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On scalar-valued nonlinear absolutely summing mappings

by Daniel Pellegrino (Campina Grande)

Abstract. We investigate cases (“coincidence situations”) in which every scalar-
valued continuous n-homogeneous polynomial (or every continuous n-linear mapping) is
absolutely (p; q)-summing. We extend some well known coincidence situations and obtain
several non-coincidence results, inspired by a linear technique due to Lindenstrauss and
Pełczyński.

1. Introduction. Throughout this note X,X1, . . . ,Xn, Y will stand for
Banach spaces and the scalar field K can be either the real or the complex
numbers.

An m-homogeneous polynomial P from X into Y is said to be absolutely
(p; q)-summing (p ≥ q/m) if there is a constant L so that

( k∑

j=1

‖P (xj)‖p
)1/p

≤ L‖(xj)kj=1‖mw,q(1.1)

for every natural k, where ‖(xj)kj=1‖w,q = supϕ∈BX′ (
∑k

j=1 |ϕ(xj)|q)1/q. This
is a natural generalization of the concept of (p; q)-summing operators and
in the last years it has been studied by several authors. The infimum of the
L > 0 for which the inequality holds defines a norm ‖ · ‖as(p;q) for p ≥ 1, or a
p-norm for p < 1, on the space of (p; q)-summing homogeneous polynomials.
The space of all m-homogeneous (p; q)-summing polynomials from X into
Y is denoted by Pas(p;q)(mX;Y ) (Pas(p;q)(mX) if Y = K).

When p = q/m we have an important particular case, since in this situa-
tion there is an analogue of the Grothendieck–Pietsch Domination Theorem.
The (q/m; q)-summing m-homogeneous polynomials from X into Y are said
to be q-dominated and this space is denoted by Pd,q(mX;Y ) (Pd,q(mX) if
Y = K).

The Banach space of all continuous m-homogeneous polynomials P from
X into Y with the sup norm is denoted by P(mX,Y ) (P(mX) if Y is
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the scalar field). Analogously, the space of all continuous m-linear map-
pings from X1 × · · · × Xm into Y (with the sup norm) is denoted by
L(X1, . . . ,Xm;Y ) (L(X1, . . . ,Xm) if Y = K). The concept of absolutely
summing multilinear mapping follows the same pattern (for details we refer
to [5]). Henceforth every polynomial and multilinear mapping are supposed
to be continuous and every Lp-space is assumed to be infinite-dimensional.

A natural problem is to find situations in which the space of absolutely
summing polynomials coincides with the space of continuous polynomials
(coincidence situations). When Y is the scalar field, these situations are not
rare as we can see in the next two well known results:

Theorem 1. Every scalar-valued n-linear mapping is absolutely (1; 1)-
summing. In particular , every scalar-valued n-homogeneous polynomial is
absolutely (1; 1)-summing (and , a fortiori , (q; 1)-summing for every q ≥ 1).

Theorem 2 (D. Pérez-Garćıa [6]). If n ≥ 2 and X is an L∞-space,
then every scalar-valued n-linear mapping on X is (1; 2)-summing. In partic-
ular , every scalar-valued n-homogeneous polynomial on X is (1; 2)-summing
(and , a fortiori , (q; 2)-summing for every q ≥ 1).

The proof of Theorem 1 can be found in [1] and is credited to A. De-
fant and J. Voigt. The case n = 2 of Theorem 2 was previously proved
by Botelho [2] and is the unique known coincidence result for dominated
polynomials.

In Section 2 we obtain new coincidence situations, generalizing Theo-
rem 1 and extending the results of Theorem 2. Section 3 has a different
purpose: to obtain a technical estimate (inspired by a linear result due to
Lindenstrauss and Pełczyński [3]) and to explore its consequences. In par-
ticular, it is shown that Theorems 1 and 2 cannot be generalized in some
other directions, and converses for the aforementioned theorems are ob-
tained.

