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A characterization of proper regular mappings

by T. Krasiński and S. Spodzieja (Łódź)

Abstract. Let X, Y be complex affine varieties and f : X → Y a regular mapping.
We prove that if dimX ≥ 2 and f is closed in the Zariski topology then f is proper in the
classical topology.

1. Introduction. Let X, Y be complex affine varieties (i.e. irreducible
algebraic subsets of complex linear spaces) and f : X → Y a regular map-
ping. From the Constructibility Theorem of Chevalley ([Ł2], VII.8.3, [M],
Proposition 2.31) it easily follows that if f is proper in the classical topo-
logy then f is closed in the Zariski topology (i.e. for any algebraic subset V
of X the image f(V ) is an algebraic subset of Y ). In this paper we prove that
the converse is true provided dimX ≥ 2 (cf. [RS] for polynomial mappings
f : Cn → Ck).

Theorem 1.1. Let X, Y be complex affine varieties, dimX ≥ 2 and
f : X → Y a non-constant regular mapping. If f is closed in the Zariski
topology then f is proper in the classical topology.

From this theorem and well known facts we obtain the following charac-
terization of finite mappings for affine varieties:

Corollary. Let X, Y be complex affine varieties, dimX ≥ 2 and f :
X → Y a non-constant regular mapping. Then the following conditions are
equivalent :

(i) f is finite, i.e. C[X] is integral over f∗(C[Y ]),
(ii) f is proper in the classical topology ,

(iii) f is closed in the classical topology ,
(iv) f is closed in the Zariski topology.
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Proof. (i)⇒(ii) is a well known fact (see e.g. [B], Satz 11.22 applied to
f : X → f(X)).

(ii)⇒(iii) again is a well known topological fact.
(iii)⇒(iv) follows from the Constructibility Theorem of Chevalley (see

e.g. [B], Korollar 11.25).
(iv)⇒(ii) is Theorem 1.1.
(ii)⇒(i) is an easy fact for affine varieties.

The assumption in Theorem 1.1 that dimX is greater than 1 is essential,
because for X := {(x, y) ∈ C2 : xy2 + y + 1 = 0}, Y := C and f : X → Y ,
f(x, y) := x we see that f is closed in the Zariski topology and f is not
proper.

The proof of Theorem 1.1 will be carried out in Section 5. In fact, we
will prove a little stronger version of it. Namely, we will only assume that
f maps algebraic curves onto algebraic sets. The crucial role in the proof
will be played by the Łojasiewicz exponent at infinity of regular mappings
on algebraic sets (Section 3). The key fact is a theorem on selection of an
algebraic curve on which the Łojasiewicz exponent at infinity is attained
(Theorem 3.5).

In what follows we shall use two topologies in complex linear spaces: the
classical topology and the Zariski topology. To avoid confusion we agree that,
unless otherwise specified, all topological notions will refer to the classical
topology.

After our announcing the result, Z. Jelonek and independently J. Kollár
communicated to us a new proof of Theorem 1.1. Its main idea is given at
the end of the paper.

2. Meromorphic mappings at infinity. Let D(r) = {t ∈ C :
|t| > r}, r > 0, be the exterior of a closed disc in C. A holomorphic mapping
ψ = (ψ1, . . . , ψn) : D(r)→ Cn is called meromorphic at infinity if each ψj ,
j = 1, . . . , n, is meromorphic at infinity. One can write any such mapping
ψ 6= 0 in the form

(1) ψ(t) = adt
d + ad−1t

d−1 + . . . , ai ∈ Cn, i ≤ d, ad 6= 0, d ∈ Z.
Then d is called the degree of ψ and denoted by degψ. Additionally we put
deg 0 := −∞.

Similarly, for a meromorphic mapping ψ = (ψ1, . . . , ψn) at a point a ∈ C
we define the order of ψ at a:

orda ψ = min{orda ψ1, . . . , orda ψn}.
Now, we give a version at infinity of the theorem on continuity of roots.

