An algorithm to compute the kernel of a derivation up to a certain degree

by Stefan Maubach (Nijmegen)

Abstract

An algorithm is described which computes generators of the kernel of derivations on $k\left[X_{1}, \ldots, X_{n}\right]$ up to a previously given bound. For w-homogeneous derivations it is shown that if the algorithm computes a generating set for the kernel then this set is minimal.

1. Introduction. Derivations and the study of their kernels play a crucial role in many problems. For example Hilbert's famous 14th problem was solved by examining kernels of certain derivations (see [Freudenburg], [Daigle \& Freudenburg], [Deveney \& Finston]). Also a proof of the fact that the hypersurface $x+x^{2} y+z^{2}+t^{3}=0$ in \mathbb{C}^{4} is not isomorphic to \mathbb{C}^{3} uses kernels of derivations (see [Derksen], [Makar-Limanov]). For more problems about derivations (and their kernels) we refer to the excellent account in [Nowicki].

Hence it is often important to find generators of the kernel. For locally nilpotent derivations there are two algorithms in the literature. The first one was given in [Tan] who only considered linear derivations (derivations on $k\left[X_{1}, \ldots, X_{n}\right]$ for which each $D\left(X_{i}\right)$ is linear). The most important one is given in [Essen]. This algorithm computes all generators of the kernel of any locally nilpotent derivation on just any integral \mathbb{Q}-algebra provided the kernel is finitely generated. If one has an infinitely generated kernel, the algorithm never stops. However, a big offset of this algorithm is that it is very inefficient and time consuming since it heavily depends on Gröbner bases computations. For computational purposes the Essen algorithm is often useless due to this flaw.

The new algorithm described in this article can be used to compute generators up to a certain degree of the kernel of any k-derivation (not necessarily locally nilpotent). In Section 5 we will describe the new algorithm

[^0]on "w-homogeneous" derivations. In Section 6 we show how to extend the algorithm to all derivations.

The algorithm does not use Gröbner bases but linear algebra instead. This makes it much more efficient. How this algorithm works is described in Section 5. In Section 7 an example of the algorithm is given and the efficiency of this algorithm is compared to the algorithm in [Essen]; the differences are probably much in favor of the new algorithm.

In Section 8 it is proved that the algorithm provides a minimal number of generators for w-homogeneous derivations.

This algorithm is in fact an application of a very useful grading theory: the concept of D-gradings. These gradings are constructed given a certain derivation, and a lot of questions concerning this derivation can be solved by the use of this theory. This is described in Section 3. An example of how these gradings can be used is in Section 4. More examples of this can be found in [Maubach2].

In Section 2 some notations are summed up which are used throughout the paper.
2. Notations and introduction. In this article the following notations are used:

- $A=k\left[X_{1}, \ldots, X_{p}\right]$, the polynomial ring in p variables, where k is a field of characteristic zero.
- By " $H \in A$ a monomial" we mean: H is of the form $X_{1}^{\alpha_{1}} \cdots X_{p}^{\alpha_{p}}$ where $\alpha_{i} \in \mathbb{N}$. Sometimes we use the same word for $c \cdot X_{1}^{\alpha_{1}} \cdots X_{p}^{\alpha_{p}}$ where $c \in k, c \neq 0$, but this will not give rise to any misunderstandings.
- Given a finite subset $\left\{F_{1}, \ldots, F_{q}\right\} \subset A$, we denote $\left\{F_{1}, \ldots, F_{q}\right\}$ by $\{F\}$ and $k\left[F_{1}, \ldots, F_{q}\right]$ by $k[F]$. Define $\widehat{F}_{i}:=\left\{F_{1}, \ldots, F_{i-1}, F_{i+1}, \ldots, F_{q}\right\}$ (even if $F_{i}=F_{j}$ for some $j \neq i$). Furthermore, $\left\{F_{v}\right\}$ means a subset of generators of the kernel of a derivation homogeneous of degree v; if $v=\left(v_{1}, \ldots, v_{n}\right)$ we will write $A_{\left(v_{1}, \ldots, v_{n}\right)}$ for A_{v}.
- If $F_{1}, \ldots, F_{q} \in A$ and $\alpha \in \mathbb{N}^{q}$ we write F^{α} for $F_{1}^{\alpha_{1}} \cdots F_{q}^{\alpha_{q}}$.
- D is a k-derivation on A. (See below for a definition.)
- By a grading we mean a decomposition of A of the form $A=\bigoplus_{\sigma \in \mathbb{N}^{q}} A_{\sigma}$ for some $q \in \mathbb{N}^{*}$ such that for each $\sigma \in \mathbb{N}^{q}$, A_{σ} is a k-vector space and $A_{\sigma} A_{\tau} \subseteq A_{\sigma+\tau}$ for all $\sigma, \tau \in \mathbb{N}^{q}$.
- We say " F is homogeneous of degree σ " (with respect to a grading) if $F \in A_{\sigma}$.
- The symbol " \subset " is reserved for "strictly included". For "included" we use " \subseteq ".

3. Special gradings on a ring: D-gradings. The concept of w-gradings is well known: if we have a polynomial ring A (in p variables) and a
vector $0 \neq w \in \mathbb{N}^{p}$ then we can define a function on monomials X^{α} by

$$
\operatorname{deg}\left(X^{\alpha}\right)=\langle\alpha, w\rangle
$$

where \langle,$\rangle is the usual inner product on \mathbb{N}^{p}$. If we now define

$$
A_{n}:=\operatorname{span}_{k}\left\{X^{\alpha} \mid \operatorname{deg}\left(X^{\alpha}\right)=n\right\}
$$

then $A=\bigoplus A_{n}$ is a well defined grading. (It is easy to check that $A_{n} A_{m} \subseteq$ A_{n+m}.) We can extend deg to all elements of A_{n} : if $0 \neq F \in A_{n}$ then define $\operatorname{deg}(F)=n$.