2. Coincidence situations. The next theorem, inspired by a result of
C. A. Soares, leads us to extensions of the two theorems stated in the first
section:

Theorem 3. Let A ∈ L(X1, . . . ,Xn;Y ) and suppose that there exists
C > 0 so that for any x1 ∈ X1, . . . , xr ∈ Xr, the s-linear (s = n−r) mapping
Ax1...xr(xr+1, . . . , xn) = A(x1, . . . , xn) is absolutely (1; q1, . . . , qs)-summing
and

‖Ax1...xr‖as(1;q1,...,qs) ≤ C‖A‖ ‖x1‖ . . . ‖xr‖.
Then A is absolutely (1; 1, . . . , 1, q1, . . . , qs)-summing.
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Proof. For x(1)
1 , . . . , x

(m)
1 ∈X1, . . . , x

(1)
n , . . . , x

(m)
n ∈Xn, consider ϕj ∈BY ′

such that

‖A(x(j)
1 , . . . , x(j)

n )‖ = ϕj(A(x(j)
1 , . . . , x(j)

n ))

for every j = 1, . . . ,m. Then, denoting by rj(t) the Rademacher functions
on [0, 1] and by λ the Lebesgue measure on I = [0, 1]r, we have

�

I

m∑

j=1

( r∏

l=1

rj(tl)
)

× ϕjA
( m∑

j1=1

rj1(t1)x(j1)
1 , . . . ,

m∑

jr=1

rjr(tr)x
(jr)
r , x

(j)
r+1, . . . , x

(j)
n

)
dλ

=
m∑

j,j1,...,jr=1

ϕjA(x(j1)
1 , . . . , x(jr)

r , x
(j)
r+1, . . . , x

(j)
n )

×
1�

0

rj(t1)rj1(t1) dt1 . . .
1�

0

rj(tr)rjr(tr) dtr

=
m∑

j=1

m∑

j1=1

. . .

m∑

jr=1

ϕjA(x(j1)
1 , . . . , x(jr)

r , x
(j)
r+1, . . . , x

(j)
n )δjj1 . . . δjjr

=
m∑

j=1

ϕjA(x(j)
1 , . . . , x(j)

n ) =
m∑

j=1

‖A(x(j)
1 , . . . , x(j)

n )‖ = (∗).

So, for each l = 1, . . . , r, assuming zl =
∑m

j=1 rj(tl)x
(j)
l we obtain

(∗) =
�

I

m∑

j=1

( r∏

l=1

rj(tl)
)

× ϕjA
( m∑

j1=1

rj1(t1)x(j1)
1 , . . . ,

m∑

jr=1

rjr(tr)x
(jr)
r , x

(j)
r+1, . . . , x

(j)
n

)
dλ

≤
�

I

∣∣∣
m∑

j=1

( r∏

l=1

rj(tl)
)

× ϕjA
( m∑

j1=1

rj1(t1)x(j1)
1 , . . . ,

m∑

jr=1

rjr(tr)x
(jr)
r , x

(j)
r+1, . . . , x

(j)
n

)∣∣∣ dλ

≤
�

I

m∑

j=1

∥∥∥A
( m∑

j1=1

rj1(t1)x(j1)
1 , . . . ,

m∑

jr=1

rjr(tr)x
(jr)
r , x

(j)
r+1, . . . , x

(j)
n

)∥∥∥ dλ
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≤ sup
tl∈[0,1], l=1,...,r

m∑

j=1

∥∥∥A
( m∑

j1=1

rj1(t1)x(j1)
1 , . . . ,

m∑

jr=1

rjr(tr)x
(jr)
r , x

(j)
r+1, . . . , x

(j)
n

)∥∥∥

≤ sup
tl∈[0,1], l=1,...,r

‖Az1...zr‖as(1;q1,...,qs)‖(x
(j)
r+1)mj=1‖w,q1 · · · ‖(x(j)

n )mj=1‖w,qs

≤ sup
tl∈[0,1], l=1,...,r

C‖A‖ ‖z1‖ · · · ‖zr‖ ‖(x(j)
r+1)mj=1‖w,q1 · · · ‖(x(j)

n )mj=1‖w,qs

≤ C‖A‖
( r∏

l=1

‖(x(j)
l )mj=1‖w,1

)( n∏

l=r+1

‖(x(j)
l )mj=1‖w,ql

)
.

We have the following straightforward consequence, generalizing Theorem 1:

Corollary 1. If

L(X1, . . . ,Xm;Y ) = Las(1;q1,...,qm)(X1, . . . ,Xm;Y )

then, for any Banach spaces Xm+1, . . . ,Xn, we have

L(X1, . . . ,Xn;Y ) = Las(1;q1,...,qm,1,...,1)(X1, . . . ,Xn;Y ).

The following corollary (whose proof is simple and we omit it) is a con-
sequence of Theorems 2 and 3.

