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An algorithm to compute the kernel of a derivation
up to a certain degree

by Stefan Maubach (Nijmegen)

Abstract. An algorithm is described which computes generators of the kernel of
derivations on k[X1, . . . ,Xn] up to a previously given bound. For w-homogeneous deriva-
tions it is shown that if the algorithm computes a generating set for the kernel then this
set is minimal.

1. Introduction. Derivations and the study of their kernels play a cru-
cial role in many problems. For example Hilbert’s famous 14th problem
was solved by examining kernels of certain derivations (see [Freudenburg],
[Daigle & Freudenburg], [Deveney & Finston]). Also a proof of the fact that
the hypersurface x + x2y + z2 + t3 = 0 in C4 is not isomorphic to C3 uses
kernels of derivations (see [Derksen], [Makar-Limanov]). For more problems
about derivations (and their kernels) we refer to the excellent account in
[Nowicki].

Hence it is often important to find generators of the kernel. For locally
nilpotent derivations there are two algorithms in the literature. The first
one was given in [Tan] who only considered linear derivations (derivations
on k[X1, . . . ,Xn] for which each D(Xi) is linear). The most important one
is given in [Essen]. This algorithm computes all generators of the kernel of
any locally nilpotent derivation on just any integral Q-algebra provided the
kernel is finitely generated. If one has an infinitely generated kernel, the al-
gorithm never stops. However, a big offset of this algorithm is that it is very
inefficient and time consuming since it heavily depends on Gröbner bases
computations. For computational purposes the Essen algorithm is often use-
less due to this flaw.

The new algorithm described in this article can be used to compute
generators up to a certain degree of the kernel of any k-derivation (not
necessarily locally nilpotent). In Section 5 we will describe the new algorithm
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on “w-homogeneous” derivations. In Section 6 we show how to extend the
algorithm to all derivations.

The algorithm does not use Gröbner bases but linear algebra instead.
This makes it much more efficient. How this algorithm works is described in
Section 5. In Section 7 an example of the algorithm is given and the efficiency
of this algorithm is compared to the algorithm in [Essen]; the differences are
probably much in favor of the new algorithm.

In Section 8 it is proved that the algorithm provides a minimal number
of generators for w-homogeneous derivations.

This algorithm is in fact an application of a very useful grading theory:
the concept of D-gradings. These gradings are constructed given a certain
derivation, and a lot of questions concerning this derivation can be solved
by the use of this theory. This is described in Section 3. An example of how
these gradings can be used is in Section 4. More examples of this can be
found in [Maubach2].

In Section 2 some notations are summed up which are used throughout
the paper.

2. Notations and introduction. In this article the following notations
are used:

• A = k[X1, . . . ,Xp], the polynomial ring in p variables, where k is a
field of characteristic zero.
• By “H ∈ A a monomial” we mean: H is of the form Xα1

1 · · ·X
αp
p

where αi ∈ N. Sometimes we use the same word for c · Xα1
1 · · ·X

αp
p where

c ∈ k, c 6= 0, but this will not give rise to any misunderstandings.
• Given a finite subset {F1, . . . , Fq} ⊂ A, we denote {F1, . . . , Fq} by {F}

and k[F1, . . . , Fq] by k[F ]. Define F̂i := {F1, . . . , Fi−1, Fi+1, . . . , Fq} (even if
Fi = Fj for some j 6= i). Furthermore, {Fv} means a subset of generators
of the kernel of a derivation homogeneous of degree v; if v = (v1, . . . , vn) we
will write A(v1,...,vn) for Av.
• If F1, . . . , Fq ∈ A and α ∈ Nq we write Fα for Fα1

1 · · ·F
αq
q .

• D is a k-derivation on A. (See below for a definition.)
• By a grading we mean a decomposition of A of the form A =

⊕
σ∈Nq Aσ

for some q ∈ N∗ such that for each σ ∈ Nq, Aσ is a k-vector space and
AσAτ ⊆ Aσ+τ for all σ, τ ∈ Nq.
•We say “F is homogeneous of degree σ” (with respect to a grading) if

F ∈ Aσ.
• The symbol “⊂” is reserved for “strictly included”. For “included” we

use “⊆”.

