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Extension of separately holomorphic
functions—a survey 1899–2001

by Peter Pflug (Oldenburg)

Dedicated to Professor Józef Siciak in honour of his 70th birthday

Abstract. This note is an attempt to describe a part of the historical development
of the research on separately holomorphic functions.

1. Introduction. First, let us fix some notations we will need in this
survey article. Let N ∈ N, and let Aj ⊂ Dj ⊂ Ckj , Dj a domain, j =
1, . . . , N . The set

X := X(A1, . . . , AN ;D1, . . . ,DN ) :=
N⋃

j=1

A1×. . .×Aj−1×Dj×Aj+1×. . .×AN

is called the N -fold cross associated to the N pairs (Aj ,Dj).
Observe that different pairs may lead to the same cross set; e.g. if N − 1

of the Aj ’s coincide with the corresponding Dj’s, then X = D1 × . . .×DN .
Moreover, let M ⊂ X (M = ∅ is allowed). For (a1, . . . , aN ) ∈ A1 × . . .

×AN and 1 ≤ j ≤ N , we define the fiber of M over (a1, . . . , âj , . . . , aN ) (1) as

M(a1,...,âj ,...,aN ) := {zj ∈ Dj: (a1, . . . , zj , . . . , aN ) ∈M}.
We will always assume that all the fibers M(a1,...,âj ,...,aN ) are closed in Dj.
Our aim is to study separately holomorphic functions. Recall that a

function
f : X(A1 × . . .× AN ;D1 × . . .×DN ) \M → C
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is called separately holomorphic on X \M if

∀(a1,...,aN )∈A1×...×AN ∀1≤j≤N :

f(a1, . . . , aj−1, ·, aj+1, . . . , aN ) ∈ O(Dj \M(a1,...,âj ,...,aN )).

We will write f ∈ Os(X \M).

Problem. Let N , Aj , Dj, and M be as above. We are interested in
the following question: Under what conditions on these sets there exist a
(pseudoconvex) domain X̂ ⊂ Ck1+...+kN , X ⊂ X̂, and a relatively closed
(in X̂) set M̂ ⊂ X̂, M̂ ∩X ⊂M , such that

∀f∈Os(X\M) ∃f̂∈O(X̂\M̂): f̂ |X\M = f, f̂ uniquely determined.

After having fixed the main notions, I wish to invite the reader for a
trip over the last 100 years in order to show how the problem of separate
holomorphicity has been developed from its very beginning at the end of
the 19th century up to the present.

2. First period 1899–1967 characterized by N = 2 and A1 = D1,
i.e. X(A1, A2;D1,D2) = D1×D2. At the end of the 19th century due to the
Cauchy integral representation the following equivalence was well known:

Theorem 1. Let D ⊂ Cn be a domain and let f : D → C. Then the
following properties are equivalent :

(1) f is complex differentiable at any point of D;
(2) f is locally given by a convergent power series;
(3) f ∈ C(D) ∩ Os(D).

Here Os(D) is understood in the usual sense, i.e. for any a ∈ D and
j ∈ {1, . . . , n} the function f(a1, . . . , aj−1, ·, aj+1, . . . , an) is holomorphic
near aj .

For the situation in (1) or (2) we write, as usual, f ∈ O(D).
The first result dealing with separately holomorphic functions was the

following one (cf. [Osg 1899]).

Theorem 2 (Osgood (1899)). Let D ⊂ Cn be a domain. If f ∈ Os(D)
is locally bounded , then f ∈ O(D).

Sketch of proof. Using the Schwarz Lemma coordinatewise it follows that
f is continuous. Hence Theorem 1 implies that f is holomorphic.

Moreover, based on Baire’s theorem Osgood showed the following result
(cf. [Osg 1900]).

Theorem 3 (Osgood (1900)). Let f ∈ Os(X(D1,D2;D1,D2)), where
Dj ⊂ C are arbitrary domains. Then
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∀(a1,a2)∈D1×D2, r>0,D′1bD1,D′2bD2 ∃Uj⊂B(aj ,r)∩Dj , j=1,2:

the Uj are open and f is bounded on U1 ×D′2 ∪D′1 × U2,

and therefore, f ∈ O(U1 ×D′2 ∪D′1 × U2).

