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On scalar-valued nonlinear absolutely summing mappings

by DANIEL PELLEGRINO (Campina Grande)

Abstract. We investigate cases (“coincidence situations”) in which every scalar-
valued continuous n-homogeneous polynomial (or every continuous n-linear mapping) is
absolutely (p; ¢)-summing. We extend some well known coincidence situations and obtain
several non-coincidence results, inspired by a linear technique due to Lindenstrauss and
Petczynski.

1. Introduction. Throughout this note X, X1,..., X,,Y will stand for
Banach spaces and the scalar field K can be either the real or the complex
numbers.

An m-homogeneous polynomial P from X into Y is said to be absolutely
(p; q)-summing (p > q/m) if there is a constant L so that

k 1
(11) (S 1PEr) " < D,
j=1

for every natural k, where ||(3:j)§:1||w,q = SUPyep,, (25:1 lp(2)|7)1/9. This
is a natural generalization of the concept of (p;g)-summing operators and
in the last years it has been studied by several authors. The infimum of the
L > 0 for which the inequality holds defines a norm || - [|45(p;q) for p > 1, or a
p-norm for p < 1, on the space of (p; ¢)-summing homogeneous polynomials.
The space of all m-homogeneous (p; ¢)-summing polynomials from X into
Y is denoted by Pog(pig) (" X;Y) (Pas(pig) (" X) if Y = K).

When p = ¢/m we have an important particular case, since in this situa-
tion there is an analogue of the Grothendieck—Pietsch Domination Theorem.
The (q/m; q)-summing m-homogeneous polynomials from X into Y are said
to be g-dominated and this space is denoted by Pqq(™X;Y) (Pgq("X) if
Y =K).

The Banach space of all continuous m-homogeneous polynomials P from
X into Y with the sup norm is denoted by P(™X,Y) (P("X) if YV is
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the scalar field). Analogously, the space of all continuous m-linear map-
pings from X; x .-+ x X, into Y (with the sup norm) is denoted by
L(X1,....Xm;Y) (L(X4q,...,Xm) if Y = K). The concept of absolutely
summing multilinear mapping follows the same pattern (for details we refer
to [5]). Henceforth every polynomial and multilinear mapping are supposed
to be continuous and every L,-space is assumed to be infinite-dimensional.

A natural problem is to find situations in which the space of absolutely
summing polynomials coincides with the space of continuous polynomials
(coincidence situations). When Y is the scalar field, these situations are not
rare as we can see in the next two well known results:

THEOREM 1. Every scalar-valued n-linear mapping is absolutely (1;1)-
summing. In particular, every scalar-valued n-homogeneous polynomial is
absolutely (1;1)-summing (and, a fortiori, (q;1)-summing for every q > 1).

THEOREM 2 (D. Pérez-Garcia [6]). If n > 2 and X is an Loo-space,
then every scalar-valued n-linear mapping on X is (1;2)-summing. In partic-
ular, every scalar-valued n-homogeneous polynomial on X is (1;2)-summing
(and, a fortiori, (q;2)-summing for every q > 1).

The proof of Theorem 1 can be found in [1] and is credited to A. De-
fant and J. Voigt. The case n = 2 of Theorem 2 was previously proved
by Botelho [2] and is the unique known coincidence result for dominated
polynomials.

In Section 2 we obtain new coincidence situations, generalizing Theo-
rem 1 and extending the results of Theorem 2. Section 3 has a different
purpose: to obtain a technical estimate (inspired by a linear result due to
Lindenstrauss and Pelczynski [3]) and to explore its consequences. In par-
ticular, it is shown that Theorems 1 and 2 cannot be generalized in some
other directions, and converses for the aforementioned theorems are ob-
tained.