3. Special gradings on a ring: D-gradings. The concept of w-grad-
ings is well known: if we have a polynomial ring A (in p variables) and a
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vector 0 6= w ∈ Np then we can define a function on monomials Xα by

deg(Xα) = 〈α,w〉

where 〈 , 〉 is the usual inner product on Np. If we now define

An := spank{Xα | deg(Xα) = n}

then A =
⊕
An is a well defined grading. (It is easy to check that AnAm ⊆

An+m.) We can extend deg to all elements of An: if 0 6= F ∈ An then define
deg(F ) = n.

Definition 3.1. Assume we have on A a derivation D (not necessarily
locally nilpotent) and a grading given by a function deg coming from a
w-grading. Let m ∈ Z. We call such a grading D-homogeneous of degree m
if D(An) ⊆ An−m for all n. We may also split them into 3 groups:

If m = 0 then we call the grading D-invariant .
If m < 0 then we call the grading D-increasing .
If m > 0 then we call the grading D-decreasing .

Notice that “F is homogeneous with respect to the grading” means
something completely different from “D is homogeneous with respect to
the grading”. The first sentence says that F ∈ An for some n, and the sec-
ond that there exists some m such that for all n and all F ∈ An we have
D(F ) ∈ An−m.

We have an easy method to check if a grading is D-homogeneous with
respect to a given D.

Lemma 3.2. Let D be any derivation on A. Assume that A has a grading⊕
An. Then the grading is D-homogeneous of degree m iff D(Xi) is homo-

geneous with respect to the grading and deg(D(Xi)) = deg(Xi) −m for all
i with D(Xi) 6= 0.

Proof. ⇒ is obvious. So assume that D(Xi) is homogeneous and that
deg(Xi) = deg(D(Xi)) − m for all i with D(Xi) 6= 0. We have to prove
that this implies D(An) ⊆ An−m. Suppose F ∈ An. If D(F ) = 0 then
D(F ) ∈ An−m. So assume D(F ) 6= 0. We will prove D(F ) ∈ An−m. Let
F =

∑
cαX

α. So we have deg(Xα) = n for every α with cα 6= 0 and

D(F ) = D
(∑

cαX
α
)

=
∑

D(cαXα) =
∑ p∑

i=1

cααiX
α−eiD(Xi).

Since D(F ) 6= 0 there exist i with cααiX
α−eiD(Xi) 6= 0. For all such i we
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have
deg(cααiXα−eiD(Xi)) = deg(Xα−eiD(Xi))

= deg(Xα)− deg(Xi) + deg(D(Xi))

= n− deg(Xi) + deg(Xi)−m (by assumption)

= n−m.
So F ∈ An−m.

Definition 3.3. Let D be a derivation on A. To w1, . . . , wk ∈ Np asso-
ciate an Nk-grading grad on A: grad(Xα) := (〈w1, α〉, . . . , 〈wk, α〉). We call
such a grading a combined grading if each degwi is D-homogeneous.

Keep in mind that these functions grad, deg, etc. are NOT defined on A.
One can only write down grad(F ) if one knows F to be homogeneous with
respect to grad.

4. Example. In this section an example is shown of how these special
gradings are defined and what one can do with them. First some definitions
are necessary:

Definition 4.1. Let A := k[X,Y,Z, T ], D := Y a∂X + Zb∂Y + T c∂Z
(a, b, c ∈ N).

Let m ∈ Z. We will try to find a D-homogeneous grading of degree m.
Assume one has a D-homogeneous grading of degree m on A, denoted by
deg. Then

deg(XαY βZγT δ) = deg(D(XαY βZγT δ))−m(∗)
= deg(αXα−1Y β+aZγT δ + βXαY β−1Zγ+bT δ

+ γXαY βZγ−1T δ+c)−m.

Hence, if for all α, β, γ, δ ∈ N we have deg(XαY βZγT δ) = αw1 + βw2 +
γw3 + δw4 it follows that for all α, β, γ, δ ∈ N,

αw1 + βw2 + γw3 + δw4 = (α− 1)w1 + (β + a)w2 + γw3 + δw4 −m(∗∗)
= αw1 + (β − 1)w2 + (γ + b)w3 + δw4 −m
= αw1 + βw2 + (γ − 1)w3 + (δ + c)w4 −m.