Definition 3.1. Assume we have on A a derivation D (not necessarily locally nilpotent) and a grading given by a function deg coming from a w-grading. Let $m \in \mathbb{Z}$. We call such a grading D-homogeneous of degree m if $D\left(A_{n}\right) \subseteq A_{n-m}$ for all n. We may also split them into 3 groups:

If $m=0$ then we call the grading D-invariant.
If $m<0$ then we call the grading D-increasing.
If $m>0$ then we call the grading D-decreasing.
Notice that " F is homogeneous with respect to the grading" means something completely different from " D is homogeneous with respect to the grading". The first sentence says that $F \in A_{n}$ for some n, and the second that there exists some m such that for all n and all $F \in A_{n}$ we have $D(F) \in A_{n-m}$.

We have an easy method to check if a grading is D-homogeneous with respect to a given D.

Lemma 3.2. Let D be any derivation on A. Assume that A has a grading $\bigoplus A_{n}$. Then the grading is D-homogeneous of degree m iff $D\left(X_{i}\right)$ is homogeneous with respect to the grading and $\operatorname{deg}\left(D\left(X_{i}\right)\right)=\operatorname{deg}\left(X_{i}\right)-m$ for all i with $D\left(X_{i}\right) \neq 0$.

Proof. \Rightarrow is obvious. So assume that $D\left(X_{i}\right)$ is homogeneous and that $\operatorname{deg}\left(X_{i}\right)=\operatorname{deg}\left(D\left(X_{i}\right)\right)-m$ for all i with $D\left(X_{i}\right) \neq 0$. We have to prove that this implies $D\left(A_{n}\right) \subseteq A_{n-m}$. Suppose $F \in A_{n}$. If $D(F)=0$ then $D(F) \in A_{n-m}$. So assume $D(F) \neq 0$. We will prove $D(F) \in A_{n-m}$. Let $F=\sum c_{\alpha} X^{\alpha}$. So we have $\operatorname{deg}\left(X^{\alpha}\right)=n$ for every α with $c_{\alpha} \neq 0$ and

$$
D(F)=D\left(\sum c_{\alpha} X^{\alpha}\right)=\sum D\left(c_{\alpha} X^{\alpha}\right)=\sum \sum_{i=1}^{p} c_{\alpha} \alpha_{i} X^{\alpha-e_{i}} D\left(X_{i}\right)
$$

Since $D(F) \neq 0$ there exist i with $c_{\alpha} \alpha_{i} X^{\alpha-e_{i}} D\left(X_{i}\right) \neq 0$. For all such i we
have

$$
\begin{aligned}
\operatorname{deg}\left(c_{\alpha} \alpha_{i} X^{\alpha-e_{i}} D\left(X_{i}\right)\right) & =\operatorname{deg}\left(X^{\alpha-e_{i}} D\left(X_{i}\right)\right) \\
& =\operatorname{deg}\left(X^{\alpha}\right)-\operatorname{deg}\left(X_{i}\right)+\operatorname{deg}\left(D\left(X_{i}\right)\right) \\
& =n-\operatorname{deg}\left(X_{i}\right)+\operatorname{deg}\left(X_{i}\right)-m \quad \text { (by assumption) } \\
& =n-m
\end{aligned}
$$

So $F \in A_{n-m}$.
Definition 3.3. Let D be a derivation on A. To $w_{1}, \ldots, w_{k} \in \mathbb{N}^{p}$ associate an \mathbb{N}^{k}-grading grad on $A: \operatorname{grad}\left(X^{\alpha}\right):=\left(\left\langle w_{1}, \alpha\right\rangle, \ldots,\left\langle w_{k}, \alpha\right\rangle\right)$. We call such a grading a combined grading if each $\operatorname{deg}_{w_{i}}$ is D-homogeneous.

Keep in mind that these functions grad, deg, etc. are NOT defined on A. One can only write down $\operatorname{grad}(F)$ if one knows F to be homogeneous with respect to grad.
4. Example. In this section an example is shown of how these special gradings are defined and what one can do with them. First some definitions are necessary:

Definition 4.1. Let $A:=k[X, Y, Z, T], D:=Y^{a} \partial_{X}+Z^{b} \partial_{Y}+T^{c} \partial_{Z}$ $(a, b, c \in \mathbb{N})$.

Let $m \in \mathbb{Z}$. We will try to find a D-homogeneous grading of degree m. Assume one has a D-homogeneous grading of degree m on A, denoted by deg. Then

$$
\begin{align*}
\operatorname{deg}\left(X^{\alpha} Y^{\beta} Z^{\gamma} T^{\delta}\right) & =\operatorname{deg}\left(D\left(X^{\alpha} Y^{\beta} Z^{\gamma} T^{\delta}\right)\right)-m \tag{*}\\
& =\operatorname{deg}\left(\alpha X^{\alpha-1} Y^{\beta+a} Z^{\gamma} T^{\delta}+\beta X^{\alpha} Y^{\beta-1} Z^{\gamma+b} T^{\delta}\right. \\
& \left.+\gamma X^{\alpha} Y^{\beta} Z^{\gamma-1} T^{\delta+c}\right)-m
\end{align*}
$$

Hence, if for all $\alpha, \beta, \gamma, \delta \in \mathbb{N}$ we have $\operatorname{deg}\left(X^{\alpha} Y^{\beta} Z^{\gamma} T^{\delta}\right)=\alpha w_{1}+\beta w_{2}+$ $\gamma w_{3}+\delta w_{4}$ it follows that for all $\alpha, \beta, \gamma, \delta \in \mathbb{N}$,

$$
\text { (**) } \begin{aligned}
\alpha w_{1}+\beta w_{2}+\gamma w_{3}+\delta w_{4} & =(\alpha-1) w_{1}+(\beta+a) w_{2}+\gamma w_{3}+\delta w_{4}-m \\
& =\alpha w_{1}+(\beta-1) w_{2}+(\gamma+b) w_{3}+\delta w_{4}-m \\
& =\alpha w_{1}+\beta w_{2}+(\gamma-1) w_{3}+(\delta+c) w_{4}-m .
\end{aligned}
$$

