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Affine rulings of weighted projective planes

by Daniel Daigle (Ottawa, ON)

Abstract. It is explained that the following two problems are equivalent:

(i) describing all affine rulings of any given weighted projective plane;
(ii) describing all weighted-homogeneous locally nilpotent derivations of k[X,Y,Z].

Then the solution of (i) is sketched. (Outline of our joint work with Peter Russell.)

Introduction. An “affine ruling” of an algebraic surface X is a mor-
phism p : U → Γ where Γ is a curve, U is a nonempty open subset of X
isomorphic to Γ ×A1 and p is the projection Γ ×A1 → Γ (note that we will
modify this definition in Section 1). Then, how can we find all affine rulings
on a given surface X? In our joint work with Peter Russell ([2] and [3]), we
give a complete answer to that question in the case where X is a weighted
projective plane, and a partial answer when X belongs to a larger class of
surfaces.

The aim of this paper is to give an outline of [2] and [3] which is readable
by a wider set of algebraists and geometers. To achieve this, we explain
several notions which are well known to geometers familiar with algebraic
surfaces (but we do assume some familiarity with the notion of linear system
on a surface); we also omit all proofs and present the material in an order
which is quite different from that of [2] and [3].

Two distinct approaches are proposed in [2] and [3] but only the one via
discrete data (Section 5 of [2] and most of [3]) is outlined here. Although the
other approach (via “X-immersions”) is necessary for a full understanding
of the subject, it can be omitted in this type of outline. Also note that [2]
and [3] contain several nontrivial results in the theory of weighted graphs,
but none of these appears here.
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Motivation. There are several reasons for studying affine rulings, but
let us explain the connection with locally nilpotent derivations. Consider
the polynomial ring A = k[X0,X1,X2], where k is an algebraically closed
field of characteristic zero. It is known that describing the locally nilpotent
derivations D : A → A is equivalent to describing their kernels; by a result
of Miyanishi [7], the kernel of such a derivation is a subalgebra k[f, g] of
A, where f and g are algebraically independent over k. So describing the
locally nilpotent derivations D : A → A is equivalent to answering: Which
pairs of polynomials f, g ∈ A have the property that k[f, g] is the kernel of
a locally nilpotent derivation of A? However, this question seems to be very
difficult. If we restrict ourselves to the case where D is (or equivalently f
and g are) homogeneous with respect to weights w(Xi) = ai, where a0, a1, a2

are relatively prime positive integers, then we can think of the zero sets of
f and g as curves in the weighted projective plane P(a0, a1, a2) = ProjA;
then [1] gives the following result:

Theorem. For w-homogeneous elements f, g ∈ A satisfying gcd(w(f),
w(g)) = 1, the following are equivalent :

1. there exists a locally nilpotent derivation D of A such that kerD =
k[f, g];

2. there exists a w-homogeneous locally nilpotent derivation D of A such
that kerD = k[f, g];

3. f and g are irreducible elements of A and the complement of the
set {fg = 0} in the weighted projective plane P(a0, a1, a2) is isomorphic to
A1
∗ × A1 as an algebraic surface.

(Here, A1
∗ denotes the affine line minus one point.) Note that the case

where gcd(w(f), w(g)) 6= 1 turns out to be very special, and is completely
described in [1]. Hence, describing homogeneous locally nilpotent derivations
of A is equivalent to finding all pairs of curves C1, C2 on P(a0, a1, a2) with
the property that P(a0, a1, a2)\(C1∪C2) is isomorphic to A1

∗×A1. Although
this is not entirely obvious, it turns out that this is equivalent to finding all
affine rulings of P(a0, a1, a2) (see Problems 1 and 2 of 1.3). So,

Describing the affine rulings of P(a0, a1, a2) is equivalent to describing
the w-homogeneous locally nilpotent derivations of A.

The class of homogeneous locally nilpotent derivations of A is not well
understood, and corresponds to an interesting class of Ga-actions on A3. In
particular, our description of the affine rulings of P(a0, a1, a2) might even-
tually enable one to produce families of automorphisms of A3 which are
currently unknown.

Conventions and terminology. 1. The set of nonnegative (resp. positive)
integers is denoted by N (resp. Z+).
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2. All curves and surfaces considered in this paper are assumed to be
algebraic varieties over an algebraically closed field k of characteristic zero.
In particular, curves and surfaces are irreducible and reduced.

3. If f : X → Y is a birational morphism of surfaces then the center of
f (denoted by center f) is the set of points y ∈ Y such that f−1(y) contains
more than one point. The inverse image of the center is called the exceptional
locus of f .

4. If Λ is a linear system on a surface X, then by a member of Λ we mean
a divisor D of X such that D ∈ Λ. Assume that D has irreducible support,
i.e., that D = nC for some n ∈ Z+ and some irreducible curve C; we call D
a reduced member of Λ if n = 1, a multiple member if n > 1.

5. Let S be a smooth projective surface. If D is a divisor of S, then
by a component of D we always mean an irreducible (or prime) component
of D. If D and D′ are divisors of S then D · D′ denotes their intersection
number and D2 = D ·D. If C ⊂ S is a smooth rational curve (C ∼= P1) and
C2 = r, we call C an r-curve; by an r-component of a divisor D we mean
a component of D which is an r-curve. A divisor D of S has strong normal
crossings if it is reduced, effective, and satisfies:

(i) each component of D is a smooth curve;
(ii) if Di and Dj are distinct components of D then Di ·Dj ≤ 1; and
(iii) if Di, Dj and Dk are distinct components of D then Di ∩Dj ∩Dk

is empty.

6. Every graph considered in this paper is a finite undirected graph such
that no edge connects a vertex to itself and at most one edge joins any
given pair of vertices. (The words “graph” and “tree” are always used in
this restricted sense.)