2. Coincidence situations. The next theorem, inspired by a result of
C. A. Soares, leads us to extensions of the two theorems stated in the first
section:

THEOREM 3. Let A € L(X1,...,X,;Y) and suppose that there ezists
C > 0 so that for any x1 € X1,...,x, € X, the s-linear (s = n—r) mapping
Agyan(@pg1, oy xn) = Az, ..., zp) is absolutely (1;q1,. .., qs)-summing
and
[ Az llas(tian,...qs) < ClAl ] - ([ ]]-

Then A is absolutely (1;1,...,1,q1,...,qs)-summing.
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Proof. For acgl), .. (m) e Xy,.. m% ), ... ,a:;m) € X,,, consider ¢; € By
such that

1A, 20| = o (AP, ... 20)))

for every j = 1,...,m. Then, denoting by r;(¢) the Rademacher functions
on [0,1] and by A the Lebesgue measure on I = [0, 1]", we have
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< sup ZHA(ZTH t1) (Jl),...,
t1€[0,1],1=1,....,r - — jim1
ZT Dz, 5217 7537(1]))“
Jr=1
< s A s | @D T s 1@ g,
t1€[0,1],1=1,...,r
< sup A flz] -zl @D T s = @)
t1€[0,1],1=1,...,r
< Al TTI) e ) ( T M)l )
=1 l=r+1

We have the following straightforward consequence, generalizing Theorem 1:
COROLLARY 1. If
L(X1,0, Xm3Y) = Lastigr,onngm) (X150, Xm3 V)
then, for any Banach spaces X1, ..., Xy, we have
L(X1,0, Xn3Y) = Lagtigr,egm1,1) (X150, X3 V).

The following corollary (whose proof is simple and we omit it) is a con-
sequence of Theorems 2 and 3.

COROLLARY 2. If Xi,...,Xs are Loo-spaces then, for any Banach
spaces X1, ..., Xn, we have
E(le SRR Xn) = Eas(l;qh.,.,qn)(Xla R 7Xn)7
where qq = -+ =qs =2 and qs41 = -+ - = qn = 1.

It is obvious that Corollary 2 is still true if we replace the scalar field by
any finite-dimensional Banach space. A natural question is whether Corol-
lary 2 can be stated for some infinite-dimensional Banach space in place
of K. Precisely, the question is:

o If Xy,..., X} are L-spaces, is there some infinite-dimensional Banach
space Y such that

L(X1ye o Xy ooy X3 ¥) = Las(tignnan) (X1 oy Xiy oo, X Y,

where q1 = --- = qr = 2 and qx+1 = -+ = ¢n = 1, regardless of the
chioce of the Banach spaces Xyi1,...,X,7

The answer to this question is no, as shown by the following proposition:

PROPOSITION 1. Suppose that X1,..., X are Loo-spaces. If g1 =--- =
=2, Gpt1=""-=¢qn =1 and
LX1,00 Xpy oo s X3 YY) = Lag(3g1,0000) (X150 Xy -, X V),
regardless of the choice of the Banach spaces Xy11, ..., Xy, thendimY < co.
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Proof. By a standard localization argument, it suffices to prove that if
dimY = oo, then

[’(nCD; Y) 7£ [’as(l;ql,...,qn) (nCO; Y),

where ¢ = ... = qx =2 and g1 = -+ = g, = 1. But from [5, Theorem 8]
we even have

L("c0;Y) # Las(giar,an)("c0:Y)
forany ¢ < 2 and ¢1,...,q, > 1.

3. Non-coincidence situations. Assume that X is an infinite-dimen-
sional Banach space and suppose that X has a normalized unconditional
Schauder basis () with coefficient functionals (z7,). If Pagg)("X;Y) =
P(mX;Y), it is natural to ask:

What is the infimum of the ¢ such that in this situation (z}(z)) € I; for
each x € X? This infimum will be denoted by u = u(X,Y,q,m).

In [5], inspired by an important linear result due to Lindenstrauss and
Pelczynski, we have proved:

THEOREM 4 (Pellegrino [5, Theorem 5]). Let X and Y be infinite-dimen-
stonal Banach spaces. Suppose that X has an unconditional Schauder basis
(wn). If Y finitely factors the formal inclusion Iy — loo and Pag(g1)("X;Y)
=P(MmX;Y) with 1/m < q, then

(a) u <mpq/(p—q) if ¢<p,
(b) p <mq if ¢ <p/2.

However, by inspecting the proof of this theorem in [5], one can see that it
is by no means necessary to assume that dimY = oo. Only in Corollary of [5]
(when the Dvoretzky—Rogers Theorem is invoked) is it indeed necessary to
assume dimY = co. A slight change in the proof of [5, Theorem 5] yields
the following result:

THEOREM 5. Let X be an infinite-dimensional Banach space with a nor-
malized unconditional Schauder basis (zn). If Pag(g1)("X) = P("X), then

(a) p<mq/(1—q)if ¢<1,
(b) p < mgq if ¢<1/2.
Proof. Tz =372 ajzjand {;}}; is such that > 77, 1|14 = 1, define

P:X — Kby Pr =" |ul|"ar.

