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AK-invariant, some conjectures,
examples and counterexamples

by L. Makar-Limanov (Ramat-Gan and Detroit, MI)

Abstract. In my talk I am going to remind you what is the AK-invariant and give
examples of its usefulness. I shall also discuss basic conjectures about this invariant and
some positive and negative results related to these conjectures.

Let us start with definitions. Though most of the definitions below make
sense in greater generality, we are going to consider in this talk only domains
over the field C of complex numbers.

Definition of the AK-invariant

Derivations and related notions. Let A be a commutative algebra over
the field C. Then a C-homomorphism ∂ of A is called a derivation of A if it
satisfies the Leibniz rule: ∂(ab) = ∂(a)b+a∂(b). It follows immediately from
the Leibniz rule that it is sufficient to know a derivation on a generating set
of the algebra A.

Let us denote the set of all derivations of A by Der(A). It is well known
(and easy to check) that Der(A) is a Lie algebra relative to the addition
and “commutator” operations in the algebra of homomorphisms of A. Also,
Der(A) is a left A-module.

Any derivation ∂ determines two subalgebras of A. One is the kernel
of ∂, which is usually denoted by A∂ and called the ring of ∂-constants. The
other is Nil(∂), the ring of nilpotency of ∂. It is determined by Nil(∂) = {a ∈
A | ∂n(a) = 0, n� 1}. In other words, a ∈ Nil(∂) if for a sufficiently large
natural number n we have ∂n(a) = 0. Both A∂ and Nil(∂) are subalgebras
of A because of the Leibniz rule.
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Let us call a derivation locally nilpotent if Nil(∂) = A. Let us denote by
LND(A) the set of all locally nilpotent derivations. Sometimes we abbreviate
locally nilpotent derivation as Lnd.

Here are several examples of locally nilpotent derivations. The best one
is the partial derivatives on a polynomial ring. Next, let us consider a ring
AP with generators x, y, z and with one relation xy = P (z) where P (z)
is a polynomial of positive degree. Then ∂1 which is given by ∂1(x) = P ′,
∂1(y) = 0, ∂1(z) = y is a locally nilpotent derivation of AP . Since our
relation is x-y symmetric we can switch x and y and obtain another locally
nilpotent derivation ∂2(x) = 0, ∂2(y) = P ′ and ∂2(z) = x. The ring AP is
isomorphic to the polynomial algebra C[u, v] only if deg(P ) = 1. Otherwise
it is not a unique factorization domain and so is not isomorphic to C[u, v].

Now let us take the ring AP,n which is given by a relation xny = P (z).
If n > 1 then ∂(x) = 0, ∂(y) = P ′, ∂(z) = xn still define a locally nilpotent
derivation. But since the relation is not symmetric any more we cannot
easily produce a second derivation. In fact, it is possible to prove that all
locally nilpotent derivations of AP,n are in some sense equivalent to ∂. We
will give a precise definition later.

It is not easy to describe locally nilpotent derivations. Even for rings of
polynomials we know the description only for rings with one generator (an
exercise) and for two generators (see [Re]). For three generators Miyanishi
proved that the kernel of an Lnd is isomorphic to C[u, v] (see [Mi1] and [Fr])
and Freudenburg, Daigle, and Daigle and Russell described all homogeneous
Lnd (see the talk of D. Daigle). But the complete description of Lnd for
C[x, y, z] is not known yet.

For the rings of polynomials with a larger number of generators the
kernels of locally nilpotent derivations may even fail to be finitely generated
(see the talk of G. Freudenburg).

The AK-invariant. The intersection of the rings of constants of all locally
nilpotent derivations is called the ring of absolute constants and denoted by
AK(A).

Degree function and equivalence relation. For a locally nilpotent deriva-
tion ∂ acting on a ring A, one can define deg∂(f) = max(n | ∂n(f) 6= 0)
if f ∈ A∗ = A \ 0 and deg∂(0) = −∞. This is a degree function (see for
example [FLN]), i.e., deg∂(a + b) ≤ max(deg∂(a),deg∂(b)) and deg∂(ab) =
deg∂(a) + deg∂(b).