Corollary 4. If f is as above, then there exists an open and dense
subset Ω of D1 ×D2 such that f |Ω ∈ O(Ω).

In the same paper the following Casorati–Weierstrass type result can be
found.

Theorem 5 (Osgood (1900)). Let the set Ω in Corollary 4 be chosen
maximal and assume that Ω 6= D1×D2. Then for every a ∈ ∂Ω∩ (D1×D2)
we have

∀α∈C, ε>0, δ>0 ∃z∈D1×D2 : |z − a| < δ, |f(z)− α| < ε.

Remark. In his second note Osgood already mentioned that in order to
get Ω = D1 ×D2 it suffices to prove the following statement:

(∗) if f ∈ O(∆0(1)×∆0(1)) (2) and if for some R > 1 the function f(a1, ·)
belongs to O(∆0(0, R)) for all a1 ∈ ∆0(1), then f ∈ O(∆0(1)×∆0(R)).

Indeed, the next step was based on exactly the above remark by Osgood;
it is done in the work of Hartogs (cf. [Har 1906]).

Theorem 6 (Hartogs (1906)). (a) (∗) is true, and therefore,

Os(X(D1,D2;D1,D2)) = O(D1 ×D2)

whenever Dj ⊂ C is a domain, j = 1, 2.
(b) Let D ⊂ Cn be a domain. Then O(D) = Os(D).

Moreover , if Dj ⊂ Ckj is a domain, j = 1, 2, and if A1 = D1 and A2 is
an open subset of D2, then

Os(X(A1, A2;D1,D2)) = O(D1 ×D2).

Sketch of proof. The main ingredients in the proof of the first part of (a)
are nowadays called Hartogs’ series and Hartogs’ Lemma:

Let (uj)j ⊂ PSH(D), D a domain in Cn, be a sequence of plurisubhar-
monic functions, locally bounded from above. Assume that lim supj→∞ uj
≤ C. Then

∀ε>0,KbD ∃j0 ∀j≥j0, z∈K : uj(z) ≤ C + ε.

To get the second part of (a) use locally Theorem 3 in order to fall in
the situation described by (∗). Finally, the full statement in (b) is shown by
induction.

(2) For a ∈ Cn and r > 0 we put ∆a(r) := {z ∈ Cn: |zj−aj | < r, j = 1, . . . , n}; ∆a(r)
is the polycylinder with center a and radius r.
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Remark. To be historically correct, I should mention that already in
1911 Bernstein discussed the following general 2-fold cross situation (cf.
[Ber 1912]):

D1 = D2 = ellipse with foci 1,−1, A1 = A2 = [−1, 1], and

f ∈ Os(X(A1, A2;D1,D2)) bounded.

It seems that this result had not been recognized for a long time until a
paper by Akhiezer and Ronkin (cf. [Akh-Ron 1973], see also [Ron 1977]).

Summary. So far we have discussed the situation A1 = D1 and A2 ⊂ D2
open.

The next step in the development started in 1930 with a paper by
Hukuhara (in Japanese) (cf. [Huk 1930]).

Theorem 7 (Hukuhara (1930)). Let Dj ⊂ C be a domain, j = 1, 2, and
let A1 = D1; assume that A2 ⊂ D2 has at least one accumulation point in
D2. If f ∈ Os(X(A1, A2;D1,D2)) is locally bounded , then f ∈ O(D1 ×D2).

Sketch of proof. Exploiting the theorem of Montel–Vitali leads to the fact
that f ∈ C(D1 ×D2). Then the Cauchy integral gives another holomorphic
function that coincides with f(a1, ·) on a dense set. Hence f ∈ Os(D1×D2).
Applying Theorem 1 finishes the proof.

According to Terada (cf. [Ter 1967]), Hukuhara asked the following ques-
tion:

Problem of Hukuhara. Let N = 2, Dj ⊂ Ckj , A1 = D1, and A2 ⊂
D2 arbitrary. What conditions on A2 guarantee that

Os(X(A1, A2;D1,D2)) = O(D1 ×D2) ?

It took another 30 years before Shimoda came back to that problem (cf.
[Shi 1957]). He proved a result analogous to the one of Osgood.

