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The effect of rational maps on polynomial maps

by Pierrette Cassou-Noguès (Talence)

Abstract. We describe the polynomials P ∈ C[x, y] such that P (1/vn, A1v
n +

A2v
2n + . . . + Am−1v

n(m−1) + vnm−kw) ∈ C[v,w]. As applications we give new ex-
amples of bad field generators and examples of families of polynomials with smooth and
irreducible fibers.

Let P (x, y) ∈ C[x, y]. Suppose that [1, a, 0] is a point at infinity of P .
Then there exist rational maps

φ : C2 \ {v = 0} → C2, (v, w) 7→ (x, y),

x = 1/vβ , y = w0/v
α + w1/v

α−1 + . . .+ w/vα−k,

with β ∈ N and α ∈ Z such that

Qt(v, w) = P ◦ φ− t ∈ C[v, w].

For example, if P (x, y) = x2+y3, then P (1/v3,−1/v2+wv4)−t = −t+3w−
3w2v6+w3v12, and if P (x, y) = x2y+x, one has P (1/v,−v+wv2)−t = −t+w
and P (wv, 1/v2)− t = −t+ w2 + wv. Let us write

Qt(v, w) = −t+ q0(w) + q1(w)v + . . .+ qn(w)vn.

One says that the polynomial P is not good if there exists a map φ such that
q0 is zero or has degree strictly greater than one. In this case, the critical
values at infinity of P are the roots of the discriminant of q0(w)−t if q0 6≡ 0,
and 0 otherwise. The polynomial P (x, y) = x2y + x is not good and 0 is a
critical value at infinity.

The study of these polynomials is very important. In particular, the
generically rational polynomials which are not of simple type, the polyno-
mials with only smooth and irreducible fibers which are not variables, po-
tential counterexamples to the jacobian conjecture, are to be found among
non-good polynomials.
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In order to better understand the polynomial P , we will study the poly-
nomial Q. It often happens that the polynomial Q is very simple. Moreover,
one can reconstruct P from Q.

In this article we will study the map φ given by

x = 1/vn, y = A1v
n + A2v

2n + . . .+ Am−1v
n(m−1) + vnm−kw

where n,m, k are natural numbers such that k < n. We show how to recog-
nize polynomials P such that P ◦ φ = Q ∈ C[v, w] and also the polynomials
Q which have this property. This is inspired by Peretz [P], who studied
the case n = 1. We will also give some applications of the main theorem.
More applications will be the aim of forthcoming papers, in particular to
study generically rational polynomials and polynomials with smooth and
irreducible fibers.

I began this work at the University of Melbourne. I want to thank the
members of the Maths Department for their warm hospitality.

I also want to thank the organizers of POLY99 for inviting me to this
very nice conference.

I. MAIN THEOREM

Theorem 1. Let n,m, k be natural integers such that k < n and let
P (x, y) ∈ C[x, y]. Let p(x, y) = xm−1y − A1x

m−2 − . . . − Am−1. Then the
following assertions are equivalent :

(i) P (1/vn, A1v
n + . . .+ Am−1v

n(m−1) + vnm−kw) ∈ C[v, w],
(ii) P (x, y) ∈ C[y, xy, x2y−A1x, . . . , x

m−1y−A1x
m−2− . . .−Am−2x, . . .

. . . , xhip(x, y)ri , . . .] where (hi, ri) runs through

N = {(hi, ri) ∈ N2 | 1 ≤ ri ≤ n, 0 ≤ hi ≤ n− k, (n− k)ri − nhi ≥ 0}.
Theorem 2. (i) If one of the assertions of Theorem 1 is true, let