First, we recall two known lemmas.
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Lemma 2.1 (Puiseux Theorem at Infinity, [A], [CK1]). Let

Q(t, y) = ym + q1(t)ym−1 + . . .+ qm(t)

be a polynomial in y with coefficients qi : D(r)→ C meromorphic at infinity ,
i = 1, . . . ,m. Then there exist N ∈ N and functions λi, i = 1, . . . ,m,
meromorphic at infinity such that

Q(tN , y) =
m∏

i=1

(y − λi(t)).

Moreover , it suffices to take N = m!.

Lemma 2.2 (Theorem on Continuity of Roots, [Ł1], Sect. 16, Lemma 1).
Let C > 1, δ > 0. If |ci| ≤ C and |c̃i − ci| < δ for i = 1, . . . ,m and
ξ ∈ C satisfy the equation

ξm + c1ξ
m−1 + . . .+ cm = 0,

then there exists ξ̃ ∈ C satisfying

ξ̃m + c̃1ξ̃
m−1 + . . .+ c̃m = 0 and |ξ̃ − ξ| < 3Cδ1/m.

Proposition 2.3 (Theorem on Continuity of Roots at Infinity). Let

P (t, y) = ym + p1(t)ym−1 + . . .+ pm(t),

Q(t, y) = ym + q1(t)ym−1 + . . .+ qm(t)

be polynomials in y with coefficients pi, qi : D(r) → C meromorphic at
infinity , i = 1, . . . ,m, and let L ∈ Z, L ≥ maxi=1,...,m deg pi. By Lemma 2.1
there exists N ∈ N such that

P (tN , y) =
m∏

i=1

(y − ϕi(t)), Q(tN , y) =
m∏

j=1

(y − ψj(t)),

where ϕi, ψj : D(r′) → C, r′ ≥ r, are meromorphic at infinity. If for some
K ∈ Z,

deg(pi − qi) ≤ K,
then for any ϕi there exists ψj such that

deg(ϕi − ψj) ≤ (L+K/m)N.

Proof. By assumptions there exist C > 0, r′′ ≥ r′ such that for |t| > r′′,

|pi(tN )− qi(tN )| ≤ C|t|KN , i = 1, . . . ,m,

and
|pi(tN )| ≤ C|t|LN .

By Lemma 2.2, for any |t| > r′′ and each ϕi,

min
j
|ϕi(t)− ψj(t)| ≤ 3C1+1/m|t|(L+K/m)N .
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Then for each ϕi there exists ψj such that

deg(ϕi − ψj) ≤ (L+K/m)N.

Proposition 2.4. Let f : Cn → Ck be a non-constant polynomial map-
ping and ϕ : D(r)→ Cn be a mapping meromorphic at infinity , degϕ > 0.
Then for any L ∈ Z and any mapping ψ : D(r) → Cn meromorphic at
infinity such that

deg(ϕ− ψ) < L,

we have
deg(f ◦ ϕ− f ◦ ψ) < L+ (deg f − 1) degϕ.

Proof. It suffices to prove this theorem in the case of a polynomial func-
tion f : Cn → C. Let L ∈ Z and deg(ϕ − ψ) < L. Let ϕ = (ϕ1, . . . , ϕn),
d := degϕ and

ϕj(t) = ajdt
d + ajd−1t

d−1 + . . . , aji ∈ C, j = 1, . . . , n.

Let further

f ◦ ϕ(t) = bmt
m + bm−1t

m−1 + . . . , bs ∈ C, m ∈ Z.
It is easy to see that the coefficients bs depend only on the coefficients aji
up to the index i := s− (deg f − 1) degϕ (cf. [RS], proof of Proposition 1).
Hence

deg(f ◦ ϕ− f ◦ ψ) < L+ (deg f − 1) degϕ.

3. The Łojasiewicz exponent of regular mappings. Let X ⊂ CM
be an algebraic set and let f : X → Ck be a regular mapping. Let S ⊂ X
be an unbounded set. We define

N(f |S) := {ν ∈ R : ∃C>0, R>0(z ∈ S ∧ |z| > R) ⇒ |f(z)| ≥ C|z|ν},
where |·| denotes the policylindric norm. The Łojasiewicz exponent at infinity
L∞(f |S) of f on S is defined by

L∞(f |S) := supN(f |S).