This is true iff 0 = −w1 + aw2 −m = −w2 + bw3 −m = −w3 + cw4 −m.
Hence w = −m(ab + a + 1, b + 1, 1, 0) + w4(abc, bc, c, 1). Choose m = 0,
w4 = 1 to find a D-invariant grading and choose m = −1, w4 = 0 to find
a D-decreasing grading of degree −1. So we define deg2(XαY βZγT δ) =
〈(α, β, γ, δ), (abc, bc, c, 1)〉, which induces a D-invariant grading; and
deg1(XαY βZγT δ) = 〈(α, β, γ, δ), (ab + a + 1, b + 1, 1, 0)〉, which induces
a D-decreasing grading. Hence by the previous section one obtains grad :=
(deg2,deg1) which induces a combined grading on A.
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The next theorem is a nice example of how things work with D-invariant
gradings.

Lemma 4.2. Let D1 := Y a∂X +Zb∂Y +S∂Z and D2 := Y a∂X +Zb∂Y +
T c∂Z . If ker(D1) is finitely generated , then so is ker(D2) as well.

Proof. Suppose ker(D1) = k[F1, . . . , Fn] ⊆ k[X,Y,Z, S]. Consider the
substitution homomorphism φ : k[X,Y,Z, S] → k[X,Y,Z, T ] sending S to
T c and leaving the elements of k[X,Y,Z] invariant. Then it is easy to prove
that D2 ◦ φ = φ ◦D1.

We will prove that ker(D2) = k[T ][φ(F1), . . . , φ(Fn)]. Define deg2 in
k[X,Y,Z, S] in the same way as above (replace S by T ). Suppose G ∈
ker(D2). Write G =

∑c−1
i=0 Gi where every monomial H appearing in Gi has

deg2(H) = i (mod c). For such H,

deg2(H) = deg2(XαY βZγT δ) ≡ c(. . .) + δ ≡ δ (mod c).

So Gi/T
i ∈ k[X,Y,Z, T c]. Hence we can define φ−1(Gi/T i) (and even

φ−1D2(Gi/T i)). Furthermore, D2(Gi) = 0 because we have divided every-
thing into groups of the same D-invariant degree. Now we have

0 = D2(Gi/T i) ⇔ 0 = φ−1D2(Gi/T i) = φ−1D2φφ
−1(Gi/T i)

= D1φ
−1(Gi/T i).

Hence

φ−1(Gi/T i) ∈ k[F1, . . . , Fn]

⇔ Gi/T
i ∈ φ(k[F1, . . . , Fn]) = k[φ(F1), . . . , φ(Fn)].

Therefore Gi ∈ T ik[φ(F1), . . . , φ(Fn)] ⊂ k[T ][φ(F1), . . . , φ(Fn)]. It follows
that G =

∑c−1
i=0 Gi ∈ k[T ][φ(F1), . . . , φ(Fn)], and this is what we needed.

So this last lemma states that one can choose c = 1 for computational
purposes.

Remark. In [Maubach2] it is proved that the derivation D2 (and hence
D1) has finitely generated kernel. A stronger result is obtained: triangular
k-derivations over k[X1,X2,X3,X4] which map each Xi to a monomial have
a kernel which is generated over k by at most four elements.

5. An algorithm to compute minimal sets of generators of ker-
nels of some derivations. This section will describe the algorithm on a
special class of derivations.

Convention. By v, w we will denote elements in Nq.
Definition 5.1. Write w ≤ v for v, w ∈ Nq if the ith coordinate of w

is smaller than or equal to the ith coordinate of v for all i. We also write
w < v when w ≤ v and w 6= v.
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Assume that our ring A has a grading A =
⊕

v∈Nq Av and D is a deriva-
tion homogeneous with respect to this grading.

Definition 5.2. Set

Bv :=
⊕

w≤v
Aw and B−v :=

⊕

w<v

Aw.

Definition 5.3. We call {F} = {F1, . . . , Fs} ⊆ Bv a good set for v ∈ Nq
when:

(1) each Fi ∈ Aw for some w ≤ v,
(2) k[F ] ∩Bv = ker(D) ∩Bv,
(3) for every i one has Fi 6∈ k[F̂i].