7. A weighted graph is a graph in which each vertex is assigned an integer
(called its weight).

8. Let S be a smooth projective surface and D a divisor of S with strong
normal crossings; let D1, . . . ,Dn be the distinct components of D. The dual
graph of (D,S) is the weighted graph G = G(D,S) whose vertices are the
components of D; distinct vertices Di and Dj are joined by an edge if the
curves Di and Dj have nonempty intersection; and the weight of a vertex
Di is the self-intersection number D2

i of the curve Di. We say that Dj is a
neighbor of Di if i 6= j and Di ∩Dj 6= ∅ (i.e., if the vertices Di,Dj of G are
neighbors); the number of neighbors of Di is called its branching number ;
if this number is strictly greater than 2, we say that Di is a branching
component of D (or that the vertex Di is a branch point of G). We say that
G is a linear chain (or a linear tree) if it is a tree without branch points;
an admissible chain is a linear chain in which every weight is strictly less
than −1; note that the empty graph is an admissible chain. We say that
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D is a tree (or a linear chain, or an admissible chain, etc.) if G has the
corresponding property.

9. Let X and X∗ be projective normal surfaces, β a birational isomor-

phism between them (either X
β→ X∗ or X

β← X∗) and Λ a one-dimensional
linear system on X without fixed components. In this situation, we will often
use the fact that Λ and β determine, in a natural way, a one-dimensional
linear system Λ∗ on X∗ without fixed components. The tacit understand-

ing is that, for suitably chosen rational maps X λ→ P1 and X∗
λ∗→ P1 de-

termining Λ and Λ∗ respectively, β, λ and λ∗ form a commutative dia-
gram.

For instance, if X∗ → X is a blowing-up morphism, then this process
gives the strict transform Λ∗ of Λ. On the other hand, if X → X∗ is a
blowing-up then the Λ∗ so obtained will simply be called the “image” of Λ
(then Λ is the strict transform of Λ∗).

10. We will need to consider the Nagata ruled surface Fm for positive
values of m; Λm denotes the standard ruling of Fm and Σm the negative
section of Λm (Σm is a curve on Fm isomorphic to a projective line, Σ2

m =
−m and Σm ·D = 1 for every D ∈ Λm).

1. Preliminaries

Definition of affine ruling

1.1. Let X be a projective normal rational surface. We claim that every
“affine ruling” p : U → Γ of X (as defined in the Introduction) determines
a linear system Λ on X. Indeed, U ∼= Γ ×A1 is normal and rational, so Γ is
an open subset of P1. The morphism p extends to a rational map X → P1

which, in turn, determines a unique linear system Λ on X without fixed
components.

It is proved in Section 1 of [2] that any two affine rulings ofX determining
the same linear system Λ differ in a trivial way. Since our task is to enumerate
all affine rulings, we should not distinguish between rulings which determine
the same linear system; so we adopt the viewpoint that Λ itself is the affine
ruling :

Definition. Let Λ be a one-dimensional linear system on X without
fixed components. We say that Λ is an affine ruling of X if there exist
nonempty open subsets U ⊂ X and Γ ⊆ P1 such that U ∼= Γ ×A1 and such
that the projection morphism Γ × A1 → Γ determines Λ.

From now on, “affine ruling” is always understood as in the above defi-
nition.

If Λ is an affine ruling of X then the general member C of Λ satisfies
C ∩ U ∼= A1; it follows that:
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• the general member of Λ is irreducible and reduced;
• Λ has at most one base point on X.

A class of surfaces and three problems

1.2. The symbol X always denotes a projective algebraic surface which
is at least normal and rational. Following the terminology of [2] and [3], we
say that an algebraic surface X satisfies (‡) if

(‡) X is a projective normal rational surface,X is affine-ruled, rank(PicXs)
= 1 and every singular point of X is a cyclic quotient singularity,

where Xs denotes the smooth locus of X.

Remarks. (i) “X is affine-ruled” means that there exists at least one
affine ruling of X.

(ii) The group PicXs is the same as the divisor class group of X.

If a, b, c are any positive integers, the weighted projective plane P(a, b, c)
satisfies (‡). In particular, P2 satisfies (‡). In Section 1 of [2], it is proved that
if X satisfies (‡) then X has at most three singular points. We also know
that the class (‡) contains many surfaces other than the weighted projective
planes, and we have a characterization (see 1.6) of weighted projective planes
in the class (‡).

1.3. Given an algebraic surface X satisfying (‡), consider:

Problem 1. Find all affine rulings of X.

Problem 2. Find all pairs of curves C1, C2 on X such that X\(C1∪C2)
is isomorphic to A1

∗ × A1.

Problem 3. Find all curves C in X such that κ(Xs \ C) = −∞.

It is shown in [2] that Problems 1 and 2 are equivalent, and that a
solution to Problem 1 contains, in particular, a solution to Problem 3; also,
some references are given in [2] for Problem 3 in the case X = P2.

Our aim is to investigate Problem 1 for an arbitrary X satisfying (‡),
and in particular for X = P(a0, a1, a2).

Resolution graph of a surface

1.4. Definition. If X is a projective normal rational surface, then it
makes sense to consider the minimal resolution of singularities % : X̂ → X
of X. Then %−1(SingX) is the support of a divisor Ê of X̂ with strong
normal crossings and, moreover, each connected component of Ê is a tree
of projective lines. The dual graph G(Ê, X̂) is called the resolution graph of
the surface X.

We recall a fact concerning resolution graphs:
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1.5. For X as in 1.4, the following are equivalent :

1. every singular point of X is a cyclic quotient singularity ;
2. every connected component of the resolution graph of X is an admis-

sible chain.