This is true iff $0=-w_{1}+a w_{2}-m=-w_{2}+b w_{3}-m=-w_{3}+c w_{4}-m$. Hence $w=-m(a b+a+1, b+1,1,0)+w_{4}(a b c, b c, c, 1)$. Choose $m=0$, $w_{4}=1$ to find a D-invariant grading and choose $m=-1, w_{4}=0$ to find a D-decreasing grading of degree -1 . So we define $\operatorname{deg}_{2}\left(X^{\alpha} Y^{\beta} Z^{\gamma} T^{\delta}\right)=$ $\langle(\alpha, \beta, \gamma, \delta),(a b c, b c, c, 1)\rangle$, which induces a D-invariant grading; and $\operatorname{deg}_{1}\left(X^{\alpha} Y^{\beta} Z^{\gamma} T^{\delta}\right)=\langle(\alpha, \beta, \gamma, \delta),(a b+a+1, b+1,1,0)\rangle$, which induces a D-decreasing grading. Hence by the previous section one obtains grad $:=$ $\left(\operatorname{deg}_{2}, \operatorname{deg}_{1}\right)$ which induces a combined grading on A.

The next theorem is a nice example of how things work with D-invariant gradings.

LEMMA 4.2. Let $D_{1}:=Y^{a} \partial_{X}+Z^{b} \partial_{Y}+S \partial_{Z}$ and $D_{2}:=Y^{a} \partial_{X}+Z^{b} \partial_{Y}+$ $T^{c} \partial_{Z}$. If $\operatorname{ker}\left(D_{1}\right)$ is finitely generated, then so is $\operatorname{ker}\left(D_{2}\right)$ as well.

Proof. Suppose $\operatorname{ker}\left(D_{1}\right)=k\left[F_{1}, \ldots, F_{n}\right] \subseteq k[X, Y, Z, S]$. Consider the substitution homomorphism $\phi: k[X, Y, Z, S] \rightarrow k[X, Y, Z, T]$ sending S to T^{c} and leaving the elements of $k[X, Y, Z]$ invariant. Then it is easy to prove that $D_{2} \circ \phi=\phi \circ D_{1}$.

We will prove that $\operatorname{ker}\left(D_{2}\right)=k[T]\left[\phi\left(F_{1}\right), \ldots, \phi\left(F_{n}\right)\right]$. Define deg_{2} in $k[X, Y, Z, S]$ in the same way as above (replace S by T). Suppose $G \in$ $\operatorname{ker}\left(D_{2}\right)$. Write $G=\sum_{i=0}^{c-1} G_{i}$ where every monomial H appearing in G_{i} has $\operatorname{deg}_{2}(H)=i(\bmod c)$. For such H,

$$
\operatorname{deg}_{2}(H)=\operatorname{deg}_{2}\left(X^{\alpha} Y^{\beta} Z^{\gamma} T^{\delta}\right) \equiv c(\ldots)+\delta \equiv \delta(\bmod c)
$$

So $G_{i} / T^{i} \in k\left[X, Y, Z, T^{c}\right]$. Hence we can define $\phi^{-1}\left(G_{i} / T^{i}\right)$ (and even $\left.\phi^{-1} D_{2}\left(G_{i} / T^{i}\right)\right)$. Furthermore, $D_{2}\left(G_{i}\right)=0$ because we have divided everything into groups of the same D-invariant degree. Now we have

$$
\begin{aligned}
0=D_{2}\left(G_{i} / T^{i}\right) \Leftrightarrow 0 & =\phi^{-1} D_{2}\left(G_{i} / T^{i}\right)=\phi^{-1} D_{2} \phi \phi^{-1}\left(G_{i} / T^{i}\right) \\
& =D_{1} \phi^{-1}\left(G_{i} / T^{i}\right)
\end{aligned}
$$

Hence

$$
\begin{aligned}
\phi^{-1}\left(G_{i} / T^{i}\right) \in k[& \left.F_{1}, \ldots, F_{n}\right] \\
& \Leftrightarrow G_{i} / T^{i} \in \phi\left(k\left[F_{1}, \ldots, F_{n}\right]\right)=k\left[\phi\left(F_{1}\right), \ldots, \phi\left(F_{n}\right)\right]
\end{aligned}
$$

Therefore $G_{i} \in T^{i} k\left[\phi\left(F_{1}\right), \ldots, \phi\left(F_{n}\right)\right] \subset k[T]\left[\phi\left(F_{1}\right), \ldots, \phi\left(F_{n}\right)\right]$. It follows that $G=\sum_{i=0}^{c-1} G_{i} \in k[T]\left[\phi\left(F_{1}\right), \ldots, \phi\left(F_{n}\right)\right]$, and this is what we needed.

So this last lemma states that one can choose $c=1$ for computational purposes.

Remark. In [Maubach2] it is proved that the derivation D_{2} (and hence D_{1}) has finitely generated kernel. A stronger result is obtained: triangular k-derivations over $k\left[X_{1}, X_{2}, X_{3}, X_{4}\right]$ which map each X_{i} to a monomial have a kernel which is generated over k by at most four elements.
5. An algorithm to compute minimal sets of generators of kernels of some derivations. This section will describe the algorithm on a special class of derivations.

Convention. By v, w we will denote elements in \mathbb{N}^{q}.
Definition 5.1. Write $w \leq v$ for $v, w \in \mathbb{N}^{q}$ if the i th coordinate of w is smaller than or equal to the i th coordinate of v for all i. We also write $w<v$ when $w \leq v$ and $w \neq v$.