If N(f |S) = ∅, we put L∞(f |S) = −∞. If S = X, we write N(f) and
L∞(f).

Now, we shall consider the problem of finding algebraic curves on which
the Łojasiewicz exponent at infinity is attained.

Let U ⊂ Cn be a neighbourhood of infinity (i.e. U = Cn \H, where H ⊂
Cn is a compact set). Let Γ ⊂ U be an analytic set of dimension 1. If there
exists a mapping meromorphic at infinity ψ of the form (1), holomorphic on
D(r), such that degψ > 0 and Γ = ψ(D(r)), then Γ is called an analytic
curve meromorphic at infinity, and ψ its description.

From the definition we immediately obtain
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Lemma 3.1. Let X ⊂ CM be an algebraic set , f : X → Ck be a regular
mapping , #f−1(0) < ∞, and Γ ⊂ X be an analytic curve meromorphic at
infinity. Then

L∞(f |Γ ) =
deg(f ◦ ψ)

degψ
∈ N(f |Γ ),

where ψ is a description of Γ .

Proposition 3.2. Let X be a complex affine variety , dimX > 0 and
let f : X → Ck be a regular mapping such that #f−1(0) <∞. Then for any
algebraic subset W ⊂ X, dimW < dimX, there exists an analytic curve
Γ ⊂ X meromorphic at infinity such that Γ ∩W = ∅ and

L∞(f) = L∞(f |Γ ).

In particular , L∞(f) ∈ N(f).

Proof (cf. Proof of Proposition 1 in [CK2]). By the Tarski–Seidenberg
Theorem (cf. [BR], Remark 3.8) the set

B := {x ∈ X \W : |f(x)| ≤ 2 min
|z|=|x|, z∈X

|f(z)|}

is semi-algebraic. Since X is an irreducible algebraic set, and dimW <
dimX, it follows that X \W is dense in X. Hence, since #f−1(0) <∞, we
easily deduce thatB is an unbounded set. By a version of the Curve Selection
Lemma (cf. [NZ], Lemma 2), we see that there exists a real-analytic curve
κ : (r,∞)→ B, r > 0, of the form

κ(t) = αdt
d + αd−1t

d−1 + . . . , αi ∈ CN , αd 6= 0, d > 0.

Since limt→∞ |κ(t)| =∞, the set Γ ′ := κ(r,∞) is unbounded. We have

(2) L∞(f) = L∞(f |Γ ′).
In fact, the inequality L∞(f) ≤ L∞(f |Γ ′) is obvious. To prove the opposite
inequality, take R > 0, C > 0 such that for any z ∈ Γ ′,

|z| > R ⇒ |f(z)| ≥ C|z|L∞(f |Γ ′).

We may assume that for any x ∈ X, |x| > R, there exists z ∈ Γ ′ such that
|x| = |z|. Take any x ∈ X, z ∈ Γ ′ such that |z| = |x| > R. By the definition
of B we have

|f(x)| ≥ 1
2 |f(z)| ≥ 1

2C|z|L∞(f |Γ ′) = 1
2C|x|L∞(f |Γ ′),

so L∞(f |Γ ′) ∈ N(f) and

L∞(f) ≥ L∞(f |Γ ′),
which proves (2).

Let ϕ : D(r) → X be the complexification of κ. Let r′ > r and Γ =
ϕ(D(r′)). Since ϕ is a mapping meromorphic at infinity, we easily see that
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Γ ∩ W is finite. So, increasing r′ we deduce that Γ is an analytic curve
meromorphic at infinity and Γ ∩W = ∅.

Since

L∞(f) = L∞(f |Γ ′) =
deg(f ◦ κ)

deg κ
=

deg(f ◦ ϕ)
degϕ

,

Γ satisfies the required conditions. This ends the proof.

A mapping ψ = (ψ1, . . . , ψn) : C \ {0} → Cn is called a Laurent poly-
nomial mapping if any component ψi is a Laurent polynomial, i.e. ψi ∈
C[t, t−1].