Remark. As far as this article is concerned, the reader unfamiliar with
the notion of “cyclic quotient singularities” may use 1.5 as a definition.

The following result was obtained in [3] after essentially everything else
had been proved:

1.6. Theorem. Let X be a complete normal rational surface which is
affine-ruled and satisfies rank(PicXs) = 1. If X has the same resolution
graph as the weighted projective plane P(a, b, c), then X is isomorphic to
P(a, b, c).

In other words, 1.6 characterizes weighted projective planes among all
surfaces satisfying (‡).

Resolution graph of a weighted projective plane. For positive integers
a0, a1, a2, the weighted projective plane P(a0, a1, a2) is defined by

P(a0, a1, a2) = ProjA,

where A = k[X0,X1,X2] is graded by assigning weight ai to Xi. By 1.3.1 of
[4], there exist pairwise relatively prime positive integers a′0, a

′
1, a
′
2 such that

P(a0, a1, a2) ∼= P(a′0, a
′
1, a
′
2). From now on, whenever a weighted projective

plane P(a0, a1, a2) is under consideration, we will always assume that

a0, a1, a2 are pairwise relatively prime.

Let P = P(a0, a1, a2) and consider the points q0 = (1 : 0 : 0), q1 = (0 : 1 :
0), q2 = (0 : 0 : 1) ∈ P. Then it is known that SingP ⊆ {q0, q1, q2}, where qi
is singular if and only if ai > 1. Moreover, these are well understood cyclic
quotient singularities, and the resolution graphs of such singularities were
described in [5]. Consequently, the resolution graph of P is known. We now
proceed to describe it (see Section 1 of [3] for details).

1.7. 1. Given an ordered triple (a, b, c) of pairwise relatively prime pos-
itive integers, we define an admissible chain A(a,b,c) as follows. Write r0 = a
and let r1 be the unique integer satisfying 0 ≤ r1 < r0 and br1 ≡ c (mod a);
consider the “outer” Euclidean algorithm on (r0, r1): ri−1 = qiri − ri+1

(0 ≤ ri+1 < ri, i = 1, . . . , n) and rn+1 = 0; then A(a,b,c) is

� � � ������
���������
	 ��������������

Note that A(a,b,c) is the empty chain if and only if a = 1. Also, one can see
that if b and c are interchanged then the only difference is that the integers
(q1, . . . , qn) are produced in the reverse order; so A(a,b,c) = A(a,c,b).
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2. For an unordered triple [a0, a1, a2] of pairwise relatively prime positive
integers, let G[a0,a1,a2] be the disjoint union of A(a0,a1,a2), A(a1,a2,a0) and
A(a2,a0,a1).

1.8. Proposition. Given pairwise relatively prime a0, a1, a2 ∈ Z+, the
resolution graph of P(a0, a1, a2) is G[a0,a1,a2].

Remark. In [3], any surface X satisfying (‡) and with resolution graph
G[a0,a1,a2] is called a surface “of type [a0, a1, a2]”. Then, near the end of that
paper, it is shown that such a surface must be isomorphic to P(a0, a1, a2)
(this is 1.6 in the present work).

1.9. Example. To find the resolution graph of P(5, 6, 7) by using Def-
inition 1.4, one has to minimally resolve the singularities and look at the
resolution locus, i.e., the inverse image of the singular points (see Figure 1).

� � � � � � � �

� � � � ���
� � � � � �

� �
� �
� �

� �
� � � �

� �
� � � �

� �
� � ��� � �

� �
� � �
	��

������������

Fig. 1. Resolution of singularities of P(5, 6, 7)

Then the resolution graph of P(5, 6, 7) is the dual graph of the resolution
locus:

� � � � � � � � ���� ��� ��� ��� ��� ��� ��� ��� ���
However, it is quicker to use 1.8, which tells us that the resolution graph is
G[5,6,7]. Note that G[5,6,7] is exactly the above graph.

2. Blowing-up according to a tableau

Blowing-up, blowing-down and equivalence of weighted graphs

2.1. Let G be a weighted graph. We define three types of “blowing-up
of G”:

1. If v is a vertex of G then the blowing-up of G at v is the weighted
graph G′ obtained from G by adding one vertex e of weight −1, adding one
edge joining e to v, and decreasing the weight of v by 1. (This process is
called a blowing-up “at a vertex”, or a “sprouting” blowing-up.)
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2. If ε = {v1, v2} is an edge of G (so v1, v2 are distinct vertices of G joined
by an edge), then the blowing-up of G at ε is the weighted graph G ′ obtained
from G by adding one vertex e of weight −1, deleting the edge ε = {v1, v2},
adding the two edges {v1, e} and {e, v2}, and decreasing the weights of v1

and v2 by 1. (This is called a blowing-up “at an edge”, or a “subdivisional”
blowing-up.)

3. The free blowing-up of G is the weighted graph G ′ obtained by taking
the disjoint union of G and of a vertex e of weight −1.

We will use the symbol G ← G′ to indicate that G and G′ are weighted
graphs and that G′ is a blowing-up of G. In each of the above three cases,
we call e the vertex created by G ← G ′. In reverse, we say that G is obtained
by contracting (or blowing-down) G ′ at e.

2.2. More precisely, given a weighted graph G ′ and a vertex e of G′,
the blowing-down of G′ at e is allowed if and only if the following three
conditions hold:

(i) e has weight −1;
(ii) e has at most two neighbors in G ′;
(iii) if v1 and v2 are distinct neighbors of e in G ′ then v1, v2 are not

neighbors in G′.
Given a sequence G0 ← . . . ← Gn of blowings-up, we may also speak of

the contraction (or blowing-down) “Gn ≥ G0” of weighted graphs.