Assume that our ring A has a grading $A=\bigoplus_{v \in \mathbb{N}^{q}} A_{v}$ and D is a derivation homogeneous with respect to this grading.

Definition 5.2. Set

$$
B_{v}:=\bigoplus_{w \leq v} A_{w} \quad \text { and } \quad B_{v}^{-}:=\bigoplus_{w<v} A_{w}
$$

Definition 5.3. We call $\{F\}=\left\{F_{1}, \ldots, F_{s}\right\} \subseteq B_{v}$ a good set for $v \in \mathbb{N}^{q}$ when:
(1) each $F_{i} \in A_{w}$ for some $w \leq v$,
(2) $k[F] \cap B_{v}=\operatorname{ker}(D) \cap B_{v}$,
(3) for every i one has $F_{i} \notin k\left[\widehat{F}_{i}\right]$.

We also call $\{F\} \subseteq B_{v}^{-}$a good set for v^{-}when:
(1) each $F_{i} \in A_{w}$ for some $w<v$,
(2) $k[F] \cap B_{v}^{-}=\operatorname{ker}(D) \cap B_{v}^{-}$,
(3) for every i one has $F_{i} \notin k\left[\widehat{F}_{i}\right]$.

Problem. Construct algebraic generators for $\operatorname{ker}(D)$. More precisely: compute a (preferably minimal) finite set $\{F\}:=\left\{F_{1}, \ldots, F_{n}\right\} \subset A$ such that $\operatorname{ker}(D) \supset k[F]$ and $F_{i} \notin k\left[\widehat{F}_{i}\right]$ for all i.

The algorithm's purpose. We will give an algorithm to find such algebraic generators up to a certain degree. However, we are not able to use the algorithm for just any (locally nilpotent) derivation D on A. In addition we need:

Assumption. A is equipped with a combined grading consisting of $q \geq 1$ D-homogeneous gradings of degree m_{i}. (Hence $A=\bigoplus A_{v}, v \in \mathbb{N}^{q}$.) Furthermore we assume that $\operatorname{dim}_{k}\left(A_{v}\right)<\infty$ for all v, so we are dealing with finite-dimensional k-vector spaces only.

Definition 5.4. We denote by D_{v} for $v \in \mathbb{N}^{q}$ the restriction of D to A_{v}. Then by the assumptions on the grading grad we have $D\left(A_{v}\right) \subseteq A_{v-\bar{m}}$ where $\bar{m}=\left(m_{1}, \ldots, m_{q}\right)\left(m_{i}\right.$ as in the Assumption $)$, and D_{v} can be seen as a linear map from the finite-dimensional vector space A_{v} to the finite-dimensional vector space $A_{v-\bar{m}}$.

Lemma 5.5. $\operatorname{ker}\left(D_{v}\right)=\operatorname{ker}(D) \cap A_{v}$.
Proof. (\supseteq) If $F \in \operatorname{ker}(D) \cap A_{v}$ then $F \in A_{v}$ and hence $D(F)=D_{v}(F)$ $=0$ and $F \in \operatorname{ker}\left(D_{v}\right)$.
(\subseteq) If $F \in \operatorname{ker}\left(D_{v}\right)$ then $F \in A_{v}$ and $D(F)=0$.
Input of the algorithm:

- $\left\{X_{1}, \ldots, X_{p}\right\}$, the generators of the k-algebra A,
- a k-derivation D on A,
- a combined grading $A:=\bigoplus_{v \in \mathbb{N}^{q}} A_{v}$, denoted by grad, which of course depends on D (it must satisfy the assumptions above),
- $b \in \mathbb{N}^{q}$, the degree where to stop calculating.

Output: generators $F_{1}, \ldots, F_{s} \in B_{b}$ such that $\left\{F_{1}, \ldots, F_{s}\right\}$ is a good set for b. More precisely:
(1) each $F_{i} \in A_{v}$ for some $v<b$,
(2) $k\left[F_{1}, \ldots, F_{s}\right] \cap B_{b}=\operatorname{ker}(D) \cap B_{b}$,
(3) $F_{i} \notin k\left[\widehat{F}_{i}\right]$.

The algorithm is based on the following induction step:
Lemma 5.6. Let $v \in \mathbb{N}^{q}$. Suppose we have finite sets $\left\{F_{w}\right\} \subset A_{w}$ for all $w<v$ such that $\bigcup_{w<v}\left\{F_{w}\right\}$ is a good set for v^{-}. Then we can construct a finite set $\left\{F_{v}\right\} \subset A_{v}$ such that $\bigcup_{w \leq v}\left\{F_{w}\right\}$ is a good set for v.

Before we prove this lemma we show that it gives us the needed tool to calculate good sets.

Lemma 5.7. Let $v \in \mathbb{N}^{q}$. Suppose we have finite sets $\left\{F_{w}\right\} \subset A_{w}$ for all $w<v$ such that for all $u<v, \bigcup_{w \leq u}\left\{F_{w}\right\}$ is a good set for u. Then $\bigcup_{w<v}\left\{F_{w}\right\}$ is a good set for v^{-}.