Proposition 3.3. Let ψ : C \ {0} → Cn be a Laurent polynomial map-
ping. If degψ > 0 and ord0 ψ < 0, then the set ψ(C \ {0}) is an algebraic
curve.

Proof. Since the graph of ψ is an algebraically constructible set in C×Cn
and ψ(C \ {0}) is the projection of this graph onto Cn, by the Chevalley
Theorem ψ(C \ {0}) is algebraically constructible in Cn. From the assump-
tions that degψ > 0 and ord0 ψ < 0 we see that ψ is a proper mapping,
thus ψ(C \ {0}) is closed. In consequence we have the assertion.

Let us give one more property of Laurent polynomial mappings.

Proposition 3.4. Let ψ : C\{0} → Cn, n ≥ 2, be a Laurent polynomial
mapping , degψ > 0. Let W ⊂ Cn be an algebraic set , dimW ≤ n − 2 and
d < min{0, ord0 ψ}. Then, for generic ξ ∈ Cn, ξ 6= 0 (i.e. for ξ outside
a proper algebraic set), and for the Laurent polynomial mapping ψ̃(t) :=
ψ(t) + ξtd the set V := ψ̃(C \ {0}) is algebraic and V ∩W = ∅.

Proof. Consider the algebraic set

Y := {(t, ξ, z) ∈ C× Cn ×W : t−dψ(t) + ξ = t−dz}.
It is easy to see that dimY ≤ n− 1. Since n ≥ 2, for generic ξ ∈ Cn, ξ 6= 0,
we have Y ∩ (C× {ξ} × Cn) = ∅. For such ξ, putting ψ̃(t) := ψ(t) + ξtd we
find that V = ψ̃(C \ {0}) does not intersect W . Since deg ψ̃ = degψ > 0
and ord0 ψ̃ = d < 0, by Proposition 3.3 the set V is algebraic. This ends the
proof.

Now, we prove a theorem on selection of an algebraic curve at which the
Łojasiewicz exponent at infinity is attained.

Theorem 3.5. Let X be a complex affine variety and let f : X → Ck be
a regular mapping such that #f−1(0) <∞. For any algebraic subset Z ⊂ X
with dimZ ≤ dimX − 2, there exists an algebraic curve V ⊂ X such that
V ∩ Z = ∅ and

L∞(f) = L∞(f |V ) ∈ N(f).
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Proof. Let X ⊂ CM and n = dimX. If M = n, i.e. X = CM , then
the assertion follows immediately from Propositions 3.2, 2.4 and 3.4. So, let
M > n. We shall use the classical description of irreducible algebraic sets
(the Rückert Lemma, see e.g. [Ł2], VII.9.3). So, there exists a linear change
of coordinates in CM such that in the new coordinates (x′, x′′) ∈ Cn×CM−n,
x′ = (x1, . . . , xn), x′′ = (xn+1, . . . , xM ) there exist

(i) P ∈ C[x′, xn+1], P (x′, xn+1) = xmn+1 + p1(x′)xm−1
n+1 + . . .+ pm(x′),

(ii) δ ∈ C[x′], δ 6≡ 0,
(iii) Qj ∈ C[x′, xj ], j = n+ 2, . . . ,M ,

such that

(3) X \W = {(x′, x′′) ∈ CM : Pn+1(x′, xn+1) = 0,

δ(x′)xj = Qj(x′, xn+1), j = n+ 2, . . . ,M},
where W = {(x′, x′′) ∈ X : δ(x′) = 0}. Moreover, we may assume (see [Ł2],
VII.7.1) that

(4) X ⊂ {(x′, x′′) ∈ Cn × CM−n : |x′′| ≤ C(1 + |x′|)},
for some constant C > 0. Then the projection π : X 3 (x′, x′′) 7→ x′ ∈ Cn
is proper. Hence the sets π(Z) and π−1(π(Z)) are algebraic of dimension at
most n− 2.

By Proposition 3.2, there exists an analytic curve Γ⊂X\(W∪π−1(π(Z)))
meromorphic at infinity such that

L∞(f) = L∞(f |Γ ).