2.3. Two weighted graphs are equivalent if one can be obtained from
the other by a finite sequence of blowings-up and blowings-down.

2.4. Let S be a smooth projective surface and D a divisor of S with
strong normal crossings. If S′ → S is the blowing-up of S at a point P then
the inverse image in S′ of {P} ∪ SuppD is the support of a divisor D′ of S′

with strong normal crossings. Then the dual graph G(D′, S′) is a blowing-up
of G(D,S).

Weighted pairs

2.5. By a weighted pair we mean an ordered pair (G, v) where G is a
(nonempty) weighted graph and v is a vertex of G. If (G, v) is a weighted
pair, we call v its distinguished vertex.

2.6. Let (G, v) and (G′, v′) be weighted pairs. Suppose that G ′ is a
blowing-up of G (i.e., G ← G′) and that the following hold:

(i) The blowing-up G ← G′ is either at v or at an edge incident to v;
and

(ii) v′ is the vertex of G′ which is created by the blowing-up G ← G ′.
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Then we say that (G′, v′) is a blowing-up of (G, v) and write (G, v) ←
(G′, v′).

2.7. A tableau is a matrix T =
( p1 ... pk
c1 ... ck

)
whose entries are integers

satisfying ci ≥ pi ≥ 1 and gcd(pi, ci) = 1 for all i = 1, . . . , k. We allow
k = 0, in which case we say that T is the empty tableau and write T = 1.
The set of all tableaux is denoted by T .

2.8. Let (G0, e0) be a weighted pair and
(
p
c

)
∈ T a one-column tableau.

By blowing-up (G0, e0) according to
(
p
c

)
we mean producing the sequence

(G0, e0)← . . .← (Gn, en) defined as follows:

1. Let G0 ← G1 be the blowing-up at e0 and let e1 be the vertex of G1 so
created. Define

( u1 x1

v1 y1

)
=
( e1 p

e0 c−p
)
.

2. If i ≥ 1 is such that (Gi, ei) and
( ui xi
vi yi

)
have been defined, then:

(a) If yi = 0 then we set n = i and stop.
(b) If yi 6= 0 then let Gi+1 be the blowing-up of Gi at the edge {ui, vi},

let ei+1 be the vertex of Gi+1 so created and define

(
ui+1 xi+1

vi+1 yi+1

)
=





(
ei+1 xi
vi yi − xi

)
if xi ≤ yi,

(
ui xi − yi
ei+1 yi

)
if xi > yi.

Remark. The sequence (G0, e0) ← . . . ← (Gn, en) of 2.8 “follows” the
euclidean algorithm of (p, c) and satisfies:

(i) n ≥ 1 and equality holds if and only if
(
p
c

)
=
(1

1

)
;

(ii) G0 ← G1 is the only blowing-up in (G0, e0)← . . .← (Gn, en) which is
“at a vertex”.

2.9. Let (G0, e0) be a weighted pair and T =
( p1 ... pk
c1 ... ck

)
∈ T a tableau.

We define the sequence (G0, e0)← . . .← (Gn, en) obtained by blowing-up
(G0, e0) according to T by induction on k:

• If k = 0 (i.e., T is the empty tableau), then n = 0 (no blowing-up is
performed).
• If k = 1, then (G0, e0)← . . .← (Gn, en) is defined in 2.8.
• If k > 1, then (G0, e0)← . . .← (Gn, en) is

(G0, e0)← . . .← (Gm, em)← (Gm+1, em+1)← . . .← (Gn, en),

where (G0, e0) ← . . . ← (Gm, em) is the sequence obtained by blowing-up
(G0, e0) according to

(
p1
c1

)
and (Gm, em) ← . . . ← (Gn, en) is obtained by

blowing-up (Gm, em) according to
( p2 ... pk
c2 ... ck

)
.
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2.10. Given a weighted pair (G0, e0), consider the set S(G0,e0) of se-
quences of blowings-up of weighted pairs (G0, e0) ← . . . ← (Gn, en) satis-
fying: if n > 0 then G0 ← G1 is the blowing-up of G0 at e0.

The above paragraphs show that each T ∈ T determines an element of
S(G0,e0) (obtained by blowing-up (G0, e0) according to T ). In fact, it is not
difficult to see that this set map T → S(G0,e0) is bijective.

2.11. Consider a pair (π,G), where π : S′ → S is a birational morphism
of smooth projective surfaces and G ⊂ S is a smooth curve. Assume:

1. G ∩ centerπ contains at most one point;
2. if G ∩ centerπ = {P}, then π−1(P ) has exactly one (−1)-component.

Let us explain how (π,G) determines a tableau HN(π,G) ∈ T .
If G ∩ centerπ is empty, let HN(π,G) be the empty tableau.
If G∩ centerπ = {P}, let n be the number of irreducible components of

π−1(P ) and factor π as

S = S0
π1←− . . . πn←− Sn π′←− S′,

where πi is the blowing-up of Si−1 at a point Qi ∈ Si−1 infinitely near P (so
Q1 = P ), and where the center of π′ is disjoint from (π1 . . . πn)−1(P ) ⊂ Sn.
Let Ei = π−1

i (Qi) ⊂ Si (for 1 ≤ i ≤ n) and let E0 = G. Then En is
a (−1)-component of π−1(P ) and, by assumption 2, it is the only one. It
follows that:

3. Pi ∈ Ei−1 for all i = 1, . . . , n,

so we have a sequence of blowings-up of weighted pairs

(G(D0, S0), E0)← . . .← (G(Dn, Sn), En),

where Di is the inverse image of G in Si (so D0 = G = E0). By 2.10, there
is a unique tableau T ∈ T such that this sequence is the blowing-up of
(G(D0, S0), E0) according to T . This tableau T is denoted by HN(π,G).