Proof. Write $\{F\}:=\bigcup_{w<v}\left\{F_{w}\right\}$. We need to prove
(1) $k[F] \cap B_{v}^{-}=\operatorname{ker}(D) \cap B_{v}^{-}$,
(2) if $F_{i} \in\{F\}$ then $F_{i} \notin k\left[\widehat{F}_{i}\right]$.
(1) " \subseteq " is trivial. " \supseteq ": Let $G \in \operatorname{ker}(D)$ and suppose $G \in B_{v}^{-}$. Split G into homogeneous parts $G=\sum G_{h}$. Then $0=D(G)=D\left(\sum G_{h}\right)=\sum D\left(G_{h}\right)$, thus $D\left(G_{h}\right)=0$ and hence $G_{h} \in \operatorname{ker}(D)$. So $\operatorname{grad}\left(G_{h}\right)$ is defined and $<v$. Thus $G_{h} \in k[F]$. Hence $G=\sum G_{h} \in k[F]$.
(2) Let $F_{i} \in\{F\}$. Then F_{i} is homogeneous and $\operatorname{grad}\left(F_{i}\right)<v$. Let $u:=$ $\operatorname{grad}\left(F_{i}\right)$. Then $F_{i} \in\{F\} \cap B_{u}=\bigcup_{w \leq u}\left\{F_{w}\right\}$. Write $\widetilde{F}:=\bigcup_{w \leq u}\left\{F_{w}\right\}$. Suppose $F_{i} \in k[\widehat{F}]$. Then since $F_{i} \in B_{u}$ we have $F_{i} \in k[\widehat{F}] \cap B_{u}$. But then $F_{i} \in k[\widehat{\widetilde{F}}]$. But this states by definition that \widetilde{F} is not a good set for u. Contradiction.

By these last two lemmas we can calculate good sets for any vector v if we have a good set for $A_{(0, \ldots, 0)}$.

Lemma 5.8. A good set for $A_{(0, \ldots, 0)}$ is the empty set $\left(A_{(0, \ldots, 0)}=k\right)$.
Proof. Of course $A_{(0, \ldots, 0)} \supseteq k$. Now suppose $A_{(0, \ldots, 0)} \neq k$. Then take $a \in A_{(0, \ldots, 0)}$ for which $a \notin k$. Then $a, a^{2}, a^{3}, \ldots \in A_{(0, \ldots, 0)}$. But then $\left\{1, a, a^{2}, \ldots\right\}$ is a k-independent subset of $A_{(0, \ldots, 0)}$ and thus $A_{(0, \ldots, 0)}$ is not finite-dimensional. But by assumption, A_{v} is finite-dimensional for any v.

Contradiction, so $A_{(0, \ldots, 0)}=k$ and hence $\operatorname{ker}(D) \cap A_{(0, \ldots, 0)}=k$. So the empty set is a good set for $A_{(0, \ldots, 0)}$.

It suffices to prove Lemma 5.6. The following proof is in fact a description of the algorithm.

Proof of Lemma 5.6. Write $\{F\}=\bigcup_{w<v}\left\{F_{w}\right\}$. Note $k[F] \cap A_{v}$ is a finitedimensional k-vector space. It is spanned by all F^{α} for which $F^{\alpha} \in A_{v}$. Let $s:=\# F$ and

$$
I:=\left\{\alpha \in \mathbb{N}^{s} \mid F^{\alpha} \in A_{v}\right\}
$$

Then we know that

$$
\begin{equation*}
k[F] \cap A_{v}=\sum_{\alpha \in I} k \cdot F^{\alpha} \tag{*}
\end{equation*}
$$

We did write " \sum " and not " \bigoplus " since we do not know whether $\bigcup_{\alpha \in I}\left\{F^{\alpha}\right\}$ is an independent set over k. But of course we can take (and calculate!) a subset J of I for which

$$
k[F] \cap A_{v}=\bigoplus_{\alpha \in J} k \cdot F^{\alpha}
$$

Hence $\operatorname{dim}_{k}\left(k[F] \cap A_{v}\right)=\# J$. Now we compute $\operatorname{ker}\left(D_{v}\right)$. (This is easy since it is a linear k-map from a finite-dimensional k-vector space to a finitedimensional k-vector space.) Since $k[F] \cap A_{v} \subseteq \operatorname{ker}(D) \cap A_{v}$ we have (by Lemma 5.5)

$$
k[F] \cap A_{v} \subseteq \operatorname{ker}(D) \cap A_{v}=\operatorname{ker}\left(D_{v}\right)
$$

Hence $\bigoplus_{\alpha \in J} k \cdot F^{\alpha} \subseteq \operatorname{ker}\left(D_{v}\right)$. Thus $\left\{F^{\alpha} \mid \alpha \in J\right\}$ are independent elements in $\operatorname{ker}\left(D_{v}\right)$. Now choose $\left\{F_{v}\right\} \subset \operatorname{ker}\left(D_{v}\right)$ for which $\left\{F^{\alpha} \mid \alpha \in J\right\} \cup\left\{F_{v}\right\}$ forms a k-linear basis of $\operatorname{ker}\left(D_{v}\right)$. So

$$
\operatorname{ker}\left(D_{v}\right)=\left(\bigoplus_{\alpha \in J} k \cdot F^{\alpha}\right) \oplus\left(\bigoplus_{f \in\left\{F_{v}\right\}} k \cdot f\right)
$$

Note that $\#\left\{F_{v}\right\}=\operatorname{dim}_{k}\left(\operatorname{ker}\left(D_{v}\right)\right)-\operatorname{dim}_{k}\left(k[F] \cap A_{v}\right)<\infty$ and that $\left\{F_{v}\right\}$ is a set of polynomials homogeneous of degree v. Then we claim that $\left\{F, F_{v}\right\}$ is a good set for v. For this we need two (in fact three) things to be true:
(1) $\operatorname{ker}(D) \cap B_{v}=k\left[F, F_{v}\right] \cap B_{v}$,
(2)(a) $F_{v, i} \notin k\left[F, \widehat{F}_{v, i}\right]$, and (2)(b) $F_{i} \notin k\left[\widehat{F}_{i}, F_{v}\right]$,
where $\widehat{F}_{v, i}$ is defined as follows: if $\left\{F_{v}\right\}$ is $\left\{G_{1}, \ldots, G_{n}\right\}$ then

$$
\widehat{F}_{v, i}:=\left\{G_{1}, \ldots, G_{i-1}, G_{i+1}, \ldots, G_{n}\right\}
$$