We also call {F} ⊆ B−v a good set for v− when:

(1) each Fi ∈ Aw for some w < v,
(2) k[F ] ∩B−v = ker(D) ∩B−v ,
(3) for every i one has Fi 6∈ k[F̂i].

Problem. Construct algebraic generators for ker(D). More precisely:
compute a (preferably minimal) finite set {F} := {F1, . . . , Fn} ⊂ A such
that ker(D) ⊃ k[F ] and Fi 6∈ k[F̂i] for all i.

The algorithm’s purpose. We will give an algorithm to find such alge-
braic generators up to a certain degree. However, we are not able to use the
algorithm for just any (locally nilpotent) derivation D on A. In addition we
need:

Assumption. A is equipped with a combined grading consisting of q ≥ 1
D-homogeneous gradings of degree mi. (Hence A =

⊕
Av, v ∈ Nq.) Fur-

thermore we assume that dimk(Av) < ∞ for all v, so we are dealing with
finite-dimensional k-vector spaces only.

Definition 5.4. We denote by Dv for v ∈ Nq the restriction of D to Av.
Then by the assumptions on the grading grad we have D(Av) ⊆ Av−m where
m = (m1, . . . ,mq) (mi as in the Assumption), and Dv can be seen as a linear
map from the finite-dimensional vector space Av to the finite-dimensional
vector space Av−m.

Lemma 5.5. ker(Dv) = ker(D) ∩ Av.

Proof. (⊇) If F ∈ ker(D) ∩ Av then F ∈ Av and hence D(F ) = Dv(F )
= 0 and F ∈ ker(Dv).

(⊆) If F ∈ ker(Dv) then F ∈ Av and D(F ) = 0.

Input of the algorithm:

• {X1, . . . ,Xp}, the generators of the k-algebra A,
• a k-derivation D on A,
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• a combined grading A :=
⊕

v∈Nq Av, denoted by grad, which of course
depends on D (it must satisfy the assumptions above),
• b ∈ Nq, the degree where to stop calculating.

Output: generators F1, . . . , Fs ∈ Bb such that {F1, . . . , Fs} is a good
set for b. More precisely:

(1) each Fi ∈ Av for some v < b,
(2) k[F1, . . . , Fs] ∩Bb = ker(D) ∩Bb,
(3) Fi 6∈ k[F̂i].

The algorithm is based on the following induction step:

Lemma 5.6. Let v ∈ Nq. Suppose we have finite sets {Fw} ⊂ Aw for all
w < v such that

⋃
w<v{Fw} is a good set for v−. Then we can construct a

finite set {Fv} ⊂ Av such that
⋃
w≤v{Fw} is a good set for v.

Before we prove this lemma we show that it gives us the needed tool to
calculate good sets.

Lemma 5.7. Let v ∈ Nq. Suppose we have finite sets {Fw} ⊂ Aw for
all w < v such that for all u < v,

⋃
w≤u{Fw} is a good set for u. Then⋃

w<v{Fw} is a good set for v−.

Proof. Write {F} :=
⋃
w<v{Fw}. We need to prove

(1) k[F ] ∩B−v = ker(D) ∩B−v ,
(2) if Fi ∈ {F} then Fi 6∈ k[F̂i].

(1) “⊆” is trivial. “⊇”: LetG ∈ ker(D) and supposeG ∈ B−v . SplitG into
homogeneous parts G =

∑
Gh. Then 0 = D(G) = D(

∑
Gh) =

∑
D(Gh),

thus D(Gh) = 0 and hence Gh ∈ ker(D). So grad(Gh) is defined and < v.
Thus Gh ∈ k[F ]. Hence G =

∑
Gh ∈ k[F ].

(2) Let Fi ∈ {F}. Then Fi is homogeneous and grad(Fi) < v. Let u :=
grad(Fi). Then Fi ∈ {F} ∩ Bu =

⋃
w≤u{Fw}. Write F̃ :=

⋃
w≤u{Fw}.

Suppose Fi ∈ k[F̂ ]. Then since Fi ∈ Bu we have Fi ∈ k[F̂ ] ∩ Bu. But then

Fi ∈ k[ ̂̃F ]. But this states by definition that F̃ is not a good set for u.
Contradiction.

By these last two lemmas we can calculate good sets for any vector v if
we have a good set for A(0,...,0).