Remark. HN(π,G) is a simplified version of the Hamburger–Noether
tableau ([8], [6]). Note that the Hamburger–Noether tableau contains more
information than HN(π,G).

3. Construction of affine rulings. This section gives a method for
constructing all pairs (X,Λ) where X is a surface satisfying (‡) and Λ is an
affine ruling of X. See the introduction for the notations Fm, Λm and Σm.

3.1. Definition. Fix a triple (m,T1, T2) ∈ Z+ × T × T .

1. By a blowing-up of Fm according to (T1, T2) we mean a triple (π, P1, P2)
where



Affine rulings of weighted projective planes 57

(a) π : Y → Fm is a birational morphism (with Y smooth and projec-
tive);

(b) P1, P2 are points of Fm \Σm belonging to distinct members of Λm
(Pi ∈ Zi ∈ Λm, Z1 6= Z2);

(c) centerπ ⊆ {P1, P2} and, for each i = 1, 2, π−1(Pi) contains at
most one (−1)-curve (so HN(π,Zi) is defined);

(d) HN(π,Zi) = Ti for i = 1, 2.

Warning. The blowings-up of Fm according to (T1, T2) always exist,
but are not unique.

2. Let β = (π, P1, P2) be a blowing-up of Fm according to (T1, T2), with
notation as in part 1. We define a divisor Dβ of Y (with strong normal
crossings) as follows: For each i = 1, 2, let

Ei =
{

strict transform of Zi in Y if Ti = 1,
the (−1)-component of π−1(Pi) if Ti 6= 1.

Then let Dβ be the reduced effective divisor of Y whose support is

π−1(Z1 ∪Σm ∪ Z2) minus E1 and E2.

It is easy to see that the dual graph G(Dβ, Y ) depends only on the discrete
data (m,T1, T2), i.e., is independent of the choice of β. This weighted graph
is denoted by G(m,T1, T2).

Remark. In [2] and [3], the notation (G(−m) 	 T1) 	 T2 was used in
place of G(m,T1, T2), but using the same notation here would force us to
define many concepts. Concretely, the graph G(m,T1, T2) can be computed
as follows:

1. Let G be the weighted graph

�
�

���
�

���
�
�

�	�

(dual graph of (Z1 +Σm + Z2,Fm)).
2. Let (G, z1)← . . .← (G′, e1) be the blowing-up of (G, z1) according to

T1, and note that z2 is a vertex of G′.
3. Let (G′, z2) ← . . . ← (G′′, e2) be the blowing-up of (G ′, z2) according

to T2; then G(m,T1, T2) is obtained from G′′ by removing e1 and e2.

3.2. Let T(‡) be the set of triples (m,T1, T2) ∈ Z+ × T × T such that:

1. T1 satisfies one of the following three conditions:

(a) T1 = 1 (the empty tableau);
(b) T1 =

(
p
c

)
for some

(
p
c

)
6=
(1

1

)
;

(c) T1 =
( p 1
c N

)
for some

(
p
c

)
6=
(1

1

)
and N ≥ 1.

2. If T2 is nonempty then its first column is not
(1

1

)
.
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3. Each connected component of the weighted graph G(m,T1, T2) shrinks
to an admissible chain.

3.3. We also define a subset T0(‡) of T(‡) by

T0(‡) = {(m,T1, T2) ∈ T(‡) |
T2 also satisfies one of (a), (b), (c) in part 1 of 3.2}.

3.4. It is important to note that the sets T(‡) and T0(‡) can be described
explicitly. See “Some explicit computations” at the end of [2].

Given (m,T1, T2) ∈ T(‡) and a blowing-up β of Fm according to (T1, T2),
the next result defines a pair (Xβ, Λβ) where Xβ is a surface satisfying (‡)
and Λβ is an affine ruling of Xβ. The notation (Xβ , Λβ) will always be used
in this sense, i.e., the pair determined by β as in 3.5.

3.5. Theorem. Let τ = (m,T1, T2) ∈ T(‡), let β = (π, P1, P2) be any
blowing-up of Fm according to (T1, T2) (with notation π : Y → Fm) and
consider the divisor Dβ of Y . Then the following hold :

1. There exists a birational morphism σ : Y → Xβ whose exceptional
locus is exactly the support of Dβ, and where Xβ is a surface satisfying (‡).

2. If Λβ is the linear system on Xβ which is determined by Λm via π
and σ (i.e., Λβ is the image under σ of the strict transform of Λm), then
Λβ is an affine ruling of Xβ.

3. Up to isomorphism, Xβ is completely determined by τ .

3.6. Theorem. Let X be a surface satisfying (‡) and Λ an affine rul-
ing of X. Then there exist (m,T1, T2) ∈ T(‡) and a blowing-up β of Fm
according to (T1, T2) such that X is isomorphic to Xβ and , under that iso-
morphism, Λ corresponds to Λβ.

The above two theorems show how to construct all pairs (X,Λ) where
X is a surface satisfying (‡) and Λ is an affine ruling of X. Since the set
T(‡) can be described explicitly (3.4), this method is quite satisfactory. The
next section will address the question of constructing all Λ on a given X.

An example. For the remainder of this section, we consider the surface
X = P(5, 6, 7) and a certain affine ruling Λ of X. Our aim is to illustrate
how 3.6 can be proved, so we start from (X,Λ) and seek (m,T1, T2) and β.