Let us call two Lnd equivalent if they define the same degree function.

Several lemmas. Let F be the field of fractions of A and let ∂ be a non-
zero Lnd of A. We can extend ∂ to F . Let F ∂ be the subring of constants
of ∂ on F and let NilF (∂) be the ring of nilpotency of ∂ on F . Finally, let
K be the field of fractions of A∂ .
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Lemma 1. F ∂ = K.

Proof (O. Hadas). If f ∈ F ∂ then f = ab−1 where a, b ∈ A. Since ∂(f) =
(∂(a)b − a∂(b))b−2 = 0 we have ab−1 = ∂(a)∂(b)−1. But deg∂(∂(a)) =
deg∂(a)− 1, so we can see that there is a representation of f in which both
the numerator and denominator are in A∂ .

Lemma 2. There exists an element t ∈ F such that NilF (∂) = K[t].

Proof. Since A 6= A∂ there exists an r ∈ A \ A∂ such that ∂(r) ∈ A∂ .
Indeed, let a ∈ A \A∂ . Then we can take r = ∂n(a) where n = deg∂(a)− 1.
Let s = ∂(r). If we take t = rs−1 then ∂(t) = 1. Let f ∈ NilF (∂). Let us
use induction on deg∂(f) = n to show that f =

∑n
i=0 fit

n−i where fi ∈ F ∂ .
If deg∂(f) = 0 then f ∈ F ∂ . Let us make the step from deg∂(f) = n − 1
to deg∂(f) = n. If deg∂(f) = n then deg∂(∂(f)) = n − 1 and by induction
∂(f) =

∑n−1
i=0 fit

n−1−i for some fi ∈ F ∂ . Let g =
∑n−1
i=0 (n − i)−1fit

n−i.
Then ∂(g) = ∂(f). So ∂(f − g) = 0, which means that f = g + fn where
fn ∈ F ∂ .

Lemma 3. Two Lnd of A are equivalent if and only if their kernels are
the same.

Proof. It is clear that if two Lnd are equivalent then their kernels are the
same. Let us assume now that ∂1 and ∂2 are non-zero Lnd and that their
kernels are the same. Then by Lemma 1 the kernels of their extensions on F
are the same and by Lemma 2 there exists a t ∈ F such that ∂1(t) = 1 and
t ∈ NilF (∂2). Let us take a ∈ A \ A∂ . Then a =

∑m
i=0 ait

m−i where m > 0
and ai ∈ K = F ∂1 . So ∂2(a) =

∑m
i=0(m− i)aitm−i−1∂2(t). If ∂2(t) /∈ K then

∂2(a) /∈ K and ∂2(A)∩K = 0. But, as we saw in the proof of Lemma 2, this
is impossible. So ∂2(t) ∈ K and the degree of a relative to ∂2 is also m.

Similarly we can prove the following lemma.

Lemma 4. If ∂ is an Lnd and ∂(A) ⊂ bA for some b ∈ A then ∂(b) = 0.

Proof. If ∂(b) 6= 0 then ∂(A) ∩ A∂ = 0 and this is impossible.

If A is a finitely generated domain then A is isomorphic to Cn/I where
Cn is a polynomial ring in n variables and I is a prime ideal.

There is an important class of derivations on Cn, the so-called Jacobian
derivations. They are defined as follows. Let f1, . . . , fn−1 be some elements
of Cn. Then ∂(f) = ∂f1,...,fn−1(f) is the determinant of the corresponding
Jacobi matrix (Jacobian).

Similarly we can define Jacobian derivations on Cn/I. Let ∂ ∈ Der(Cn)
and let ∂(I) ⊂ I. Then ∂ defines a derivation on Cn/I. Indeed, ∂(a+ I) =
∂(a) + I is well defined on Cn/I and it is easy to check that the resulting
homomorphism is a derivation. We shall call this derivation of Cn/I Jacobian
if ∂ is a Jacobian derivation.
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It has been known for some time that an Lnd of Cn is equivalent to a
Jacobian derivation. But in fact this is true for any Lnd on an affine domain.