Corollary 2. If X1, . . . ,Xs are L∞-spaces then, for any Banach
spaces Xs+1, . . . ,Xn, we have

L(X1, . . . ,Xn) = Las(1;q1,...,qn)(X1, . . . ,Xn),

where q1 = · · · = qs = 2 and qs+1 = · · · = qn = 1.

It is obvious that Corollary 2 is still true if we replace the scalar field by
any finite-dimensional Banach space. A natural question is whether Corol-
lary 2 can be stated for some infinite-dimensional Banach space in place
of K. Precisely, the question is:

• If X1, . . . ,Xk are L∞-spaces, is there some infinite-dimensional Banach
space Y such that

L(X1, . . . ,Xk, . . . ,Xn;Y ) = Las(1;q1,...,qn)(X1, . . . ,Xk, . . . ,Xn;Y ),

where q1 = · · · = qk = 2 and qk+1 = · · · = qn = 1, regardless of the
chioce of the Banach spaces Xk+1, . . . ,Xn?

The answer to this question is no, as shown by the following proposition:

Proposition 1. Suppose that X1, . . . ,Xk are L∞-spaces. If q1 = · · · =
qk = 2, qk+1 = · · · = qn = 1 and

L(X1, . . . ,Xk, . . . ,Xn;Y ) = Las(1;q1,...,qn)(X1, . . . ,Xk, . . . ,Xn;Y ),

regardless of the choice of the Banach spaces Xk+1, . . . ,Xn, then dimY <∞.
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Proof. By a standard localization argument, it suffices to prove that if
dimY =∞, then

L(nc0;Y ) 6= Las(1;q1,...,qn)(
nc0;Y ),

where q1 = . . . = qk = 2 and qk+1 = · · · = qn = 1. But from [5, Theorem 8]
we even have

L(nc0;Y ) 6= Las(q;q1,...,qn)(
nc0;Y )

for any q < 2 and q1, . . . , qn ≥ 1.

3. Non-coincidence situations. Assume that X is an infinite-dimen-
sional Banach space and suppose that X has a normalized unconditional
Schauder basis (xn) with coefficient functionals (x∗n). If Pas(q;1)(mX;Y ) =
P(mX;Y ), it is natural to ask:

What is the infimum of the t such that in this situation (x∗n(x)) ∈ lt for
each x ∈ X? This infimum will be denoted by µ = µ(X,Y, q,m).

In [5], inspired by an important linear result due to Lindenstrauss and
Pełczyński, we have proved:

Theorem 4 (Pellegrino [5, Theorem 5]). Let X and Y be infinite-dimen-
sional Banach spaces. Suppose that X has an unconditional Schauder basis
(xn). If Y finitely factors the formal inclusion lp → l∞ and Pas(q;1)(mX;Y )
= P(mX;Y ) with 1/m ≤ q, then

(a) µ ≤ mpq/(p− q) if q < p,
(b) µ ≤ mq if q ≤ p/2.

However, by inspecting the proof of this theorem in [5], one can see that it
is by no means necessary to assume that dimY =∞. Only in Corollary of [5]
(when the Dvoretzky–Rogers Theorem is invoked) is it indeed necessary to
assume dimY = ∞. A slight change in the proof of [5, Theorem 5] yields
the following result:

Theorem 5. Let X be an infinite-dimensional Banach space with a nor-
malized unconditional Schauder basis (xn). If Pas(q;1)(mX) = P(mX), then

(a) µ ≤ mq/(1− q) if q < 1,
(b) µ ≤ mq if q ≤ 1/2.

Proof. If x =
∑∞

j=1 ajxj and {µi}ni=1 is such that
∑n

j=1 |µj |1/q = 1, define
P : X → K by Px =

∑n
j=1 |µj|1/qamj .

Since (xn) is an unconditional basis, there exists a % > 0 satisfying
∥∥∥

n∑

j=1

εjajxj

∥∥∥ ≤ %‖x‖ for every n and any εj = ±1.
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Hence

|Px| ≤
n∑

j=1

∣∣|µj |1/qamj
∣∣ ≤ %m‖x‖m

n∑

j=1

|µj|1/q,

and thus ‖P‖ ≤ %m and ‖P‖as(q;1) ≤ C%m. Therefore
( n∑

j=1

∣∣amj |µj|1/q
∣∣q
)1/q

≤
( n∑

j=1

|Pajxj |q
)1/q

(3.1)

≤ ‖P‖as(q;1) max
εj∈{1,−1}

∥∥∥
n∑

j=1

εjajxj

∥∥∥
m

≤ ‖P‖as(q;1)(%‖x‖)m ≤ C%2m‖x‖m.
Defining s = 1/q, we have 1

s + 1
s
s−1

= 1 and

( n∑

j=1

|aj |
s
s−1mq

)1/ s
s−1 ≤ sup

{ n∑

j=1

|µj| |aj |mq :
n∑

j=1

|µj|s = 1
}
.(3.2)

Since (3.1) is true whenever
∑n

j=1 |µj|s = 1, by (3.1) and (3.2) we obtain

( n∑

j=1

|aj|
s
s−1mq

)1/ s
s−1mq ≤ [C%2m‖x‖m]1/m.