We stress that Λ is a specific affine ruling of P(5, 6, 7), i.e., we could
(but we will not) give explicit equations for it. The paragraphs below state
several properties of Λ without justification, some of which are specific to
this particular Λ (e.g. Figure 3). In other words, we claim that there exists
an affine ruling Λ of P(5, 6, 7) having all the properties described in the
following paragraphs.

It is proved in [2] that if X satisfies (‡) and Λ is an affine ruling of X then
every member of Λ has irreducible support and Λ has at most two multiple
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Fig. 2. X = P(5, 6, 7), with affine ruling Λ

members. In our case, Λ has exactly two multiple members, of the form 5C1

and 21C2 where C1 and C2 are irreducible curves (see Figure 2). The other
dotted curves in Figure 2 represent some of the reduced members of Λ.

We begin by “resolving” (X,Λ), i.e., by constructing a pair (X̃, Λ̃) =
(X,Λ)∼ as follows:

1. Minimally resolve the singularities of X (write X̂ → X). Let Λ̂ be the
strict transform of Λ on X̂.

2. Minimally resolve the base point of Λ̂ (write X̃ → X̂). Let Λ̃ be the
strict transform of Λ̂ on X̃.
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Fig. 3. Resolution of (X,Λ)
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Let % : X̃ → X be the composition X̃ → X̂ → X. The center of % is
SingX ∪ BsΛ and %−1(SingX ∪ BsΛ) is the support of a divisor D of X̃
with strong normal crossings. For the pair (X,Λ) under consideration, the
resolution (X̃, Λ̃) = (X,Λ)∼ is as in Figure 3.

In Figure 3, note the following:

1. In X̃ (resp. X̂), the divisor displayed in full lines is D (resp. the
inverse image of SingX) and the dotted curves are the strict transforms
of the dotted curves in Figure 2; in particular, C̃i (resp. Ĉi) is the strict
transform of Ci.

2. Since Λ̃ is base-point-free and has P1 as general member, Λ̃ is a P1-
ruling of X̃.

3. The curve H ⊂ X̃ is the “last exceptional curve”, i.e., if we factor
X̃ → X̂ as

X̃ = Y4
µ4−→ Y3

µ3−→ Y2
µ2−→ Y1

µ1−→ Y0 = X̂

(four monoidal transformations), then H is the exceptional curve of µ4.
Consequently, H is a section of Λ̃ (i.e., we have H ·M = 1 for every M ∈ Λ̃).

Next we claim:

(i) Λ̃ has exactly two reducible members, which we denote by F1, F2 ∈ Λ̃;
(ii) each reducible member Fi has exactly one (−1)-component, namely,

C̃i;
(iii) D = (F#

1 − C̃1) +H + (F#
2 − C̃2) where F#

i is the reduced effective
divisor of X̃ with the same support as Fi. (See Figure 4.)

Note that, in Figure 4, if we consider only the full lines then we have a
picture of D (the same picture as in Figure 3). But if we consider the full
lines and also the two dotted lines C̃i, the resulting divisor is D+ C̃1 + C̃2,
which is equal to H + F#

1 + F#
2 .

It is a well known fact that, given a P1-ruling on a smooth projective
rational surface, the reducible members may be shrunk to 0-curves and this
produces one of the Nagata ruled surfaces together with its standard ruling.
Applying this to (X̃, Λ̃) gives a morphism π : X̃ → F1 whose exceptional
locus is the support of (F#

1 −F ◦1 ) + (F#
2 −F ◦2 ), where F ◦i is the unique irre-

ducible component of Fi which meets H. Figure 5 shows the codomain of π.
In Figure 5, note the following:

1. π(H) = Σ1, π(Fi) = π(F ◦i ) = Zi ∈ Λ1 (for i = 1, 2) and centerπ =
{P1, P2}.

2. For each i = 1, 2, π−1(Pi) has a unique (−1)-component (namely C̃i).

By the second observation, it makes sense to define Ti = HN(π,Zi) (see
2.11). In fact, we have T1 =

( 3
5

)
and T2 =

( 1 3
3 7

)
.
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Fig. 4. Section and reducible members of Λ̃
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Fig. 5. Codomain of π

Now it is clear that β = (π, P1, P2) is a blowing-up of F1 according
to (T1, T2) and that Dβ = D. Consequently, the weighted graph G

(
1,
( 3

5

)
,( 1 3

3 7

))
(defined in 3.1) is the dual graph of (D, X̃), which shrinks to the

resolution graph of X; thus each connected component of G
(
1,
( 3

5

)
,
( 1 3

3 7

))

shrinks to an admissible chain and it follows from the definition in 3.2
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that (m,T1, T2) =
(
1,
( 3

5

)
,
( 1 3

3 7

))
∈ T(‡). Finally, note that (Xβ, Λβ) =

(X,Λ).

4. Affine rulings of a given surface

4.1. Given a surface X satisfying (‡), we define a subset T(X) of T(‡)
by

T(X) = {(m,T1, T2) ∈ T(‡) | (m,T1, T2) satisfies conditions (1), (2)},
where (1) and (2) are the following equivalent conditions:

(1) For some blowing-up β of Fm according to (T1, T2), Xβ
∼= X.

(2) For all blowings-up β of Fm according to (T1, T2), Xβ
∼= X.

That (1) and (2) are equivalent is a consequence of part 3 of 3.5, which
also implies that if T(X) ∩ T(X ′) 6= ∅ then X ∼= X ′ and T(X) = T(X ′) (so
the sets T(X) form a partition of T(‡)).

We also define the subset T0(X) = T0(‡) ∩ T(X) of T(X).
The following fact is proved in [2]:

4.2. For a surface X satisfying (‡), the following problems are equiva-
lent :

1. finding all affine rulings of X (i.e., solving Problem 1);
2. describing the set T(X);
3. describing the set T0(X).

