, b].

(vi) If f : [a, b]→ E then f(P ) :=
∑n
i=1 f(si)(di − ci).

(vii) If F is a function defined on the subintervals of [a, b], then

F (P ) =
n∑

i=1

F ([ci, di]) =
n∑

i=1

(F (di)− F (ci)).

Definition 2.2 ([5]). The function f : [a, b]→ E is Henstock–Kurzweil
integrable on [a, b] (f ∈ HK([a, b], E)) if there exists a vector z in E with
the following property: for each ε > 0 there exists a positive function δ on
[a, b] such that ‖f(P )− z‖ < ε whenever P is sub δ on [a, b]. The function f
is Henstock–Kurzweil integrable on A ⊂ [a, b] if fχA is Henstock–Kurzweil
integrable on [a, b]. The vector z is the Henstock–Kurzweil integral of f .

We remark that this definition includes the generalized Riemann integral
defined by Gordon in [8].

Definition 2.3 ([5]). Let f be Henstock–Kurzweil integrable on [a, b].
Then the function F (t) =

� t
a
f , which is defined on subintervals of [a, b], is

called the primitive of f .

Definition 2.4 ([5]). A function f : [a, b]→ E is HL integrable on [a, b]
(f ∈ HL([a, b], E)) if there exists a function F : [a, b]→ E with the following
property: given ε > 0 there exists a positive function δ(·) on [a, b] such that
if P = {(si, [ci, di] : 1 ≤ i ≤ n} is a tagged partition of [a, b] sub δ, then

n∑

i=1

‖f(si)(di − ci)− F ([ci, di])‖ < ε.

We note that by the triangle inequality f ∈ HL([a, b], E) implies f ∈
HK([a, b], E). In general, the converse is not true. For real-valued functions,
the two integrals are equivalent.
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We now recall Henstock’s Lemma for real-valued Henstock–Kurzweil in-
tegrable functions (for the proof, see [14, Theorem 3.7]).

Theorem 2.5 (Henstock’s Lemma). If f is Henstock–Kurzweil inte-
grable on [a, b] with primitive F , then for every ε > 0 there exists δ(·) > 0
such that for any tagged partition P = {(si, [ci, di]) : 1 ≤ i ≤ n} of [a, b]
sub δ, we have

n∑

i=1

|f(si)(di − ci)− F ([ci, di])| < ε.

Theorem 2.5 says that in the definition of the Henstock–Kurzweil integral
for real-valued functions ([8]), we may put the absolute value sign | · | inside
the summation sign

∑
. We know ([5]) that this is no longer true if we replace

| · | with ‖ · ‖, i.e. Henstock’s Lemma is not satisfied by Henstock–Kurzweil
integrable Banach-valued functions. By the definition of HL integral, an HL
integrable function with primitive F satisfies Henstock’s Lemma with | · |
replaced ‖ · ‖.

Definition 2.6 ([8]). A family F of functions F is said to be uni-
formly absolutely continuous in the restricted sense on A, for short uni-
formly AC∗(A), if for every ε > 0 there exists η > 0 such that for every
F in F and for every finite or infinite sequence of nonoverlapping inter-
vals {[ai, bi]} with ai, bi ∈ A and satisfying

∑
i |bi − ai| < η, we have∑

i ω(F, [ai, bi]) < ε, where ω(F, [ai, bi]) denotes the oscillation of F over
[ai, bi].

A family F of functions F is said to be uniformly generalized absolutely
continuous in the restricted sense on [a, b], or uniformly ACG∗, if [a, b] is
the union of a sequence of closed sets Ai such that on each Ai the function
F is uniformly AC∗(Ai).

For the Henstock–Kurzweil integral, in particular for the HL integral, we
have the following theorems.

Theorem 2.7 ([5]). Let f : [a, b] → E. If f = 0 almost everywhere on

[a, b], then f is HL integrable on [a, b] and
� b
a
f(t) dt = 0.

Theorem 2.8 ([5]). Let f : [a, b]→ E be HL integrable on [a, b] and let
F (x) =

� x
a
f(t) dt for each x ∈ [a, b]. Then

(i) F is continuous on [a, b],
(ii) F is differentiable almost everywhere on [a, b] and F ′ = f ,
(iii) f is measurable.

Theorem 2.9 ([20, Theorem 5]). Suppose that fn : [a, b] → E, n =
1, 2, . . . , is a sequence of HL integrable functions satisfying the following
conditions:
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(i) fn(x)→ f(x) almost everywhere in [a, b] as n→∞;
(ii) the set of primitives of fn, {Fn(x)}, where Fn(x) =

� x
a
fn(s) ds, is

uniformly ACG∗ in n;
(iii) the primitives Fn are equicontinuous on [a, b].