Theorem 8 (Shimoda (1957)). Assume that Dj , Aj are as in the theorem
of Hukuhara. Let f ∈ Os(X(A1, A2;D1,D2)). Then

∀a1∈D1, r>0 ∀D′2bD2 containing accumulation points of A2

∃U1⊂∆a1(r)∩D1 : U1 is open and f is bounded on U1 ×D′2,
and therefore (using Hukuhara), f ∈ O(U1 ×D′2).

Sketch of proof. Use the theorems of Baire and Montel–Vitali.

Corollary 9. Let A1, A2, D1, D2, and f be as in Theorem 8. Then
there is an open and dense subset Ω ⊂ D1 ×D2 such that f |Ω ∈ O(Ω).

The next important step was done by Terada (cf. [Ter 1967] and [Ter
1972]), who was finally able to answer the question raised by Hukuhara.
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Theorem 10 (Terada (1967, 1972)). (a) Let N = 2, Dj ⊂ Ckj be do-
mains, A1 = D1, and let A2 ⊂ D2 be non-pluripolar (3). Then

Os(X(A1, A2;D1,D2)) = O(D1 ×D2).

(b) Let A1 = D1 = ∆0(1) ⊂ C. Let D2 ⊂ Ck2 be a domain of holomorphy
and A2 ⊂ D2 be pluripolar with A2 =

⋃∞
j=1A2,j , A2,j compact. Then

∃f ∈ Os(X(D1, A2;D1,D2)) \ O(D1 ×D2).

The proof of Theorem 10 is based on Baire’s theorem, Hukuhara’s idea,
the fact that negligible sets are of zero measure, and the Hartogs theorem.

Remark. (b) shows that the condition in (a) for the set A2 to be non-
pluripolar is almost optimal.

Summary. So far we have discussed the situation A1 = D1 and A2 ⊂ D2
arbitrary.

To conclude the discussion of the first period and to have some link to
Kraków I wish to mention a new proof of the Hartogs theorem given by Leja
based on his so-called polynomial lemma.

Theorem 11 (Leja (1933, 1950)). (a) [Lej 1933] Let K ⊂ C be a con-
tinuum and let (pj)j be a sequence of polynomials pj , deg pj ≤ j, that is
pointwise bounded on K. Then

∀ε>0, a∈K ∃M>0, δ>0 ∀j∈N, z: |z−a|<δ: δ|pj(z)| ≤M(1 + ε)j .

(b) [Lej 1950] Let (fj)j ⊂ O(D), D ⊂ C a domain. Put

R0: = sup
{
R ≥ 0:

∞∑

j=1

fj(z)Rj convergent for all z ∈ D
}
,

R∗: = sup
{
R ≥ 0:

∞∑

j=1

fj(·)Rj locally uniformly convergent on D
}
.

If R0 > 0, then either R0 = R∗ or R∗ = 0.

3. Second period 1969–1997 characterized by Aj ⊂ Dj arbi-
trary. This period started with the interest in finding some analogue to
the Hartogs theorem for real-analytic functions.

Observe that there exists u ∈ C∞(R2), separately real-analytic but not
real-analytic as a function of two real variables; e.g.

u: R2 → R, u(x) = u(x1, x2) :=
{
x1x2 exp(−1/(x2

1 + x2
2)) if x 6= 0,

0 elsewhere.
There are the following qualitative results (cf. [Bro 1961] and [Lel 1961]).

(3) Recall that a set M ⊂ Cn is called pluripolar if there is a function u ∈ PSH(Cn),
u 6≡ −∞, with M ⊂ u−1(−∞).
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Theorem 12 (Browder, Lelong (1961)). If f is separately real-analytic
and if certain uniform estimates for derivatives hold , then f is real-analytic.

In 1969, in a series of papers, J. Siciak started to generalize the real-
analytic result; even more, he discussed separately holomorphic functions in
the sense of the introduction (cf. [Sic 1969a] and [Sic 1969b]).

In order to formulate his results we shall need some more notions.
Let A ⊂ C be a compact subset. ∂A is said to fulfill the local Leja

condition if for any a ∈ ∂A and any r > 0 the following property is true:
if a sequence (pj)j of polynomials with deg pj ≤ j is pointwise bounded on
∂A ∩∆a(r), then

∀ε>0 ∃M>0, δ>0: |pj(z)| ≤M exp(εdeg pj), j ∈ N, |z − a| < δ.