In fact, 3.5 and 3.6 show that the first problem reduces to the second:
Assume that the set T(X) is known and, for each (m,T1, T2) ∈ T(X), con-
sider all blowings-up β of Fm according to (T1, T2); then the pairs (Xβ , Λβ)
give all affine rulings of X.

The second problem reduces to the third because [2] gives a method for
generating T(X) from its subset T0(X) (see part 2 of 4.11 below).

For a general X satisfying (‡), we do not know how to describe T(X) or
T0(X); however, thanks to 1.6, we can do it if X is a weighted projective
plane. The idea is as follows.

4.3. Let X be a surface satisfying (‡) and let R denote the resolution
graph of X. Given an arbitrary τ = (m,T1, T2) ∈ T(‡), consider the weighted
graph G(τ) = G(m,T1, T2) defined as in 3.1. It is not difficult to see that the
following conditions are equivalent:

1. G(τ) ∼ R (equivalence of weighted graphs);
2. for every blowing-up β of Fm according to (T1, T2), the surface Xβ has

resolution graph R.

By 1.6, if X is a weighted projective plane then the second condition is
equivalent to Xβ

∼= X, and hence to τ ∈ T(X). In other words,
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T(X) = {τ ∈ T(‡) | G(τ) ∼ R} and T0(X) = {τ ∈ T0(‡) | G(τ) ∼ R}
hold whenever X is a weighted projective plane. Thus the determination of
T0(P(a, b, c)) reduces to solving:

Problem G. Given pairwise relatively prime a, b, c ∈ Z+, find all τ ∈
T0(‡) such that G(τ) ∼ G[a,b,c].

Note that Problem G belongs to the theory of weighted graphs and makes
no reference to geometry; it is solved in [3] using graph theory only. We will
now state the solution.

Description of T0(P(a, b, c)). For pairwise relatively prime positive inte-
gers a0, a1, a2, paragraphs 4.4–4.7 define sets TI(a0, a1, a2), TII.1(a0, a1, a2),
TII.2(a0, a1, a2) and TIII(a0, a1, a2). Then T0(P(a, b, c)) is described in 4.8.

Remark. From now on, the 2 × 1 matrix
(0

1

)
should be interpreted as

the empty tableau 1 ∈ T .

4.4. For pairwise relatively prime positive integers a0, a1, a2, it is clear
that

Eq(a0, a1, a2) : a0 = a1a2x0 − a2x1 − a1x2

has a unique solution (x0, x1, x2) ∈ N3 satisfying 0 ≤ x1 < a1 and 0 ≤
x2 < a2. Then x0 > 0 and for i = 1, 2 we have xi = 0 ⇔ ai = 1 and
xi ∈ {0, 1} ⇔ ai | (a0 + a1 + a2). For each i = 1, 2, there is a unique x′i
satisfying xix′i ≡ 1 (mod ai) and 0 ≤ x′i < ai, and a unique x′′i ∈ Z satisfying
xix
′
i − x′′i ai = 1.

4.5. Let a0, a1, a2 be pairwise relatively prime positive integers.

1. The set TI(a0, a1, a2) has exactly one element, namely
(
x0,

(
x1

a1

)
,

(
x2

a2

))
,

where (x0, x1, x2) is the unique solution of Eq(a0, a1, a2).
2. The set TII.1(a0, a1, a2) has at most one element, and is nonempty if

and only if (a0 + a1 + a2)/a2 is a natural number strictly greater than 2.
Moreover, if TII.1(a0, a1, a2) is nonempty then let (x0, x1, x2) be the unique
solution to Eq(a0, a1, a2), let x′1, x

′′
1 be as in 4.4 and define

(
p2

c2

)
=
(
a1 − x1 − x′1 + x′′1

a1 − x1

)
+ (x0 − x2)

(
a1 − x′1
a1

)
;

then the unique element of TII.1(a0, a1, a2) is
(

1,
(
x′1
a1

)
,

(
p2 1
c2 a2

))
.

3. TII.2(a0, a1, a2) = {(m,T2, T1) | (m,T1, T2) ∈ TII.1(a0, a1, a2)}.
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4.6. Let a0, a1, a2 be pairwise relatively prime positive integers satisfy-
ing a1a2 | (a0+a1+a2) and write γ = (a0 + a1 + a2)/(a1a2). Then (a0, a1, a2)
determines two sets, W(a0,a1,a2) and W (a0,a1,a2), which we now proceed to
define.

1. Each 2×2 matrix M (with entries in Z) determines a pair of sequences

s(M) = (s0, s1, s2, . . .), t(M) = (t0, t1, t2, . . .)

defined by
(
s0 s1

t0 t1

)
= M and

{
sn−1 + sn+1 = a2γtn,
tn−1 + tn+1 = a1γsn.

2. Let M =
( 1 1

1 1

)
and define un = sn(M) and vn = tn(M).

3. Let M ′ =
(−γ−1+x2 x1−1
−γ−1+x1 x2−1

)
, where (x0, x1, x2) is the solution to Eq(a0,

a1, a2), and define ξn = sn(M ′) and ηn = tn(M ′).
4. For every n ∈ N, define

fn =
(

1,
(
ξn 1
un a1

)
,

(
vn+1 − ηn+1 1

vn+1 a2

))
,

gn =
(

1,
(
un+1 − ξn+1 1

un+1 a1

)
,

(
ηn 1
vn a2

))
.

Then define

W(a0,a1,a2) =
{ {f2, g3, f4, g5, . . .} if a0 > a1 − a2,
∅ else,

and

W (a0,a1,a2) =
{
{g2, f3, g4, f5, . . .} if a0 > a2 − a1,
∅ else.