Lemma 5.8. A good set for A(0,...,0) is the empty set (A(0,...,0) = k).

Proof. Of course A(0,...,0) ⊇ k. Now suppose A(0,...,0) 6= k. Then take
a ∈ A(0,...,0) for which a 6∈ k. Then a, a2, a3, . . . ∈ A(0,...,0). But then
{1, a, a2, . . .} is a k-independent subset of A(0,...,0) and thus A(0,...,0) is not
finite-dimensional. But by assumption, Av is finite-dimensional for any v.
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Contradiction, so A(0,...,0) = k and hence ker(D) ∩ A(0,...,0) = k. So the
empty set is a good set for A(0,...,0).

It suffices to prove Lemma 5.6. The following proof is in fact a description
of the algorithm.

Proof of Lemma 5.6. Write {F} =
⋃
w<v{Fw}. Note k[F ]∩Av is a finite-

dimensional k-vector space. It is spanned by all Fα for which Fα ∈ Av. Let
s := #F and

I := {α ∈ Ns | Fα ∈ Av}.
Then we know that

(∗) k[F ] ∩ Av =
∑

α∈I
k · Fα.

We did write “
∑

” and not “
⊕

” since we do not know whether
⋃
α∈I{Fα}

is an independent set over k. But of course we can take (and calculate!) a
subset J of I for which

k[F ] ∩Av =
⊕

α∈J
k · Fα.

Hence dimk(k[F ]∩Av) = #J . Now we compute ker(Dv). (This is easy since
it is a linear k-map from a finite-dimensional k-vector space to a finite-
dimensional k-vector space.) Since k[F ] ∩ Av ⊆ ker(D) ∩ Av we have (by
Lemma 5.5)

k[F ] ∩ Av ⊆ ker(D) ∩ Av = ker(Dv).

Hence
⊕

α∈J k ·Fα ⊆ ker(Dv). Thus {Fα | α ∈ J} are independent elements
in ker(Dv). Now choose {Fv} ⊂ ker(Dv) for which {Fα | α ∈ J}∪{Fv} forms
a k-linear basis of ker(Dv). So

ker(Dv) =
(⊕

α∈J
k · Fα

)
⊕
( ⊕

f∈{Fv}
k · f

)
.

Note that #{Fv} = dimk(ker(Dv))−dimk(k[F ]∩Av) <∞ and that {Fv} is
a set of polynomials homogeneous of degree v. Then we claim that {F,Fv}
is a good set for v. For this we need two (in fact three) things to be true:

(1) ker(D) ∩Bv = k[F,Fv] ∩Bv,
(2)(a) Fv,i 6∈ k[F, F̂v,i], and (2)(b) Fi 6∈ k[F̂i, Fv],

where F̂v,i is defined as follows: if {Fv} is {G1, . . . , Gn} then

F̂v,i := {G1, . . . , Gi−1, Gi+1, . . . , Gn}.
Proof of (1). “⊇” is O.K. “⊆”: Take G ∈ ker(D) ∩ Bv. Decompose

G into homogeneous components and let G := G1 + G2 where G2 ∈ B−v
and G1 ∈ Av. Then 0 = D(G) = D(G1) + D(G2) hence D(G1) = 0 and
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D(G2) = 0. By hypothesis G2 ∈ k[F ] ∩B−v ⊆ k[F,Fv] ∩Bv. Furthermore

G1 ∈ ker(D) ∩ Av =
(⊕

α∈J
k · Fα

)
⊕
( ⊕

f∈{Fv}
k · f

)

= k[F ] ∩ Av ⊕ k[Fv] ∩ Av = k[F,Fv] ∩Av ⊆ k[F,Fv] ∩Bv,
thus G = G1 +G2 ∈ k[F,Fv] ∩Bv.

Proof of (2)(a). We know that

k[F,Fv] ∩Av =
(⊕

α∈J
k · Fα

)
⊕
( ⊕

f∈{Fv}
k · f

)
.

So Fv,i is independent of the other terms and hence

Fv,i 6∈
(⊕

α∈J
k · Fα

)
⊕
( ⊕

Fv,i 6=f∈{Fv}
k · f

)

= k[F ] ∩Av ⊕ k[F̂v,i] ∩Av = k[F, F̂v,i] ∩ Av.
Since Fv,i 6∈ k[F, F̂v,i] ∩ Av and Fv,i ∈ Av we have Fv,i 6∈ k[F, F̂v,i].