P (1/vn, A1v
n + . . .+ Am−1v

n(m−1) + vnm−kw) = Q(v, w),

then Q(v, w) is in C[. . . , v(n−k)ri−nhiwri , . . . , Am−1v
n+v2n−kw, . . . , A1v

n+
. . .+Am−1v

n(m−1) + vnm−kw] where (hi, ri) runs through N .
(ii) Conversely , if Q(v, w) is in C[. . . , v(n−k)ri−nhiwri , . . . , Am−1v

n +
v2n−kw, . . . , A1v

n + . . .+Am−1v
n(m−1) + vnm−kw] then setting

v(n−k)ri−nhiwri = xhipri

and
A3v

n + . . .+Am−1v
n(m−3) + vn(m−2)−kw = x2y − A1x− A2,

A2v
n + . . .+Am−1v

n(m−2) + vn(m−1)−kw = xy −A1

one gets a polynomial P (x, y) ∈ C[x, y] such that

P (1/vn, A1v
n + . . .+ Am−1v

n(m−1) + vnm−kw) ∈ C[v, w].
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One has to prove that in Theorem 1, (i) implies (ii). The rest is easy.
We use R. Peretz’ ideas [P]. Let P (x, y) ∈ C[x, y] satisfy condition (i) of
Theorem 1,

P (x, y) =
∑

ai,jx
iyj .

Let

P+(x, y) =
∑

0≤i≤j
ai,jx

iyj and P−(x, y) =
∑

0≤j<i
ai,jx

iyj .

Then

P+(1/vn, A1v
n + . . .+ Am−1v

n(m−1) + vnm−kw)

=
∑

0≤i≤j
ai,jv

n(j−i)(A1 + . . .+ Am−1v
n(m−2) + vn(m−1)−kw)j .

It follows that

P+(1/vn, A1v
n + . . .+ Am−1v

n(m−1) + vnm−kw) ∈ C[v, w].

Moreover,

P+(x, y) =
∑

0≤i≤j
ai,jx

iyj =
∑

0≤i≤j
ai,j(xy)iyj−i.

Then P+(x, y) ∈ C[y, xy]. Since P and P+ satisfy condition (i), so does P−.
Moreover,

P−(1/vn, A1 + . . .+ Am−1v
n(m−1) + vnm−kw)

=
∑

0≤j<i
ai,jv

n(j−i)(A1 + . . .+ Am−1v
n(m−2) + vn(m−1)−kw)j

=
∑

0≤j<i
ai,j

j∑

l1=0

(
j

l

)

× Aj−l11 vn(j−i)+nl1(A2 + . . .+ Am−1v
n(m−3) + vn(m−2)−kw)l1

=
∑

0≤j<i
ai,j

j∑

l1=0

. . .

lm−2∑

lm−1=0

(
j

l

)
. . .

(
lm−2

lm−1

)

× Aj−l11 . . . A
lm−2−lm−1
m−1 vn(j−i+l1+...+lm−2)+(n−k)lm−1wlm−1 .

Since P− satisfies condition (i), one has n(j−i+l1 +. . .+lm−2)+(n−k)lm−1

≥ 0. Let

Q−(v, w) = P−(1/vn, A1 + . . .+ Am−1v
n(m−1) + vnm−kw).
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Then

Q−(v, w) =
∑

ni/(nm−k)≤j<i
ai,j

j∑

l1=0

. . .

lm−2∑

lm−1=0

(
j

l

)
. . .

(
lm−2

lm−1

)

× Aj−l11 . . . A
lm−2−lm−1
m−1 vn(j−i+l1+...+lm−2)+(n−k)lm−1wlm−1

where the li’s satisfy n(j − i + l1 + . . . + lm−2) + (n − k)lm−1 ≥ 0. Write
Q−(v, w) = Q1

−(v, w) +Q2
−(v, w) such that

Q1
−(v, w) =

∑

ni/(nm−k)≤j<i
ai,j

×
j∑

l1=0

. . .

lm−3∑

lm−2=0

(
j

l

)
. . .

(
lm−3

lm−2

)
Aj−l11 . . . A

lm−3−lm−2
m−2

× vn(j−i+l1+...+lm−2)

×
lm−2∑

lm−1=0

(
lm−2

lm−1

)
A
lm−2−lm−1
m−1 v(n−k)lm−1wlm−1

where the summation over li, i ∈ {1, . . .m−2}, is taken for j− i+ l1 + . . .+
lm−2 ≥ 0, and

Q2
−(v, w) =

∑

ni/(nm−k)≤j<i
ai,j

j∑

l1=0

. . .

lm−3∑

lm−2=0

×
∑

lm−1≥(n/(n−k))(i−j−l1−...−lm−2)

(
j

l

)
. . .