Then f is HL integrable on [a, b] and
� x
a
fn →

� x
a
f uniformly on [a, b] as

n→∞.

We remark that this theorem for Denjoy–Bochner integrals is mentioned
in [20] without proof. It is also true for HL integrals. The proof is similar to
that of Theorem 7.6 in [14] (see also [19, Theorem 1.8]).

Lemma 2.10 ([17]). Let E1 be a separable Banach space. Suppose that V
is a countable set of HL integrable functions. Let F = {

� t
0 x(s) ds : x ∈ V,

t ∈ Ia} be equicontinuous, equibounded and uniformly ACG∗ on Ia. Then
α1(

� t
0 V (s) ds) ≤

� t
0 α1(V (s)) ds, t ∈ Ia, whenever α1(V (s)) ≤ ϕ(s) for a.e.

s ∈ Ia, ϕ is a Lebesgue integrable function and α1 denotes the Hausdorff
measure of noncompactness.

Theorem 2.11. If the function f : Ia → E is HL integrable, then�

I

f(t) dt ∈ |I| conv f(I),

where I is an arbitrary subinterval of Ia and |I| is the length of I.

The proof is similar to that of Lemma 2.1.3 in [15]. See also [1, Theo-
rem 10.4, p. 268].

3. Main result

I. The Urysohn integral equation. Now we prove an existence theorem
for the problem (1.1). We will apply the following fixed point theorem.

Theorem 3.1 ([16]). Let D be a closed convex subset of E, and let F
be a continuous map from D into itself. If for some x ∈ D the implication

V = conv({x} ∪ F (V )) ⇒ V is relatively compact

holds for every countable subset V of D, then F has a fixed point.

We recall that a function f : Ia×Ia×E → E is a Carathéodory function
if for each x ∈ E, f(t, s, x) is measurable in (t, s) ∈ Ia × Ia and for almost
all (t, s) ∈ Ia × Ia, f(t, s, x) is continuous with respect to x.

A nonnegative real-valued function (t, s, z) 7→ h(t, s, z) defined on Ia ×
Ia × E is a Kamke function if h satisfies the Carathéodory conditions, for
each fixed t, s the function z 7→ h(t, z, s) is nondecreasing, and for each q,
0 < q ≤ a, the identically zero function is the unique continuous solution of
the integral equation z(t) =

� t
0 h(t, s, z(s)) ds defined on [0, q).
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Let B = {x ∈ C(Ia, E) : ‖x‖ ≤ ‖ϕ(·)‖+λb}, where b, λ are some positive
numbers.

We define the operator Fx by

Fx(t) = ϕ(t) + λ

a�

0

f(t, s, x(s)) ds for t ∈ Ia and x ∈ B,

where the integral is the HL integral.
Moreover, let F = {Fx : x ∈ B}.
Theorem 3.2. Assume that for each continuous function x : Ia → E1,

f(·, s, x(s)) is HL integrable, f is a Carathéodory function and

(3.1) α(f(t, s,X)) ≤ h(t, s, α(X)) for each X ⊂ B, 0 ≤ s ≤ t ≤ a,
where h is a Kamke function. Suppose that F is equicontinuous, equibounded
and uniformly ACG∗ on Ia. Then there exists a solution of the problem (1.1)
on Ic for some 0 < c ≤ a with continuous initial function ϕ.

Proof. By equicontinuity and equiboundedness of F there exists some
number c (0 < c ≤ a) such that ‖

� c
0 f(t, s, x(s)) ds‖ ≤ b for fixed b > 0,

t ∈ Ic and x ∈ B.
By our assumptions, the operator Fx is well defined and maps B into B

and by Theorem 2.8, Fx is continuous. Observe that a fixed point of Fx is a
solution of the problem (1.1). Now we prove that Fx has a fixed point using
Theorem 3.1.

Suppose that V ⊂ B is a countable set and V = conv({x} ∪ Fx(V ))
is equicontinuous. Then t 7→ v(t) = α(V (t)) is continuous on Ic (by
Lemma 1.1).

Let us fix t ∈ Ic. Let
� c
0 Z(s) ds = {

� c
0 x(s) ds : x ∈ Z} for any Z ⊂

C(Ic, E) and let f̃t denote the mapping defined by f̃t(x(s)) = f(t, s, x(s)) for
each x ∈ B and s ∈ Ic. Obviously, f̃t(V (s)) = f(t, s, V (s)) and Fx(V (t)) =
ϕ(t) + λ

� c
0 f̃t(V (s)) ds.