Proof of (2)(b). Suppose Fi ∈ k[F̂i, Fv]. Then there is a polynomial
P (F̂i, Fv) which equals Fi. Let w = grad(Fi). Then w < v. Comparing
degrees in the equation Fi = P (F̂i, Fv) shows that P is in fact a polynomial
in the {F̂i} since the {Fv} have too high degrees. But by hypothesis Fi 6∈
k[F̂i]. Contradiction, hence Fi 6∈ k[F̂i, Fv].

So now (1), (2)(a), (2)(b) all hold. These are the exact requirements for
{F,Fv} to be a good set for v, which was what we needed to prove.

Remark 5.9. If one wants to check if one has all generators of the kernel
there is an easy method to do that using the algorithm in [Essen]. (Put all
generators found in the algebra R0 and check if R0 = R1, where R0 and R1

are as in [Essen]). More about this in the second part of Section 7.

6. Applying the algorithm to non-homogeneous derivations. In
this section we describe how the algorithm can be easily used for any deriva-
tion by making it homogeneous. Let D =

∑p
i=1 ai∂i be a derivation on A.

Introduce a new variable Z and extend D to the Laurent polynomial ring
A[Z,Z−1] by defining D(Z) = 0. Let ϕ : A → A[Z,Z−1] be the homoge-
nization map sending f(X1, . . . ,Xp) ∈ A to f(X1/Z, . . . ,Xp/Z). By π we
denote the substitution homomorphism A[Z,Z−1]→ A sending Z to 1. On
A we consider the “usual” grading deg defined by deg(Xα) = α1 + . . .+αp.
For 0 6= g ∈ A we put g∗ := Zdeg(g)ϕ(g) ∈ A[Z]. Obviously π(g∗) = g.
Furthermore one easily verifies that

(∗) ∂i(ϕ(g)) =
1
Z
ϕ(∂ig) for all g ∈ A.
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On A[Z] we define the homogenization D̃ of D by D̃ :=
∑p
i=1 Z

dϕ(ai)∂i
where d = max(deg(a1), . . . ,deg(ap)).

Lemma 6.1. π(ker(D̃)) = ker(D).

Proof. (⊇) Let g ∈ ker(D). Then
∑
ai∂i(g) = 0, so by (∗) we have∑

ϕ(ai)Z∂i(ϕ(g)) = 0, i.e. D̃(ϕ(g)) = 0. So D̃(g∗) = 0. Since g = π(g∗) we
get g ∈ π(ker(D̃)). So π(ker(D̃)) ⊇ ker(D).

(⊆) Let h ∈ ker(D̃). Then Zd
∑
ϕ(ai)∂i(h) = 0. Applying π gives∑

ai∂i(π(h)) = 0, i.e. π(h) ∈ ker(D). So π(ker(D̃)) ⊆ ker(D).

Now one can easily verify that D̃ matches the requirements of the al-
gorithm, if we use the “usual” grading grad := deg on A[Z] as the needed
“combined grading”. Hence we can find generators for ker(D) by calculating
generators for ker(D̃).

Remark. Perhaps a flaw in this extension is that the algorithm cannot
compute a minimal set of generators. Perhaps under some extreme condi-
tions ker(D̃) might not be finitely generated while ker(D) is.

7. Example of the algorithm and efficiency. Let us consider the
derivation on An := k[X1, . . . ,Xn] given by

Dn := Xn−1∂Xn +Xn−2∂Xn−1 + . . .+X1∂X2 .

We can easily construct a Dn-invariant and a Dn-decreasing grading on An
and combine them in a grading grad defined by

grad(Xα) = (〈p, α〉, 〈q, α〉)
where p = (1, . . . , 1) and q = (0, 1, . . . , n−2, n−1). We are going to consider
this derivation for n = 5 and write A := A5 for notational reasons. Also we
denote by Av the collection of all polynomials F with grad(F ) = v, and {Fv}
means the set of generators of degree v. Also {F−v } is the set of generators
of degree smaller than v. It is easy to check that A(n,m) is finite-dimensional
over k for all n,m, hence the algorithm will work on this derivation with this
grading. Suppose we already know that {F(1,0)} = {X1} and that {F(0,0)} =
{F(2,0)} = {F(0,1)} = {F(1,1)} = {F(2,1)} = {F(0,2)} = {F(1,2)} = {}. (This
is easily deduced.)