Lemma 5 (with Kaliman). Let A = Cn/I where I is a prime ideal and
let ∂ ∈ LND(A). There exists a set of elements f1, . . . , fn−1 in Cn such that
the derivation ∂f1,...,fn−1 defines a derivation on A which is equivalent to ∂.

Unfortunately, the proof is a bit too involved to be presented here, but
you can request a preprint from me if you want.

Because of this lemma we can see that AK(A) =
⋂
∂∈JLnd(A) A

∂ where
JLnd(A) denotes the Lnd of Jacobian type. This really helps in computations
of AK.

What is AK good for? As with any invariant, if we can compute it for
a ring then we can tell that this ring is different from a ring with a different
invariant.

For example AK(Cn) = C because though we do not know all Lnd of Cn
we know that all partial derivatives are Lnd and this is enough to see that
AK(Cn) = C.

In many situations it is important to characterize polynomial rings. If A
is very small, that is, if the transcendence degree of A is one, then AK(A)
is either A or C. And if it is C then A ' C[t].

If trdeg(A) = 2 then AK(A) = C does not imply that A ' C[x, y]. We
already saw an example of a ring which is not isomorphic to C[x, y] with
AK equal to C. This is any ring AP with the degree of P at least two.
Then AK(AP ) = C because the intersection of the kernels of ∂1 and ∂2 is
already C. But if AK(A) = C and A is a UFD (unique factorization domain)
then Miyanishi proved that A ' C[x, y] (see [Mi2]).

Now, if trdeg(A) = 3, then AK(A) = C and A being a UFD is not
sufficient to make A a polynomial ring. For example sl2 which is given by
xy − uv = 1 satisfies these conditions but is not isomorphic to C[x, y, z].
So what condition should be added? For example, if A also admits three
non-equivalent commuting Lnd then A ' C[x, y, z]. But this condition is
too strong. So I do not know what the right additional condition is. It may
be that it is of a geometric nature and I invite you to formulate it.

AK also works another way. If we know that AK(A) 6= C then, of course,
we know that A 6' Cn. But this information is also good for another purpose.

Here is an example. Let us take A = An,P which is given by xny =
P (z). Let us assume that n > 1 and deg(P ) > 1. It is possible to show
that AK(A) = C[x]. Let α be an automorphism of A. Then α induces an
automorphism of C[x]. So we have a rather strong restriction on α: α(x) =
ax+b where a ∈ C∗ and b ∈ C. In fact, it is possible to show that α(x) = ax
and to get a complete description of the automorphisms of A. Similarly one
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can answer when An,P is isomorphic to Am,Q since AK(An,P ) goes onto
AK(Am,Q) (see [ML1]).

I hope that these examples have persuaded you that AK is a useful
invariant and it is interesting to find how it behaves.

Conjectures. The first natural question is how AK(A) and AK(An),
where An = A[x1, . . . , xn], are connected. It is rather clear that AK(An) ⊆
AK(A). Indeed, any ∂ ∈ LND(A) can be extended to an Lnd of An by
∂(xi) = 0 for all i. Also, all partial derivatives are in LND(An). The inter-
section of the kernels of all Lnd extended from A and all partial derivatives
is already AK(A). And we may have more Lnd on An. But can we have
AK(An) smaller than AK(A)?

So is it true that AK(A[x]) = AK(A)? I checked this conjecture in two
cases. If trdeg(A) = 1 then AK(An) = AK(A) for any n (see [ML2]). Also,
if AK(A) = A then AK(A[x]) = A (see [ML3]).

It was my original conjecture that AK(A[x]) = AK(A). I wanted this
conjecture to be true to such a degree that I forgot about counterexamples
which I knew.