Proof of (1). " \supseteq " is O.K. " \subseteq ": Take $G \in \operatorname{ker}(D) \cap B_{v}$. Decompose G into homogeneous components and let $G:=G_{1}+G_{2}$ where $G_{2} \in B_{v}^{-}$ and $G_{1} \in A_{v}$. Then $0=D(G)=D\left(G_{1}\right)+D\left(G_{2}\right)$ hence $D\left(G_{1}\right)=0$ and
$D\left(G_{2}\right)=0$. By hypothesis $G_{2} \in k[F] \cap B_{v}^{-} \subseteq k\left[F, F_{v}\right] \cap B_{v}$. Furthermore

$$
\begin{aligned}
G_{1} \in \operatorname{ker}(D) \cap A_{v} & =\left(\bigoplus_{\alpha \in J} k \cdot F^{\alpha}\right) \oplus\left(\bigoplus_{f \in\left\{F_{v}\right\}} k \cdot f\right) \\
& =k[F] \cap A_{v} \oplus k\left[F_{v}\right] \cap A_{v}=k\left[F, F_{v}\right] \cap A_{v} \subseteq k\left[F, F_{v}\right] \cap B_{v}
\end{aligned}
$$

thus $G=G_{1}+G_{2} \in k\left[F, F_{v}\right] \cap B_{v}$.
Proof of (2)(a). We know that

$$
k\left[F, F_{v}\right] \cap A_{v}=\left(\bigoplus_{\alpha \in J} k \cdot F^{\alpha}\right) \oplus\left(\bigoplus_{f \in\left\{F_{v}\right\}} k \cdot f\right)
$$

So $F_{v, i}$ is independent of the other terms and hence

$$
\begin{aligned}
F_{v, i} \notin\left(\bigoplus_{\alpha \in J} k \cdot F^{\alpha}\right) \oplus(& \left.\bigoplus_{F_{v, i} \neq f \in\left\{F_{v}\right\}} k \cdot f\right) \\
& =k[F] \cap A_{v} \oplus k\left[\widehat{F}_{v, i}\right] \cap A_{v}=k\left[F, \widehat{F}_{v, i}\right] \cap A_{v}
\end{aligned}
$$

Since $F_{v, i} \notin k\left[F, \widehat{F}_{v, i}\right] \cap A_{v}$ and $F_{v, i} \in A_{v}$ we have $F_{v, i} \notin k\left[F, \widehat{F}_{v, i}\right]$.
Proof of (2)(b). Suppose $F_{i} \in k\left[\widehat{F}_{i}, F_{v}\right]$. Then there is a polynomial $P\left(\widehat{F}_{i}, F_{v}\right)$ which equals F_{i}. Let $w=\operatorname{grad}\left(F_{i}\right)$. Then $w<v$. Comparing degrees in the equation $F_{i}=P\left(\widehat{F}_{i}, F_{v}\right)$ shows that P is in fact a polynomial in the $\left\{\widehat{F}_{i}\right\}$ since the $\left\{F_{v}\right\}$ have too high degrees. But by hypothesis $F_{i} \notin$ $k\left[\widehat{F}_{i}\right]$. Contradiction, hence $F_{i} \notin k\left[\widehat{F}_{i}, F_{v}\right]$.

So now (1), (2)(a), (2)(b) all hold. These are the exact requirements for $\left\{F, F_{v}\right\}$ to be a good set for v, which was what we needed to prove.

REmARK 5.9. If one wants to check if one has all generators of the kernel there is an easy method to do that using the algorithm in [Essen]. (Put all generators found in the algebra R_{0} and check if $R_{0}=R_{1}$, where R_{0} and R_{1} are as in [Essen]). More about this in the second part of Section 7.
6. Applying the algorithm to non-homogeneous derivations. In this section we describe how the algorithm can be easily used for any derivation by making it homogeneous. Let $D=\sum_{i=1}^{p} a_{i} \partial_{i}$ be a derivation on A. Introduce a new variable Z and extend D to the Laurent polynomial ring $A\left[Z, Z^{-1}\right]$ by defining $D(Z)=0$. Let $\varphi: A \rightarrow A\left[Z, Z^{-1}\right]$ be the homogenization map sending $f\left(X_{1}, \ldots, X_{p}\right) \in A$ to $f\left(X_{1} / Z, \ldots, X_{p} / Z\right)$. By π we denote the substitution homomorphism $A\left[Z, Z^{-1}\right] \rightarrow A$ sending Z to 1 . On A we consider the "usual" grading deg defined by $\operatorname{deg}\left(X^{\alpha}\right)=\alpha_{1}+\ldots+\alpha_{p}$. For $0 \neq g \in A$ we put $g^{*}:=Z^{\operatorname{deg}(g)} \varphi(g) \in A[Z]$. Obviously $\pi\left(g^{*}\right)=g$. Furthermore one easily verifies that

$$
\begin{equation*}
\partial_{i}(\varphi(g))=\frac{1}{Z} \varphi\left(\partial_{i} g\right) \quad \text { for all } g \in A \tag{*}
\end{equation*}
$$

On $A[Z]$ we define the homogenization \widetilde{D} of D by $\widetilde{D}:=\sum_{i=1}^{p} Z^{d} \varphi\left(a_{i}\right) \partial_{i}$ where $d=\max \left(\operatorname{deg}\left(a_{1}\right), \ldots, \operatorname{deg}\left(a_{p}\right)\right)$.