Now we want to find a good set for the vector (2, 2) using the tech-
nique described in the proof of Lemma 5.6. It is easy to see that A(2,2) =
kX3X1 + kX2

2 , A(2,1) = kX3. Furthermore Dv(A(2,2)) ⊆ A(2,1) so the lin-
ear map Dv : A(2,2) → A(2,1) needs to be considered. The kernel of this
map is, as one easily sees, a linear space L generated by X3X1 − 1

2X
2
2 . The

generating set for (2, 2)− is {F−(2,2)} = {t}. So we need to check if there

are elements of L in k[F−(2,2)], hence we need to check if there are elements
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of L in k[F−(2,2)] ∩ A(2,2) = {0}. Hence we get dim(L) − dim({0}) = 1 new

generator(s). So {F(2,2)} = {X3X1 − 1
2X

2
2}.

Now about efficiency. All calculations were done on a sun Enterprise
4000 (Ultrasparc 170 MHz) using the magma computer algebra system. The
algorithm calculates within 22 seconds the generators up to grad (10, 10).
These are all generators, as can be checked by the method of Remark 5.9
within 2 seconds (1). If one uses the algorithm in [Essen] then one has to
wait 3902 seconds (65 minutes) for the answer.

8. Minimality of the generators. Assume that we have {F1, . . . , Fp}
given by the algorithm in Section 5 as generators of ker(D). (So we have used
the algorithm and concluded in some way that they generate the complete
kernel, for example by Remark 5.9.)

Theorem 8.1. The algorithm given in Section 5 gives minimal genera-
tors in the sense that if k[F1, . . . , Fp] = k[G1, . . . , Gq] for some Gi then we
must have q ≥ p.

Proof. We may assume that G1(0) = . . . = Gq(0) = 0 by replac-
ing Gi(X) by Gi(X) − Gi(0) if necessary. Let m := (F1, . . . , Fp). Then
k[F1, . . . , Fp]/m is isomorphic to the field k, and the Fi are homogeneous;
hence m is a homogeneous maximal ideal. Since Gi ∈ k[F1, . . . , Fp] we have
Gi = P (F1, . . . , Fp) + c for some c ∈ k and some polynomial P (T ) ∈
k[T1, . . . , Tp] having no constant term. But since Fj(0) = 0 for all j and
Gi(0) = 0 we have c = 0. Hence Gi ∈ m, so m ⊃ (G1, . . . , Gq). In the same
way we can also prove (G1, . . . , Gq) ⊃ m, hence m = (G1, . . . , Gq).

Now consider m/m2. This is a k-vector space. It is generated by the
F i := Fi mod m; namely if g ∈ m, then

g = P (F1, . . . , Fd) = λ1F1 + . . .+ λdFd +
∑

|β|≥2

λβF
β , λi, λβ ∈ k.

Since each F β with |β| ≥ 2 belongs to m2 we get g =
∑
λiF i. Now we claim

that these generators F i also form a basis; suppose

F i = λ1F 1 + . . .+ λi−1F i−1 + λi+1F i+1 + . . .+ λpF p.

Then

Fi = λ1F1 + . . .+ λi−1Fi−1 + λi+1Fi+1 + . . .+ λpFp +
∑

λβF
β .

Let us take the homogeneous part of grad(Fi) in this equation. Since all
Fj are homogeneous of non-zero degree themselves we get an expression of
Fi in terms of the other Fj ’s which satisfy grad(Fj) ≤ grad(Fi). But this

(1) This is not always extremely fast, but a lot faster than when applying the Essen
algorithm.
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contradicts the assumption that the Fi’s are found by the algorithm, which
means that they should have the properties of a “good set”. Hence the F i
form a basis for m/m2; thus dim(m/m2) = p.

Now since (G1, . . . , Gq) = m the Gi generate the vector space m/m2.
Since dim(m/m2) = p we need at least p generators. Hence q should be
larger than or equal to p.
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