Since () is an unconditional basis, there exists a ¢ > 0 satisfying

n
H ZejajxjH < o|lz| for every n and any ; = £1.
j=1
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Hence

n n
1P| < |lu V9 < o™l ™D gl e,
j=1 Jj=1

and thus [|P|| < o™ and || P||ag(g1) < C0™. Therefore
(3.1) (Z g 7)) (Z|Pajxj| )"

< Hp”as(q;l) maxl} HZ€jaJIL’]H

< [P |las(g:ny (ellz[)™ < CQQ’”IIB«"II”‘-
=1 and

Defining s = 1/¢, we have % +

s—

n s n n
62 (Nla=m) 7 <o { Sl Sl =1},
j=1 j=1 j=1
Since (3.1) is true whenever 37, [u;|* = 1, by (3.1) and (3.2) we obtain
(i)
j=1
But 2ymq = % and n is arbitrary, and hence part (a) is proved. Now, if

1/m < q < 1/2, define S : X — K by Sz = Z;L 1aj'. Since m > 2ymg,
we obtain
1/
= mq)

5] < imﬂ < _

Thus ||S]| < Co*™ and ||5as(q:1) < C*0*™. Therefore

;]a;"’q :jZ]Sa]x]\q < HSHaS (g1 é??XI}HZ&“]a]JJ]H

< (C2™™) (ol ]))™
Consequently, since n is arbitrary, we have 72, [a;|™? < oo whenever
r=>) 2 a7;€X. u

SZymg

< [C*™ ] ™M™

—=mgqm
e P

Now we list several important consequences of Theorem 5. For example,
Corollaries 3 and 4 below give converses for Theorems 1 and 2, respectively.
The proofs of Corollaries 3-6 are simple (using Theorem 5 and standard
localization techniques in order to extend the results from cq to Loo-spaces):

COROLLARY 3. Let m be a fized natural number. Then Pogq1)(™X)
=P("mX) for every X if and only if ¢ > 1.
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COROLLARY 4. If m > 2 and X is an Loo-space, then Piugga)("X)
=P(™X) if and only if ¢ > 1.

COROLLARY 5. If m > 2 and X is an Lo-space, then Pqq (" X) #
P("X) for every ¢ < m.

In particular, if X is an Loo-space and m = 2, then Pq2(*X) = P(2X)
and thus we have:

COROLLARY 6. If X is an Loo-space, then Pa,(2X) = P(2X) if and
only if q > 2.

We also have:

COROLLARY 7. If ¢ < 1/2 and X is an Ly-space (p > 2), then
Pasgi)("X) = P("X) if and only if p < mq.

Proof. A localization argument allows us to assume that X = [,. If
Pas(g;)(MX) = P("X), Theorem 5 ensures that p < mg. On the other
hand, if p < mgq and P € P("X), then

k 1/ . 1/q
(Z”P(%’)Hq) < ||P||<Z||$j||mq>
j=1 pt

k
m/p
<P lesll?) ™ < ColXO 1P )
j=1

where C),(X) is the cotype constant of I, and the last inequality holds since
I, has cotype p (for p > 2) and thus id : I, — [,, is absolutely (p; 1)-summing.

All these results can be adapted (including Theorem 5), mutatis mutan-
dis, to the multilinear case. Furthermore, one can extend Corollary 2:

COROLLARY 8. Let Xq,...,Xs be Loo-spaces, g1 = -+ = qs = 2 and
Qs+1="--=¢qn =1. Then

ﬁ(le ce 7Xn) = Eas(q;ql,...,qn)(Xh ceey Xn)7
for any choice of Banach spaces Xgy1,...,Xn, if and only if g > 1.

REMARK 1. For the bilinear case it is not hard to prove that when X
is an Loo-space, Lq,(*X) # L(2X) if ¢ < 2. However, this result cannot
be straightforwardly adapted for polynomials and thus Corollary 6 is in
fact non-trivial. Non-coincidence results for absolutely summing multilinear
mappings, in general, do not imply non-coincidence results for absolutely
summing polynomials.
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