4.7. Let a0, a1, a2 be pairwise relatively prime positive integers. Then
TIII(a0, a1, a2) is nonempty if and only if a1a2 | (a0 + a1 + a2), in which case
we have

TIII(a0, a1, a2) = W(a0,a1,a2) ∪W (a0,a1,a2).

Remark. If a1a2 | (a0 + a1 + a2) and a0 > |a1 − a2|, then

TIII(a0, a1, a2) = {f2, f3, f4, . . .} ∪ {g2, g3, g4, . . .}.
Also observe that TIII(a0, a2, a1) = {(m,T2, T1) | (m,T1, T2) ∈ TIII(a0,
a1, a2)} holds in all cases.

4.8. Theorem. Let (a, b, c) be pairwise relatively prime positive inte-
gers. Then T0(P(a, b, c)) is the union of the sets

TI(a0, a1, a2) ∪ TII.1(a0, a1, a2) ∪ TII.2(a0, a1, a2) ∪ TIII(a0, a1, a2)

for all permutations (a0, a1, a2) of (a, b, c).
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4.9. Example. The following is a description of T0(P2) (recall that
P2 = P(1, 1, 1)). First, 4.5 gives:

• TI(1, 1, 1) = {(1,1,1)} (where 1 is the empty tableau);

• TII.1(1, 1, 1) =
{(

1,1,
( 1 1

2 1

))}
;

• TII.2(1, 1, 1) =
{(

1,
( 1 1

2 1

)
,1
)}

.

We have TIII(1, 1, 1) = {f2, f3, f4, . . .} ∪ {g2, g3, g4, . . .} by 4.7; by 4.6 (with
γ = 3), we find that un = vn and ξn = ηn for all n, and

un = 3un−1 − un−2, u0 = 1, u1 = 1;

ξn = 3ξn−1 − ξn−2, ξ0 = −4, ξ1 = −1.

So,

TIII(1, 1, 1)={
(
1,
( 1 1

2 1

)
,
( 1 1

5 1

))
,
(
1,
( 4 1

5 1

)
,
( 2 1

13 1

))
,
(
1,
( 11 1

13 1

)
,
( 5 1

34 1

))
, . . .}

∪
{(

1,
( 1 1

5 1

)
,
( 1 1

2 1

))
,
(
1,
( 2 1

13 1

)
,
( 4 1

5 1

))
,
(
1,
( 5 1

34 1

)
,
( 11 1

13 1

))
, . . .

}

and T0(P2) is the union of the above four sets.

4.10. Example. We now describe T0(P(2, 3, 5)). By 4.5,

• TI(2, 3, 5) =
{(

1,
(2

3

)
,
(1

5

))}
,

• TI(2, 5, 3) =
{(

1,
(1

5

)
,
(2

3

))}
,

• TI(3, 2, 5) =
{(

1,
(1

2

)
,
(1

5

))}
,

• TI(3, 5, 2) =
{(

1,
(1

5

)
,
(1

2

))}
,

• TI(5, 2, 3) =
{(

2,
(1

2

)
,
(2

3

))}
,

• TI(5, 3, 2) =
{(

2,
(2

3

)
,
(1

2

))}
,

• TII.1(3, 5, 2) =
{(

1,
(1

5

)
,
( 3 1

4 2

))}
,

• TII.2(3, 2, 5) =
{(

1,
( 3 1

4 2

)
,
(1

5

))}
,

• TII.1(5, 3, 2) =
{(

1,
(2

3

)
,
( 1 1

4 2

))}
,

• TII.2(5, 2, 3) =
{(

1,
( 1 1

4 2

)
,
(2

3

))}
.

We have TIII(3, 5, 2) = {g2, f3, g4, f5, . . .} by 4.7; by 4.6 (with γ = 1),

un−2 + un = 2vn−1, u0 = 1, u1 = 1;

vn−2 + vn = 5un−1, v0 = 1, v1 = 1;

ξn−2 + ξn = 2ηn−1, ξ0 = −1, ξ1 = 0;

ηn−2 + ηn = 5ξn−1, η0 = −1, η1 = 0,

so TIII(3, 5, 2)=
{(

1,
( 5 1

7 5

)
,
( 1 1

4 2

))
,
(
1,
( 2 1

7 5

)
,
( 22 1

31 2

))
,
(
1,
( 39 1

55 5

)
,
( 9 1

31 2

))
, . . .

}
.
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Also,

TIII(3, 2, 5)={(m,T2, T1) | (m,T1, T2) ∈ TIII(3, 5, 2)}
=
{(

1,
( 1 1

4 2

)
,
( 5 1

7 5

))
,
(
1,
( 22 1

31 2

)
,
( 2 1

7 5

))
,
(
1,
( 9 1

31 2

)
,
( 39 1

55 5

))
, . . .

}
.

Then T0(P(2, 3, 5)) is the union of the above twelve sets.

4.11. Conclusion. Let P = P(a, b, c) where a, b, c are pairwise rela-
tively prime positive integers. To describe the affine rulings of P, one pro-
ceeds as follows:

1. Using 4.4–4.8, describe T0(P) explicitly (4.9 and 4.10 are examples of
this).

2. Generate T(P) from its subset T0(P). (Each element τ of T0(P) deter-
mines a set [τ,∞) which can be described explicitly by using 5.39 of [2]; by
5.22 of [2], T(P) is the union of the sets [τ,∞) for τ ∈ T0(P).)

3. For each τ = (m,T1, T2) ∈ T(P), consider all blowings-up β of Fm
according to (T1, T2) and all corresponding pairs (Xβ, Λβ) (defined by 3.5).
Then Xβ

∼= P and the Λβ are all affine rulings of P.
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