(
lm−3

lm−2

)(
lm−2

lm−1

)

×Aj−l11 . . . A
lm−3−lm−2
m−2

×Alm−2−lm−1
m−1 vn(j−i+l1+...+lm−2)(vn−kw)lm−1

where the summation is over the li’s, i ∈ {1, . . . ,m − 2}, such that j −
i + l1 + . . . + lm−2 < 0. In Q2

−(v, w), replace v−n by x and vn−kw by
xm−1y − A1x

m−2 − . . .− Am−1 = p(x, y). One gets a polynomial

P 2
−(x, y) =

∑

ni/(nm−k)≤j<i
ai,j

j∑

l1=0

. . .

lm−3∑

lm−2=0

×
∑

lm−1≥(n/(n−k))(i−j−l1−...−lm−2)

(
j

l

)
. . .

(
lm−3

lm−2

)(
lm−2

lm−1

)

× Aj−l11 . . . A
lm−3−lm−2
m−2 A

lm−2−lm−1
m−1 xi−j−l1−...−lm−2p(x, y)lm−1 ,

the sum being taken over the li’s, i ∈ {1, . . . ,m − 2}, such that j − i +
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l1 + . . . + lm−2 < 0. But lm−1 ≥ (n/(n− k))(i − j − l1 − . . . − lm−2) ≥
i− j − l1 − . . .− lm−2. Write

i− j − l1 − . . .− lm−2 = (n− k)q + h

with h < n− k, and lm−1 = nq + r. One has nh ≤ (n− k)r. Then

xi−j−l1−...−lm−2p(x, y)lm−1 = (xn−kp(x, y)n)qxhp(x, y)r

If r < n, the pair (h, r) is in N . If r ≥ n, we write xhp(x, y)r = xhp(x, y)n×
p(x, y)r−n. Then P 2

−(x, y) ∈ C[y, xy, x2y−A1x, . . . , x
m−1y−A1x

m−2− . . .−
Am−2x, . . . , x

hip(x, y)ri , . . .] where (hi, ri) runs through N .
Now we come back to

Q1
−(v, w) =

∑

ni/(nm−k)≤j<i
ai,j

×
l1=j∑

l1=0

. . .

lm−3∑

lm−2=0

(
j

l

)
. . .

(
lm−3

lm−2

)
Aj−l11 . . . A

lm−3−lm−2
m−2

× vn(j−i+l1+...+lm−2)

×
lm−2∑

lm−1=0

(
lm−2

lm−1

)
A
lm−2−lm−1
m−1 v(n−k)lm−1wlm−1 ,

the summation being taken over the li’s, i ∈ {1, . . . ,m − 2}, such that
j − i+ l1 + . . .+ lm−2 ≥ 0. Then

Q1
−(v, w) =

∑

ni/(nm−k)≤j<i
ai,j

×
j∑

l1=0

. . .

lm−3∑

lm−2=0

(
j

l

)
. . .

(
lm−3

lm−2

)
Aj−l11 . . . A

lm−3−lm−2
m−2

× vn(j−i+l1+...+lm−2)(Am−1 + vn−kw)lm−2 ,

the summation being taken over the li’s, i ∈ {1, . . . ,m − 2}, such that
j− i+ l1 + . . .+ lm−2 ≥ 0. Again we split Q1

−(v, w) = Q1,1
− (v, w)+Q1,2

− (v, w)
where

Q1,1
− (v, w) =

∑

ni/(nm−k)≤j<i
ai,j

×
j∑

l1=0

. . .

lm−4∑

lm−3=0

(
j

l

)
. . .