Lemma 6.1. $\pi(\operatorname{ker}(\widetilde{D}))=\operatorname{ker}(D)$.
Proof. (\supseteq) Let $g \in \operatorname{ker}(D)$. Then $\sum a_{i} \partial_{i}(g)=0$, so by ($*$) we have $\sum \varphi\left(a_{i}\right) Z \partial_{i}(\varphi(g))=0$, i.e. $\widetilde{D}(\varphi(g))=0$. So $\widetilde{D}\left(g^{*}\right)=0$. Since $g=\pi\left(g^{*}\right)$ we get $g \in \pi(\operatorname{ker}(\widetilde{D}))$. So $\pi(\operatorname{ker}(\widetilde{D})) \supseteq \operatorname{ker}(D)$.
(\subseteq) Let $h \in \operatorname{ker}(\widetilde{D})$. Then $Z^{d} \sum \varphi\left(a_{i}\right) \partial_{i}(h)=0$. Applying π gives $\sum a_{i} \partial_{i}(\pi(h))=0$, i.e. $\pi(h) \in \operatorname{ker}(D)$. So $\pi(\operatorname{ker}(\widetilde{D})) \subseteq \operatorname{ker}(D)$.

Now one can easily verify that \widetilde{D} matches the requirements of the algorithm, if we use the "usual" grading grad $:=\operatorname{deg}$ on $A[Z]$ as the needed "combined grading". Hence we can find generators for $\operatorname{ker}(D)$ by calculating generators for $\operatorname{ker}(\widetilde{D})$.

Remark. Perhaps a flaw in this extension is that the algorithm cannot compute a minimal set of generators. Perhaps under some extreme conditions $\operatorname{ker}(\widetilde{D})$ might not be finitely generated while $\operatorname{ker}(D)$ is.
7. Example of the algorithm and efficiency. Let us consider the derivation on $A n:=k\left[X_{1}, \ldots, X_{n}\right]$ given by

$$
D_{n}:=X_{n-1} \partial_{X_{n}}+X_{n-2} \partial_{X_{n-1}}+\ldots+X_{1} \partial_{X_{2}}
$$

We can easily construct a D_{n}-invariant and a D_{n}-decreasing grading on $A n$ and combine them in a grading grad defined by

$$
\operatorname{grad}\left(X^{\alpha}\right)=(\langle p, \alpha\rangle,\langle q, \alpha\rangle)
$$

where $p=(1, \ldots, 1)$ and $q=(0,1, \ldots, n-2, n-1)$. We are going to consider this derivation for $n=5$ and write $A:=A 5$ for notational reasons. Also we denote by A_{v} the collection of all polynomials F with $\operatorname{grad}(F)=v$, and $\left\{F_{v}\right\}$ means the set of generators of degree v. Also $\left\{F_{v}^{-}\right\}$is the set of generators of degree smaller than v. It is easy to check that $A_{(n, m)}$ is finite-dimensional over k for all n, m, hence the algorithm will work on this derivation with this grading. Suppose we already know that $\left\{F_{(1,0)}\right\}=\left\{X_{1}\right\}$ and that $\left\{F_{(0,0)}\right\}=$ $\left\{F_{(2,0)}\right\}=\left\{F_{(0,1)}\right\}=\left\{F_{(1,1)}\right\}=\left\{F_{(2,1)}\right\}=\left\{F_{(0,2)}\right\}=\left\{F_{(1,2)}\right\}=\{ \}$. (This is easily deduced.)

Now we want to find a good set for the vector $(2,2)$ using the technique described in the proof of Lemma 5.6. It is easy to see that $A_{(2,2)}=$ $k X_{3} X_{1}+k X_{2}^{2}, A_{(2,1)}=k X_{3}$. Furthermore $D_{v}\left(A_{(2,2)}\right) \subseteq A_{(2,1)}$ so the linear map $D_{v}: A_{(2,2)} \rightarrow A_{(2,1)}$ needs to be considered. The kernel of this map is, as one easily sees, a linear space L generated by $X_{3} X_{1}-\frac{1}{2} X_{2}^{2}$. The generating set for $(2,2)^{-}$is $\left\{F_{(2,2)}^{-}\right\}=\{t\}$. So we need to check if there are elements of L in $k\left[F_{(2,2)}^{-}\right]$, hence we need to check if there are elements
of L in $k\left[F_{(2,2)}^{-}\right] \cap A_{(2,2)}=\{0\}$. Hence we get $\operatorname{dim}(L)-\operatorname{dim}(\{0\})=1$ new generator(s). So $\left\{F_{(2,2)}\right\}=\left\{X_{3} X_{1}-\frac{1}{2} X_{2}^{2}\right\}$.

Now about efficiency. All calculations were done on a sun Enterprise 4000 (Ultrasparc 170 MHz) using the magma computer algebra system. The algorithm calculates within 22 seconds the generators up to $\operatorname{grad}(10,10)$. These are all generators, as can be checked by the method of Remark 5.9 within 2 seconds $\left({ }^{1}\right)$. If one uses the algorithm in [Essen] then one has to wait 3902 seconds (65 minutes) for the answer.
8. Minimality of the generators. Assume that we have $\left\{F_{1}, \ldots, F_{p}\right\}$ given by the algorithm in Section 5 as generators of $\operatorname{ker}(D)$. (So we have used the algorithm and concluded in some way that they generate the complete kernel, for example by Remark 5.9.)

Theorem 8.1. The algorithm given in Section 5 gives minimal generators in the sense that if $k\left[F_{1}, \ldots, F_{p}\right]=k\left[G_{1}, \ldots, G_{q}\right]$ for some G_{i} then we must have $q \geq p$.