Let ϕ = (ϕ′, ϕ′′) : D(r′)→ X ⊂ Cn×CM−n be a description of Γ , degϕ > 0.
By (4),

(5) degϕ′ = degϕ.

Since Γ ∩W = ∅, we have δ ◦ ϕ′ 6≡ 0.
Take any L < min{0,deg δ◦ϕ′}. By Proposition 2.4 there exists a Laurent

polynomial mapping ψ = (ψ′, ψ′′) : C \ {0} → Cn × CM−n such that

deg(ϕ− ψ) < L,(6)

deg(pi ◦ ϕ′ − pi ◦ ψ′) < L, i = 1, . . . ,m,(7)

deg(δ ◦ ϕ′ − δ ◦ ψ′) < L,(8)

ord0 ψ
′ < 0.(9)

From (6) and (5) we have

(10) degϕ = degψ = degψ′,

and from (8),

(11) deg δ ◦ ψ′ = deg δ ◦ ϕ′ > −∞.



134 T. Krasiński and S. Spodzieja

By (9) and Proposition 3.3,

(12) V1 := ψ′(C \ {0})
is an algebraic curve in Cn. Moreover, by Proposition 3.4 (changing ψ′ with-
out affecting (6)–(9)) we may assume that

(13) V1 ∩ π(Z) = ∅.
Take N ∈N (e.g. N=m!) such that P (ϕ′(tN ), xn+1) and P (ψ′(tN ), xn+1)

decompose into linear factors (Lemma 2.1). Since P (ϕ′(tN ), ϕn+1(tN ))
≡ 0, by (7) and Proposition 2.3 there exists a function λn+1 : D(r′) → C
meromorphic at infinity such that P (ψ′(tN ), λn+1(t)) ≡ 0 and

(14) deg(ϕn+1(tN )− λn+1(t)) < (l + L/m)N,

where l := max{1,deg(p1, . . . , pm)}. By (6) and the obvious inequality L ≤
l + L/m we have

deg((ψ′(tN ), λn+1(t))− (ϕ′(tN ), ϕn+1(tN ))) < (l + L/m)N.

Hence, by Proposition 2.4,

deg(Qi(ψ′(tN ), λn+1(t))−Qi(ϕ′(tN ), ϕn+1(tN )))

< (l + L/m)N + (degQi − 1)N degϕ for i = n+ 2, . . . ,M.

Define

λi(t) :=
Q(ψ′(tN ), λn+1(t))

δ ◦ ψ′(tN )
, i = n+ 2, . . . ,M,

λ(t) := (ψ′(tN ), λn+1(t), . . . , λM (t))

for sufficiently large t, say t ∈ D(r′′). The mapping λ : D(r′′) → X is
meromorphic at infinity and

deg(λi(t)− ϕi(tN )) = deg
(
Qi(ψ′(tN ), λn+1(t))

δ ◦ ψ′(tN )
− Qi(ϕ′(tN ), ϕn+1(tN ))

δ ◦ ϕ′(tN )

)

= deg
(
Qi(ψ′(tN ), λn+1(t))−Qi(ϕ′(tN ), ϕn+1(tN ))

δ ◦ ψ′(tN )

− Qi(ϕ′(tN ), ϕn+1(tN ))[δ ◦ ψ′(tN )− δ ◦ ϕ′(tN )]
δ ◦ ψ′(tN )δ ◦ ϕ′(tN )

)

≤ N max{l + L/m+ (degQi − 1) degϕ− deg(δ ◦ ϕ′),
deg(Qi(ϕ′, ϕn+1)) + L− 2 deg δ ◦ ϕ′}

for i = n+ 2, . . . ,M . So, decreasing L sufficiently we may assume that

deg f ◦ ϕ(tN ) = deg f ◦ λ(t).

Put
Γ ′ := λ(D(r′′)).
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Then Γ ′ ⊂ X is an analytic curve meromorphic at infinity and

L∞(f) = L∞(f |Γ ) =
deg f ◦ ϕ

degϕ
=

deg f ◦ λ
deg λ

= L∞(f |Γ ′).