(
lm−4

lm−3

)
Aj−l11 . . . A

lm−4−lm−3
m−3
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× vn(j−i+l1+...+lm−3)
lm−3∑

lm−2=0

(
lm−3

lm−2

)

× Alm−3−lm−2
m−2 vnlm−2(Am−1 + vn−kw)lm−2 ,

the sum being taken over the li, i ∈ {1, . . . ,m − 3}, such that j − i + l1 +
. . .+ lm−3 ≥ 0, and

Q1,2
− (v, w) =

∑

ni/(nm−k)≤j<i
ai,j

j∑

l1=0

. . .

lm−4∑

lm−3=0

×
∑

lm−2≥i−j−l1−...−lm−3

(
j

l

)
. . .

(
lm−3

lm−2

)

×Aj−l11 . . . A
lm−3−lm−2
m−2 vn(j−i+l1+...+lm−2)(Am−1+vn−kw)lm−2 ,

the summation being taken over the li, i ∈ {1, . . . ,m− 2}, such that j− i+
l1 + . . .+ lm−3 < 0. Replace v−n by x and Am−1 +vn−kw by p(x, y)+Am−1.
Then

vn(j−i+l1+...+lm−2)(Am−1 + vn−kw)lm−2

= xi−j−l1−...−lm−3(xm−2y − . . .−Am−2)lm−2 .

We write

xi−j−l1−...−lm−3(xm−2y − . . .− Am−2)lm−2

= p(x, y)i−j−l1−...−lm−3(xm−2y − . . .−Am−2)lm−2−(i−j−l1−...−lm−3).

Step by step, the result follows.

Remark. In the case where n = 1, D. Wright [W] studied Spec(A) for

A = C[y, xy, x2y − A1x, . . . , x
m−1y − A1x

m−2 − . . .−Am−2x, . . . ,

xmy − A1x
m−1 − . . .− Am−1x].

II. APPLICATIONS

1. First we will study a simple case of a map φ which is already famous.
Let us consider the map

φ : C2 \ {v = 0} → C2, (v, w) 7→ (1/v2,−v2 + v3w).

Applying Theorem 1, one knows that Q = P ◦ φ ∈ C[v, w] is equivalent to
P (x, y) ∈ C[y, xy, x(xy + 1)2] and Q(v, w) ∈ C[w2, vw, v3w − v2]. One goes
from Q to P replacing w2 by x(xy + 1)2, vw by xy + 1 and v3w − v2 by y.

This map occurs in two well known examples.
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(a) Briançon’s example. Briançon’s example [ACL] is the first known
one of a polynomial with smooth and irreducible fibers. It is defined by

s = xy + 1, p = sx+ 1, u = s2 + y,

f = p2u+ a1ps+ a0s+ t

with a0 = −1/3 and a1 = −5/3. Let us consider f depending on the param-
eters a0 and a1. One sees that s, ps and p2u belong to C[y, xy, x(xy + 1)2].
Then f1(v, w) = f(1/v2,−v2 + v3w) ∈ C[v, w] and

f1(v, w) = v3w+(3w2−1)v2 +(a1w+a0w+3w3−2w)v+w4−w2 +t+a1w
2.

One sees that f is a non-good polynomial with critical values t = 0 and
t = (a1 − 1)2/4. It also has 2 critical points. Let us consider the rational
map φ1, of degree two,

C2 \ {v1 = w1} σ−→ C2 \ {v = 0} φ−→ C2, (v1, w1) 7→ (v, w) 7→ (x, y),

where σ is the automorphism v = v1 − w1, w = w1.
Define f2(v1, w1) = f1 ◦ σ. Then

f2(v1, w1) = v3
1w1 − v2

1 + (a0 + a1)v1w1 − a0w
2
1 + t.

This polynomial is non-degenerate and commode, hence it is tame [B]. It
has no critical values at infinity; its global Milnor number is 5 and can be
computed using Kouchnirenko’s theorem. One singular point is (0, 0), which
lies on v1 = w1 and is sent to infinity by φ1, and four others are sent to the
two critical points of f . To get rid of these two critical points one has to put
the four critical points of f2 on the line v1 = w1. This gives two possible
values a0 = −1/3, a1 = −5/3 and a0 = −1/9, a1 = −7/9.