But s
s−1mq = mq

1−q and n is arbitrary, and hence part (a) is proved. Now, if
1/m ≤ q ≤ 1/2, define S : X → K by Sx =

∑n
j=1 a

m
j . Since m ≥ s

s−1mq,
we obtain

|Sx| ≤
n∑

j=1

|amj | ≤
[( n∑

j=1

|aj |
s
s−1mq

)1/ s
s−1mq

]m
≤ C%2m‖x‖m.

Thus ‖S‖ ≤ C%2m and ‖S‖as(q;1) ≤ C2%2m. Therefore
n∑

j=1

|amj |q =
n∑

j=1

|Sajxj |q ≤ ‖S‖qas(q;1) max
εj∈{1,−1}

∥∥∥
n∑

j=1

εjajxj

∥∥∥
mq

≤ (C2%2m)q(%‖x‖)mq.
Consequently, since n is arbitrary, we have

∑∞
j=1 |aj |mq < ∞ whenever

x =
∑∞

j=1 ajxj ∈ X.

Now we list several important consequences of Theorem 5. For example,
Corollaries 3 and 4 below give converses for Theorems 1 and 2, respectively.
The proofs of Corollaries 3–6 are simple (using Theorem 5 and standard
localization techniques in order to extend the results from c0 to L∞-spaces):

Corollary 3. Let m be a fixed natural number. Then Pas(q;1)(mX)
= P(mX) for every X if and only if q ≥ 1.
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Corollary 4. If m ≥ 2 and X is an L∞-space, then Pas(q;2)(mX)
= P(mX) if and only if q ≥ 1.

Corollary 5. If m ≥ 2 and X is an L∞-space, then Pd,q(mX) 6=
P(mX) for every q < m.

In particular, if X is an L∞-space and m = 2, then Pd,2(2X) = P(2X)
and thus we have:

Corollary 6. If X is an L∞-space, then Pd,q(2X) = P(2X) if and
only if q ≥ 2.

We also have:

Corollary 7. If q ≤ 1/2 and X is an Lp-space (p ≥ 2), then
Pas(q;1)(mX) = P(mX) if and only if p ≤ mq.

Proof. A localization argument allows us to assume that X = lp. If
Pas(q;1)(mX) = P(mX), Theorem 5 ensures that p ≤ mq. On the other
hand, if p ≤ mq and P ∈ P(mX), then

( k∑

j=1

‖P (xj)‖q
)1/q

≤ ‖P‖
( k∑

j=1

‖xj‖mq
)1/q

≤ ‖P‖
( k∑

j=1

‖xj‖p
)m/p

≤ Cp(X)‖P‖ ‖(xj)kj=1‖mw,1,

where Cp(X) is the cotype constant of lp and the last inequality holds since
lp has cotype p (for p ≥ 2) and thus id : lp → lp is absolutely (p; 1)-summing.

All these results can be adapted (including Theorem 5), mutatis mutan-
dis, to the multilinear case. Furthermore, one can extend Corollary 2:

Corollary 8. Let X1, . . . ,Xs be L∞-spaces, q1 = · · · = qs = 2 and
qs+1 = · · · = qn = 1. Then

L(X1, . . . ,Xn) = Las(q;q1,...,qn)(X1, . . . ,Xn),

for any choice of Banach spaces Xs+1, . . . ,Xn, if and only if q ≥ 1.

Remark 1. For the bilinear case it is not hard to prove that when X
is an L∞-space, Ld,q(2X) 6= L(2X) if q < 2. However, this result cannot
be straightforwardly adapted for polynomials and thus Corollary 6 is in
fact non-trivial. Non-coincidence results for absolutely summing multilinear
mappings, in general, do not imply non-coincidence results for absolutely
summing polynomials.
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Reçu par la Rédaction le 18.11.2003 (1485)