Take
V := π−1(V1).

Obviously V is an algebraic curve, V ⊂ X and Γ ′ ⊂ V . Moreover, by (13),
V ∩ Z = ∅. So, from the above,

L∞(f) ≤ L∞(f |V ) ≤ L∞(f |Γ ′) = L∞(f).

This ends the proof of Theorem 3.5.

4. The set of points at which a polynomial mapping is not
proper. Let X be a complex affine variety, dimX = n, and let f : X → Cn
be a dominating regular mapping. We say that f is not proper at a point
y ∈ Cn if there is no neighbourhood U ⊂ Cn of y such that f−1(U) is
compact; equivalently, there exists a sequence {zν} ⊂ X such that

|zν | → ∞ and f(zν)→ y.

It is easy to see that

Proposition 4.1. Let X be a complex affine variety , dimX = n and
let f : X → Cn be a dominating polynomial mapping. Then f is a proper
mapping if and only if the set Sf of points at which f is not proper is empty.

Proposition 4.2 (cf. [J1], Corollary 9, [J2], Theorem 3.8). Let X be a
complex affine variety , dimX = n, and let f : X → Cn be a dominating
regular mapping. Then the set Sf of points at which f is not proper is either
an empty set or an algebraic set of pure dimension n− 1.

Let us give a connection between points at which a polynomial mapping
is not proper and the Łojasiewicz exponent.

Proposition 4.3. Let X be a complex affine variety , dimX = n and
let f : X → Cn be a dominating regular mapping. Then L∞(f − y) < 0 if
and only if f is not proper at y.

Proof. Immediately from the definition we see that if f is not proper
at y, then f − y is not proper at 0, so L∞(f − y) < 0. Conversely, assume
L∞(f − y) < 0. Then from Proposition 3.2, there exists a meromorphic
curve at infinity Γ ⊂ X such that L∞(f − y) = L∞((f − y)|Γ ). Let ϕ be a
description of Γ . Then, by Lemma 3.1,

L∞((f − y)|Γ ) =
deg(f − y) ◦ ϕ

degϕ
.
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Since degϕ > 0, we have deg(f − y) ◦ϕ < 0 and so limt→∞ f ◦ϕ(t)− y = 0.
Since limt→∞ |ϕ(t)|=∞, there exists a sequence {zν}⊂Γ such that |zν |→∞
and f(zν) → y. This implies that f is not proper at y, and completes the
proof.

5. Proof of Theorem 1.1. We start with the following

Lemma 5.1. Let X be a complex affine variety , and let f : X → Ck,
k ≤ dimX, be a non-constant polynomial mapping. If f maps algebraic
curves onto algebraic sets, then k = dimX and f is a dominating mapping.

Proof. Let n = dimX. Assume to the contrary that k < dimX or f is
not a dominating mapping. Let f = (f1, . . . , fk) and W = f(X) ⊂ Ck. Then
W is an algebraic set. Let l = dimW . Then 0 < l < n. After a linear change
of coordinates in Ck, we may assume that

W ⊂ {(y′, y′′) ∈ Cl × Ck−l : |y′′| < C(1 + |y′|)},
where C > 0. Thus, the canonical projection from W onto Cl is proper.
Hence, it is easy to see that f̃ := (f1, . . . , fl) : X → Cl is a dominating
mapping and maps algebraic curves onto algebraic sets.

Let

Yξ = {(y1, . . . , yl, t) ∈ Cl+1 : y1 . . . ylt− ξ = 0}, ξ ∈ C.
Then the projection π : Yξ 3 (y, t) 7→ y ∈ Cl is a dominating mapping.

Let g : X → C be a regular mapping which, treated as an element
of C(X), is not algebraic over C(f1, . . . , fl) ⊂ C(X). Then the mapping
g̃ := (f1, . . . , fl, g) : X → Cl+1 is dominating. Thus there exists ξ0 ∈ C,
ξ0 6= 0, such that Yξ0 ∩ g̃(X) is a dense subset of Yξ0 . Let V := g̃−1(Yξ0).
Then

f̃(V ) = π(g̃(V )) = π(Yξ0 ∩ g̃(X)),

so, by the above, f̃(V ) is a dense subset of Cl. Since ξ0 6= 0, we easily see
that ({0} × C) ∩ Yξ0 = ∅, thus 0 6∈ f̃(V ).