Moreover, let A ⊂ D ⊂ Cn, where D is a domain. Define h∗A,D as the
upper continuous regularization of hA,D := sup{u ∈ PSH(D) : u ≤ 1,
u|A ≤ 0}. Then h∗A,D is the so called relative extremal function of the pair
(A,D).

For a compact set A ⊂ C denote by Â its polynomially convex envelope.
Observe that if ∂Â satisfies the Leja condition then h∗A,D|A = 0.

Now Siciak’s result is the following:

Theorem 13 (Siciak (1969)). Let D1, . . . ,DN be domains in C, and let
Aj ⊂ Dj be a compact subset such that ∂Âj fulfils the local Leja condition
for j = 1, . . . , N . Put X := X(A1, . . . , AN ;D1, . . . ,DN). Then

∀f∈Os(X) ∃!f̂∈O(X̂): f̂ |X = f,

where

X̂ :=
{

(z1, . . . , zN) ∈ D1 × . . .×DN :
N∑

j=1

h∗Aj ,Dj (zj) < 1
}
.

Observe that X̂ is pseudoconvex and X ⊂ X̂. In particular, there is the
following generalization of the results of Browder and Lelong.

Corollary 14. Let D ⊂ Rn open. Then

Cω(D,C) = {f : D → C: ∀x0∈D ∃r>0: ∆x0(r) ⊂ D and ∀x∈∆x0(r)∀j∈{1,...,N}:
f(x1, . . . , xj−1, ·, xj+1, . . . , xN ) extends holomorphically to ∆x0

j
(r) ⊂ C}.

Remark. (1) Although in [Sic 1969a], Siciak studied a more restrictive
geometric configuration, his result contains the situation studied by Bern-
stein under the additional assumption that f is bounded. The main point
in the proof is approximation by Chebyshev polynomials.
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In [Sic 1969b], the main tool was an approximation lemma using inter-
polation of separately holomorphic functions with nodes which are suitably
chosen extremal points of Fekete–Leja type. To be more precise:

Let D1 ⊂ C be a k-connected domain with a nice boundary Γ0 ∪ . . . ∪
Γk−1. Fix points a1, . . . , ak−1, aj in the interior of Γj , let D2 ⊂ Cn, and let
Aj ⊂ Dj be nice compact sets. Moreover, let f ∈ Os(X(A1, A2;D1,D2)) be
bounded. Put p(z) := (z − a1) . . . (z − ak−1). Then there exist systems of
extremal points for A1∪∂D1 with a certain weight bλ. Choose such systems
η(kν) and denote by η(kν)

0 , . . . , η
(kν)
lν

those points on A1. Consider the Siciak
interpolation

fν(z, w) :=
lν∑

j=0

f(η(kν)
j , w)L(j)(z, η(kν))(p(η(kν)

j )/p(z))ν ,

where

L(j)(z, η(kν)) :=
kν∏

s=0, s6=j
(z − η(kν)

s )/(η(kν)
j − η(kν)

s )

is the Lagrange polynomial. Put Q1 := f1 and Qν := fν − fν−1. Then
Qν ∈ O(D1 ×D2) with

∑
Qν(z, w) = f(z, w) on D1 × A2.

The main work consists in proving that this series is uniformly convergent
on X̂, which gives the stated holomorphic extension.

(2) Observe that in [Akh-Ron 1973], Akhiezer and Ronkin proved the
case of an ellipse-cross with the help of the Bernstein result using some
potential theory argument (see also [Ron 1977]).

(3) Siciak used his cross theorem to give a proof of an edge of the wedge
type theorem (cf. [Sic 1981]).

(4) Later, Shiffman [Shi 1989] gave an improvement of Terada’s theorem
using methods based on [Sic 1969b].

In 1990 J. Saint Raymond initiated the study of the singularity set of sep-
arately real-analytic functions in two variables (cf. [Ray 1990]). He showed
that a function of two real variables which is separately real-analytic is
jointly analytic at every point off a closed set whose projections onto both
axes are polar. In addition, for any such closed set F he produced a sepa-
rately analytic function whose domain of analyticity is the complement of F .
Later, using the above cross theorem Siciak and Błocki were able to complete
the discussion of the singularity set of separately real-analytic functions (cf.
[Sic 1990] and [Blo 1992]).