Using (3.1), Lemma 2.10 and the properties of the measure of noncom-
pactness α we have

α(Fx(V (t)) = α
(
ϕ(t) + λ

c�

0

f̃t(V (s)) ds
)
≤ 2α1

(
λ

c�

0

f̃t(V (s)) ds
)

≤ 2λ
c�

0

α1(f(t, s, V (s))) ds ≤ 2λ
c�

0

α(f(t, s, V (s)) ds

≤ 2λ
c�

0

h(t, s, α(V (s))) ds.

Because V = conv({x} ∪ Fx(V )) we have
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v(t) ≤ 2λ
c�

0

h(t, s, v(s)) ds.

Hence applying now a theorem on differential inequalities we get v(t) =
α(V (t)) = 0. By Arzelà–Ascoli’s theorem, V is relatively compact. So, by
Theorem 3.1, Fx has a fixed point which is a solution of the problem (1.1).

Now we present an existence theorem for the problem (1.1) in a real
Banach space E. Let r(K) be the spectral radius of the integral operator K
defined by Ku(t) =

� a
0 k(t, s)u(s) ds, u ∈ B, t ∈ Ia.

Theorem 3.3. Assume that for each continuous function x : Ia → E,
f(·, s, x(s)) is HL integrable, f is a Carathéodory function and there exists
a function k : Ia × Ia → R+ such that k(t, ·) is continuous and

(3.2) α(f(t, J,X)) ≤ sup
s∈J

k(t, s)α(X) for each X ⊂ E and J ⊂ Ia.

Suppose that F is equicontinuous, equibounded and uniformly ACG∗ on Ia.
Moreover , let λr(K) < 1. Then there exists a solution of the problem (1.1)
on Ic for some 0 < c ≤ a with continuous initial function ϕ.

Proof. By equicontinuity and equiboundedness of F there exists some
number c (0 < c ≤ a) such that ‖

� c
0 f(t, s, x(s)) ds‖ ≤ b for fixed b > 0,

t ∈ Ic and x ∈ B.
By our assumptions, the operator Fx is well defined and maps B into B,

and by Theorem 2.8, Fx is continuous. Observe that a fixed point of Fx is a
solution of the problem (1.1). Now we prove that Fx has a fixed point using
Theorem 3.1. Suppose that V ⊂ B is a countable set and V = conv({x} ∪
Fx(V )) is equicontinuous. Then t 7→ v(t) = α(V (t)) is continuous on Ic (by
Lemma 1.1).

We divide the interval Ic: 0 = t0 < t1 < · · · < tm = c, where ti =
ic/m, i = 0, 1, . . . ,m. Let V ([ti, ti+1]) = {u(s) : u ∈ V , ti ≤ s ≤ ti+1,
i = 0, 1, . . . ,m − 1}. By Lemma 1.1 and the continuity of v there exists
si ∈ Ti = [ti, ti+1] such that

(3.3) α(V ([ti, ti+1])) = sup{α(V (s)) : ti ≤ s ≤ ti+1} =: v(si).

On the other hand, by the definition of the operator Fx and Theorem 2.11
we have

Fu(t) = ϕ(t) + λ
m−1∑

i=0

ti+1�

ti

f(t, s, u(s)) ds

∈ ϕ(t) + λ

m−1∑

i=0

(ti+1 − ti) conv f(t, Ti, V ([ti, ti+1]))
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for each u ∈ V . Therefore

Fu(V (t)) ⊂ ϕ(t) + λ
m−1∑

i=0

(ti+1 − ti) conv f(t, Ti, V ([ti, ti+1])).

Using (3.2), (3.3), and the properties of the measure of noncompactness α
we obtain

α(Fu(V (t))) ≤ λ
m−1∑

i=0

(ti+1 − ti) sup
s∈Ti

k(t, s)α(V [ti, ti+1])

= λ
m−1∑

i=0

(ti+1 − ti)k(t, pi)v(si),

where si, pi ∈ Ti, hence

α(Fu(V (t))) ≤ λ
m−1∑

i=0

(ti+1 − ti)k(t, pi)v(pi)

+ λ

m−1∑

i=0

(ti+1 − ti)[k(t, pi)(v(si)− v(pi))]

= λ

m−1∑

i=0

(ti+1 − ti)k(t, pi)v(pi)

+ λ
c

m

m−1∑

i=0

k(t, pi)(v(si)− v(pi)).

By continuity of v we have v(si)− v(pi) < ε and ε→ 0 as m→∞. So

α(Fu(V (t))) < λ

c�

0

k(t, s)v(s) ds+ λc sup
p∈Ic

k(t, p)ε.

Therefore

(3.4) α(Fu(V (t))) ≤ λ
c�

0

k(t, s)v(s) ds for t ∈ Ic.