Since f̃(V ) is a dense subset of Cl, there exists a linear subspace E ⊂ Cl,
dimE = 1, such that E ∩ f̃(V ) is a dense subset of E. Then there exists an
algebraic curve V1 ⊂ V ∩ f̃−1(E) such that f̃(V1) is a dense subset of E.
Moreover, 0 ∈ E \ f̃(V1), so f̃(V1) is not an algebraic set. This contradicts
the assumption and ends the proof.

We will prove a slightly stronger version of Theorem 1.1, namely

Theorem 5.2. Let X, Y be complex affine varieties, dimX ≥ 2, and
f : X → Y a non-constant regular mapping. If f maps algebraic curves
V ⊂ X onto algebraic sets, then f is a proper mapping in the classical
topology.
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Proof. Let X ⊂ CM , Y ⊂ CN , n := dimX, n ≥ 2. By the Noether
Normalization Lemma, there exists a linear mapping L : CN → Cn such
that L ◦ f : X → Cn maps algebraic curves onto algebraic sets. Since the
properness of L◦f implies the properness of f , we may assume that Y = Cn.
By Lemma 5.1, f is dominating.

By Proposition 4.1, it suffices to prove that the set Sf of points at which
f is not proper is empty. Assume to the contrary that Sf 6= ∅. By Proposi-
tion 4.2, we find that Sf is an algebraic set of pure dimension n− 1. From
[M], Corollaries 3.15 and 3.16 we deduce that the set

T := {y ∈ Cn : dim f−1(y) > 0}
is algebraic and has dimension at most n−2. Thus, there exists y ∈ Sf\T . We
may assume that y = 0. Let f−1(0) = {z1, . . . , zm}. Then, by Theorem 3.5
and Proposition 4.3, there exists an algebraic curve V ⊂ X \ {z1, . . . , zm}
such that

L∞(f) = L∞(f |V ) < 0.

Obviously, 0 6∈ f(V ). Since, by Theorem 3.5, L∞(f |V ) ∈ N(f |V ), we see
that there exists a sequence {xν} ⊂ V such that limν→∞ |xν | = ∞ and
limν→∞ f(xν) = 0. In consequence, 0 is an accumulation point of f(V ), and
so f(V ) is not algebraic. This contradiction gives the assertion and ends the
proof of Theorem 5.2.

Remark 5.3. One can prove Theorem 1.1 by another method (suggested
by Z. Jelonek and J. Kollár). The main idea is as follows: Let f : X → Y
satisfy the assumptions of Theorem 1.1. Let f : X → Y be a projective
compactification of f . Assume to the contrary that f is not proper. Then
there is a point y ∈ Y such that f−1(y) is finite and f−1(y) ∩ (X \ X)
6= ∅. If we take an algebraic curve Γ ⊂ X not lying in X \ X such that
Γ ∩ (f−1(y) ∩X) = ∅ and Γ passes through one point of f−1(y) ∩ (X \X)
then the image f(Γ ∩X) is not Zariski closed.

Acknowledgments. We are deeply grateful to Professors Jacek Chą-
dzyński and Zbigniew Jelonek for their valuable comments and advice.
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[M] D. Mumford, Algebraic Geometry I. Complex Projective Varieties, Springer,

Berlin, 1976.
[NZ] A. Némethi and A. Zaharia, Milnor fibration at infinity , Indag. Math. 3 (1992),

323–335.
[RS] T. Rodak and S. Spodzieja, On some characterization of proper polynomial map-

pings, Bull. Polish Acad. Sci. Math. 48 (2000), 157–164.

Faculty of Mathematics
University of Łódź
S. Banacha 22
90-238 Łódź, Poland
E-mail: krasinsk@krysia.uni.lodz.pl

spodziej@imul.uni.lodz.pl
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