It is easy to see that f = c is an irreducible fiber if and only if f = c
is not divisible by a power of x and f2 = c is not divisible by a power of
v1 −w1. Then the irreducibility of all the fibers f = c is very easy to check.

Starting with f2, using the automorphism v = v1−w3
1 , w = w1, which is

an automorphism of C[w2
1, v1w1, v

3
1 + v3

1w1], and replacing w2
1 by

x(xy + 1)2, v1w1 by xy + 1 and v3
1w1 − v2

1 by y, one gets a new polyno-
mial of degree 15. Now if we send the critical points of f2 to the curve
v1 = w3

1, we will again get a polynomial with smooth and irreducible fibers.
This can be achieved with a0 = −1/4, a1 =

√
3− 1/4.

The other example we want to discuss is due to Pinchuk.

(b) Pinchuk’s example. Pinchuk [Pi] found an example of a map (f, g)
from R2 to R2 whose jacobian does not vanish in R2 and which is not
injective. The two polynomials f and g satisfy

(∗) f1 = f(1/v2, v2 + v3w) ∈ C[v, w], g1 = g(1/v2, v2 + v3w) ∈ C[v, w].
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Using again the automorphism

v = v − w, w = w

one gets

f2 = v2 + v3w + vw,

g2 = − 75w4v6 − 270v5w3 − 1
4w(1460w + 75w3)v4

− 1
4w(300w2 + 680)v3 − 1

4w(392w − 24w3)v2 + 8w3v − w4.

The jacobian of the rational map is 1, hence the jacobian of (f2, g2) is also a
sum of squares. But the two polynomials f2 and g2 have a critical point at
the origin (because they belong to C[w2, vw, v2 + v3w]), thus their jacobian
vanishes at the origin. This proves two things: first we will never get a
jacobian equal to 1 starting with a map satisfying (∗), and, as the jacobian of
(f2, g2) always vanishes, there exists a real sequence (xk, yk) going to infinity
such that the jacobian of (f, g) goes to 0 as k →∞. This is compatible with
Conjecture 2 of [CM].

Remark. Peretz, as well as Wright, uses the ring C[y, xy, x2y+x] instead
of C[y, xy, x(xy + 1)2] which is contained in the previous one. In fact, the
ring which appears in Theorem 1 is contained in the ring A = C[y, xy, x2y−
A1x, . . . , x

my − A1x
m−1 − . . .− Am−1x] studied by Peretz and Wright, for

which Wright [W] settled Conjecture 3.2, which says that there is no pair of
polynomials in this ring with non-zero constant jacobian. Wright proved the
conjecture in the case where A1 is non-zero. There are non-good polynomials
which are not contained in any of the rings studied by Wright. An example
is Jan’s polynomial [J]:

f := x(x5y3 + 1)3 + y(x2y + 1)8 − x16y9 + 4xy + 6x2y

+ 19x3y2 + 8x4y2 + 36x5y3 + 34x7y4 + 16x9y5.

2. Bad field generators. A field generator is a polynomial whose
generic fiber is rational (a generically rational polynomial). If f is a field
generator, there exist g ∈ C(x, y) such that C(f, g) = C(x, y). One says
that f is a bad field generator if there does not exist g ∈ C[x, y] such that
C(f, g) = C(x, y). One can recognize that a polynomial f is a bad field gen-
erator by the fact that the generic fiber is rational and for any rational map
φ such that Q = f ◦ φ ∈ C[v, w],

Q(v, w) = q0(w) + q1(w)v + . . .+ qn(w)vn,

the polynomial q0 has degree strictly greater than 1 if it is not zero. Until
now, two examples of bad field generators have been known. The first one
was discovered by Jan [J]; its degree is 25. Later Russell [R] found an example
of degree 21 and showed that this is the lowest possible degree. Let us build
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new examples, based on Russell’s. Start with

Q(v, w) = w3 + v2w2 + vw + t.