Since V = conv({u} ∪ Fu(V )), by the property of the measure of noncom-
pactness we have α(V (t)) ≤ α(Fu(V (t))) and so in view of (3.4) it follows
that v(t) ≤ λ

� c
0 k(t, s)v(s) ds for t ∈ Ic. Because this inequality holds for

every t ∈ Ic and λr(K) < 1, by applying a theorem on integral inequalities,
we conclude that α(V (t)) = 0 for t ∈ Ic. Hence Arzelà–Ascoli’s theorem
proves that the set V is relatively compact. Consequently, by Theorem 3.1,
Fx has a fixed point which is a solution of the problem (1.1).

II. The Volterra integral equation. Now we consider the integral equa-
tion (1.2). Put B1 = {x ∈ C(Ia, E) : ‖x‖ ≤ ‖ϕ(·)‖ + l}, where l is some
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positive number. We define the operator Gx by

Gx(t) = ϕ(t) +
t�

0

f(t, s, x(s)) ds for t ∈ Ia and x ∈ B1,

where the integral is the HL integral.
Moreover, let G = {Gx : x ∈ B1}.
Theorem 3.4. Assume that for each continuous function x : Ia → E1,

f(·, s, x(s)) is HL integrable, f is a Carathéodory function and

(3.5) α(f(t, s,X)) ≤ h(t, s, α(X)) for each X ⊂ B, 0 ≤ s ≤ t ≤ a,
where h is a Kamke function. Suppose that G is equicontinuous, equibounded
and uniformly ACG∗ on Ia. Then there exists a solution of the problem (1.2)
on Ic for some 0 < c ≤ a with continuous initial function ϕ.

Proof. By equicontinuity and equiboundedness of G there exists some
number c (0 < c ≤ a) such that ‖

� t
0 f(t, s, x(s)) ds‖ ≤ l for t ∈ Ic and

x ∈ B1.
Let V = conv({x} ∪Gx(V )) for some bounded countable set V ⊂ B1.
Analogously to the proof of Theorem 3.2 we prove that v(t) ≤

2
� t
0 f(t, s, v(s)) ds for t ∈ Ic. Hence applying now a theorem on differen-

tial inequalities we get v(t) = α(V (t)) = 0. By Arzelà–Ascoli’s theorem,
V is relatively compact. So, by Theorem 3.1, Gx has a fixed point which is
a solution of the problem (1.1).

Now, let r(K) be the spectral radius of the integral operator K defined
by Ku(t) =

� t
0 k(t, s)u(s) ds, u ∈ B1, t ∈ Ia.

For a real Banach space E we have the following theorem.

Theorem 3.5. Assume that for each continuous function x : Ia → E,
f(·, s, x(s)) is HL integrable, f is a Carathéodory function and there exists
a function k : Ia × Ia → R+ such that k(t, ·) is continuous and

(3.6) α(f(t, J,X)) ≤ sup
s∈J

k(t, s)α(X) for each X ⊂ E and J ⊂ Ia.

Suppose that G is equicontinuous, equibounded and uniformly ACG∗ on Ia.
Moreover , let r(K) < 1. Then there exists a solution of the problem (1.2)
on Ic for some 0 < c ≤ a with continuous initial function ϕ.

Proof. By equicontinuity and equiboundedness of G there exists some
number c (0 < c ≤ a) such that ‖

� t
0 f(t, s, x(s)) ds‖ ≤ l for t ∈ Ic and

x ∈ B1.
Let V = conv({x} ∪Gx(V )) for some bounded countable set V ⊂ B1.
Analogously to the proof of Theorem 3.3 we divide the interval [0, t]

(for fixed t ∈ Ic) into m parts 0 = t0 < t1 < · · · < tm = t, where ti = it/m,



266 A. Sikorska-Nowak

i = 0, 1, . . . ,m, and we prove that v(t) ≤
� t
0 k(t, s)v(s) ds for t ∈ Ic. Be-

cause this inequality holds for every t ∈ Ic and r(K) < 1, by applying a
theorem on integral inequalities, we conclude that α(V (t)) = 0 for t ∈ Ic.
Hence Arzelà–Ascoli’s theorem proves that the set V is relatively compact.
Consequently, by Theorem 3.1, Gx has a fixed point which is a solution of
the problem (1.2).

Remark. Let S be the set of solutions of the problems (1.1) and (1.2)
and Sn ⊂ S be a sequence of solutions. As Sn = F (Sn), by repeating
the calculation in the proof of Theorems 3.2 (or Theorem 3.3) and 3.4 (or
Theorem 3.5), where V = Sn, we can show that S is compact.
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Reçu par la Rédaction le 27.10.2003
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