These counterexamples were mentioned yesterday by Peter van Rossum,
but let us talk about them in greater detail. They belong to Danielewski.
As we already saw, AK(AP ) = C for any P . We also mentioned that
AK(A2,P ) = C[x] if the degree of P is more than 2. But Danielewski [Dan]
has shown that AP [t] ' A2,P [t] for P = z2−1. So AK(AP [t]) ⊆ AK(AP ) = C
and therefore C = AK(AP [t]) = AK(A2,P [t]) 6= AK(A2,P ) = C[x].

Here are the formulae. Let R = A2,P [t]. Then ∂/∂t and ∂ which is given
by ∂(x) = 0, ∂(y) = 2z, ∂(z) = x2, and ∂(t) = 0 are the expected Lnd.
Here is an additional one. Let us take a derivation on C[x, y, z, t] which is
given by ε(r) = J(x2y − z2, t2x+ 2tz + xy, t3x+ 3t2z + 3txy + yz, r) where
J denotes the Jacobian. It is not difficult to check that ε(I) ⊂ I where I is
the principal ideal generated by x2y − z2 − 1, that the resulting derivation
is nilpotent, and that x is not in its kernel.

So life is more difficult than I hoped and my original conjecture is wrong.
Let me then modify it to

Conjecture 1. AK(A) = AK(A[x]) if A is a UFD.

At least I do not know counterexamples to this one.
How can one generalize this question? As was observed in one of the

talks yesterday, A[x] = A ⊗C C[x]. So Conjecture 1 can be rewritten as
AK(A⊗C C[x]) = AK(A)⊗C AK(C[x]) if A is a UFD.

If we recall that for two affine varieties V1 and V2 the ring of regular
functions O(V1×V2) = O(V1)⊗CO(V2), we may want to relate AK(A⊗CB)
and AK(A) ⊗C AK(B). It is again quite easy to show that AK(A ⊗C B) ⊆
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AK(A) ⊗C AK(B) since any ∂ ∈ LND(A) can be extended to A ⊗C B by
∂(B) = 0 and this extension is an Lnd. So if r =

∑
ai ⊗ bi ∈ AK(A⊗C B),

{bi} are linearly independent over C, and ∂ is an extension of an Lnd of A
then 0 = ∂(r) =

∑
∂(ai) ⊗ bi implies that ∂(ai) = 0 for all i. So ai ∈

AK(A). Similarly, any Lnd of B can be extended to an Lnd of A⊗C B and
bi ∈ AK(B).

Of course, the Danielewski examples show that in general AK(A⊗CB) 6=
AK(A)⊗C AK(B). So it is interesting to find out when we have equality.

As I mentioned before, we have AK(A ⊗C C[x1, . . . , xn]) = AK(A) ⊗C
AK(C[x1, . . . , xn]) if trdeg(A) = 1. In fact, if trdeg(A) = 1 and A 6' C[t]
then AK(A⊗C B) = AK(A)⊗C AK(B) for any B with finite transcendence
degree (see [ML2]).

Another thing which was also already mentioned is that AK(A⊗CC[x]) =
AK(A)⊗C AK(C[x]) if AK(A) = A.

So here is

Conjecture 2. If AK(A) = A then AK(A⊗CB) = AK(A)⊗CAK(B).

Even the special case when B = C[x1, . . . , xn] is very interesting. If it is
proved for A with transcendence degree 2, it gives a new proof of the Zariski
Cancellation Conjecture for surfaces (see [Fu], [MS], and [Su]). The same is
true for Conjecture 1.

Let me finish with

Conjecture 3. If A and B are UFD then

AK(A⊗C B) = AK(A)⊗C AK(B).

Of course, all these conjectures are motivated by affine algebraic geom-
etry. Any substantial progress with them gives us results on the Zariski
Cancellation Conjecture. But it is a dubious blessing. Since the majority of
experts now think that the Zariski Cancellation Conjecture is wrong, the
question is what happens first: proofs or counterexamples?
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