Then Q ∈ C[w3, vw,−v3 + v4w]. Consider the two automorphisms of this
ring w = w1− v2

1 , v = v1 (we get Q1) and w1 = w2, v1 = v2 +w2+3k
2 . Let Q2

be the compositum. Now if we replace −v3
2 + v4

2w2 by y, v2w2 by xy−1 and
w3

2 by x(xy−1)3, we get a polynomial f which is a bad field generator. (The
case k = 0 is Russell’s polynomial.) To see this, it is useful to look at the
splice diagrams at infinity of the fibers of the polynomials occurring here.
Splice diagrams are explained in [N]; they give a picture of the branches at
infinity of a curve. The splice diagram at infinity of the generic fiber of Q is

1

2

-1
(6)

(3)

(0)

The splice diagram at infinity of the generic fiber of Q1 is

1

2

-1
(6)

(3)

(0)

The splice diagram at infinity of the generic fiber of Q2 is

1

2

-1
(6)

(3)

(0)
1

2+3k

(9+12k)

and the splice diagram at infinity of the generic fiber of f is

2

(0)-4

3

(0)
-2+3k

3+4k

(3+4k) (2)

(1)(1)

3+4k

which shows that the polynomial f is a bad field generator.

3. Families of polynomials with smooth and irreducible fibers.
In [ACL] one can find infinitely many polynomials with smooth and irre-
ducible fibers. But no family of such polynomials is presented there. Now
we give examples of such families.
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Let us first find a family in degree 9. We start with

f = v2w + a1v + A1vw + A2w + A3w
2 + t

where a1 and A3 are non-zero. The polynomial f is commode and non-
degenerate, we have µ = 3. We will put the three critical points on the line
v = w + a2. This is easy to do, because the critical points satisfy

(2v + A1)(v2 + A1v + A2)− 2a1A3 = 0,(1)

2A3w + v2 +A1v + A2 = 0.(2)

If all the critical points are on the line v = w + a2, all the roots of P :=
(2v+A1)(v2+A1v+A2)−2a1A3 are roots ofQ := 2A3(v−a2)+v2+A1v+A2.
If P = Q1Q with Q1 dividing Q, the condition is satisfied. In fact, it is the
only possibility which ensures a1 non-zero. We get

a1 = −16A2
3, A1 = −2a2 − 4A3, A2 = a2

2 + 4a2A3 − 8A2
3.

Now we consider f1(v, w) = f(v − w − a2, w) and

F (x, y) = f1(1/x, x2y − a1x).

Then the polynomial F is a polynomial of degree 9 with smooth and irre-
ducible fibers:

F := x6y3 + 48x5y2A2
3 + (−3A3y

2 + 768yA4
3)x4

+ (4096A6
3 + 2y2 − 96A3

3y)x3 + (40yA2
3 − 768A5

3)x2

+ (128A4
3 − 4A3y)x− 16A2

3a2 + y − 64A3
3.

One notices that F only depends on A3.
Now one can also put the critical points on the curve v = w2 + w + a2.

It is easier because now the condition is that the polynomial P divides the
polynomial Q := (v2 + A1v + A2)2 − 2A3(v2 + A1v + A2) + 4A2

3a2. One
gets a1 = 4A3, A1 = −2a2, A2 = 2a3A3 + a2

2. Now we consider f1(v, w) =
f(v − w2 − w − a2, w) and

F (x, y) = f1(1/x, x2y − a1x).

The polynomial F is of degree 15 with smooth and irreducible fibers:

F := x10y5 − 20x9y4A3 + (160y3A2
3 + 2y4)x8

+ (−32y3A3 − 640y2A3
3)x7 + (y3 + 192y2A2

3 + 1280yA4
3)x6

+ (2y3 − 512yA3
3 − 12y2A3 − 1024A5

3)x5

+ (48yA2
3 − 19y2A3 + 512A4

3)x4 + (56yA2
3 − 64A3

3 + 2y2)x3

+ (−10yA3 − 48A3
3)x2 + 8A2

3x+ 4a2A3 + y.

Again it only depends on A3. More examples of polynomials satisfying The-
orem 1 can be found in [CN].
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