Proof. We may assume that $G_{1}(0)=\ldots=G_{q}(0)=0$ by replacing $G_{i}(X)$ by $G_{i}(X)-G_{i}(0)$ if necessary. Let $\mathfrak{m}:=\left(F_{1}, \ldots, F_{p}\right)$. Then $k\left[F_{1}, \ldots, F_{p}\right] / \mathfrak{m}$ is isomorphic to the field k, and the F_{i} are homogeneous; hence \mathfrak{m} is a homogeneous maximal ideal. Since $G_{i} \in k\left[F_{1}, \ldots, F_{p}\right]$ we have $G_{i}=P\left(F_{1}, \ldots, F_{p}\right)+c$ for some $c \in k$ and some polynomial $P(T) \in$ $k\left[T_{1}, \ldots, T_{p}\right]$ having no constant term. But since $F_{j}(0)=0$ for all j and $G_{i}(0)=0$ we have $c=0$. Hence $G_{i} \in \mathfrak{m}$, so $\mathfrak{m} \supset\left(G_{1}, \ldots, G_{q}\right)$. In the same way we can also prove $\left(G_{1}, \ldots, G_{q}\right) \supset \mathfrak{m}$, hence $\mathfrak{m}=\left(G_{1}, \ldots, G_{q}\right)$.

Now consider $\mathfrak{m} / \mathfrak{m}^{2}$. This is a k-vector space. It is generated by the $\bar{F}_{i}:=F_{i} \bmod \mathfrak{m} ;$ namely if $g \in \mathfrak{m}$, then

$$
g=P\left(F_{1}, \ldots, F_{d}\right)=\lambda_{1} F_{1}+\ldots+\lambda_{d} F_{d}+\sum_{|\beta| \geq 2} \lambda_{\beta} F^{\beta}, \quad \lambda_{i}, \lambda_{\beta} \in k .
$$

Since each F^{β} with $|\beta| \geq 2$ belongs to \mathfrak{m}^{2} we get $\bar{g}=\sum \lambda_{i} \bar{F}_{i}$. Now we claim that these generators \bar{F}_{i} also form a basis; suppose

$$
\bar{F}_{i}=\lambda_{1} \bar{F}_{1}+\ldots+\lambda_{i-1} \bar{F}_{i-1}+\lambda_{i+1} \bar{F}_{i+1}+\ldots+\lambda_{p} \bar{F}_{p} .
$$

Then

$$
F_{i}=\lambda_{1} F_{1}+\ldots+\lambda_{i-1} F_{i-1}+\lambda_{i+1} F_{i+1}+\ldots+\lambda_{p} F_{p}+\sum \lambda_{\beta} F^{\beta} .
$$

Let us take the homogeneous part of $\operatorname{grad}\left(F_{i}\right)$ in this equation. Since all F_{j} are homogeneous of non-zero degree themselves we get an expression of F_{i} in terms of the other F_{j} 's which satisfy $\operatorname{grad}\left(F_{j}\right) \leq \operatorname{grad}\left(F_{i}\right)$. But this

[^1]contradicts the assumption that the F_{i} 's are found by the algorithm, which means that they should have the properties of a "good set". Hence the \bar{F}_{i} form a basis for $\mathfrak{m} / \mathfrak{m}^{2}$; thus $\operatorname{dim}\left(\mathfrak{m} / \mathfrak{m}^{2}\right)=p$.

Now since $\left(G_{1}, \ldots, G_{q}\right)=\mathfrak{m}$ the \bar{G}_{i} generate the vector space $\mathfrak{m} / \mathfrak{m}^{2}$. Since $\operatorname{dim}\left(\mathfrak{m} / \mathfrak{m}^{2}\right)=p$ we need at least p generators. Hence q should be larger than or equal to p.

Acknowledgements. The author has been assisted in writing the paper by several people. He would like to thank Peter van Rossum for programming the algorithm and for some very stimulating discussions, and Arno van den Essen for pointing out the general case which has become Section 6, and of course for doing a lot of corrective work. Thank you very much!

References

[Daigle \& Freudenburg] D. Daigle and G. Freudenburg, A counterexample to Hilbert's fourteenth problem in dimension five, J. Algebra 221 (1999), 528-535.
[Derksen] H. Derksen, More on the hypersurface $x+x^{2} y+z^{2}+t^{3}=0$ in \mathbb{C}^{4}, preprint, 1995.
[Deveney \& Finston] J. Deveney and D. Finston, G_{a}-actions on \mathbb{C}^{3} and \mathbb{C}^{7}, Comm. Algebra 22 (1994), 6295-6302.
[Essen] A. van den Essen, An algorithm to compute the invariant ring of a G_{a}-action on an affine variety, J. Symbolic Comput. 16 (1993), 551-555.
[Freudenburg] G. Freudenburg, A counterexample to Hilbert's Fourteenth Problem in dimension six, Transform. Groups 5 (2000), 61-71.
[Makar-Limanov] L. Makar-Limanov, On the hypersurface $x+x^{2} y+z^{2}+t^{3}=0$ in \mathbb{C}^{4}, Israel J. Math., to appear.
[Maubach1] S. Maubach, Triangular monomial derivations on $k\left[X_{1}, X_{2}, X_{3}, X_{4}\right]$ have kernel generated by at most four elements, Report No. 9822 (Oct. 1998), Dept. of Math., Univ. of Nijmegen.
[Maubach2] S. Maubach, Hilbert 14 and related subjects, master thesis, Dept. of Math., Univ. of Nijmegen, 1998.
[Nowicki] A. Nowicki, Polynomial Derivations and their Rings of Constants, Uniw. Mikołaja Kopernika, Toruń, 1994, ISBN 83-231-0543-X.
[Tan] L. Tan, An algorithm for explicit generators of the invariants of the basic G_{a}-actions, Comm. Algebra 17 (1989), 565-572.

Department of Mathematics
University of Nijmegen
Toernooiveld 1
6525 ED Nijmegen, The Netherlands
E-mail: stefanm@sci.kun.nl

[^0]: 2000 Mathematics Subject Classification: 13A50, 13E15.
 Key words and phrases: polynomial ring, kernel of derivation, grading.

[^1]: $\left({ }^{1}\right)$ This is not always extremely fast, but a lot faster than when applying the Essen algorithm.