Let me recall some definitions.

Definition. (a) Let Ω ⊂ Rn1 × . . . × Rns be open, 1 ≤ p < s, and
f : Ω → C. We say that f is p-separately real-analytic in Ω if for any x0 =
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(x0
1, . . . , x

0
s) in Ω and for any p-tuple 1 ≤ j1 < . . . < jp ≤ s the function

(xj1 , . . . , xjp) 7→ f(x0
1, . . . , x

0
j1−1, xj1 , x

0
j1+1, . . . , x

0
jp−1, xjp , x

0
jp+1, . . . , x

0
s)

is real-analytic in a neighborhood of (x0
j1
, . . . , x0

jp
).

(b) The set

S(f) := Ω \ {x ∈ Ω: f real-analytic in a neighborhood of x}
is called the singular part of f .

Theorem 15 (Siciak (1990), Błocki (1992)). (a) If f is p-separately
real-analytic, then for any 1 ≤ j1 < . . . < jq ≤ s (q := s− p) the projection
of S(f) onto Rnj1 × . . .× Rnjq is a pluripolar set in Cnj1 × . . .× Cnjq .

(b) If S ⊂ Ω is closed with the above property , then there is f : Ω → C,
p-separately real-analytic, such that S = S(f).

The next deep steps in developing the theory of separately holomorphic
functions were initiated in 1976 by Zahariuta (cf. [Zah 1976]) when he started
to use common bases of Hilbert spaces instead of applying the more ad hoc
techniques of Siciak which, of course, heavily depend on the geometry of the
given 2-fold cross.

Let us repeat the main idea: under certain assumptions which may be
realized via approximation one has an orthogonal basis (bk)k∈N ⊂ H0 :=
L2

h(D1) := L2(D1) ∩ O(D1) with ‖bk‖H0 →∞ such that

(b|A1)k ⊂ L2
h(D1)|A1

L2(A1,µA1,D1)
=: H1

is an orthonormal basis of H1, where µA1,D1 is a certain measure defined
via the Monge–Ampère operator. Therefore, if f ∈ Os(X(A1, A2;D1,D2))
then one may assume that f(·, z2) ∈ L2

h(D1) for all z2 ∈ A2, and therefore,
f(·, z2) =

∑∞
k=1 ck(z2)bk. It can be shown that the functions ck are holomor-

phic on D2. Hence it remains to discuss the domain of convergence of this
series of functions holomorphic on D1 ×D2.

Zahariuta’s method was also used and modified in papers by Nguyen
Thanh Van and Zeriahi (cf. [Ngu-Zer 1991], [Ngu-Zer 1997], [Ngu-Zer 1995]).
The most general result to date is contained in a recent paper due to Ale-
hyane and Zeriahi [Ale-Zer 2001].

Before stating this theorem let me recall a few definitions: A set A ⊂ D,
D a domain in Cn, is called locally pluriregular if for any a ∈ A and any
neighborhood U = U(a) we have h∗A∩U,U (a) = 0. Observe that such a set is
“thick” in the pluripotential sense; in particular, it is not pluripolar.

Moreover, if Dj ↗ D, then ωA,D := limh∗A∩Dj ,Dj . Note that the defini-
tion of ωA,D is independent of the exhaustion sequence, and if D is bounded,
then ωA,D = h∗A,D.
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Now we are able to formulate what we will quote in the future as the
classical cross theorem.

Theorem 16 (Alehyane & Zeriahi (2001)). Let Dj ⊂ Ckj be a pseudo-
convex domain and Aj ⊂ Dj a locally pluriregular subset , 1 ≤ j ≤ N . Put
X := X(A1, . . . , AN ;D1, . . . ,DN ). Then for any f ∈ Os(X) there is exactly
one f̂ ∈ O(X̂) with f̂ |X = f , where

X̂ := {(z1, . . . , zN ): ωA1,D1(z1) + . . .+ ωAN ,DN (zN) < 1}.

(Observe that also here X̂ is a pseudoconvex domain containing X.)

Remark. It should be mentioned that there are much more papers in
this field dealing with separately holomorphic or separately meromorphic
functions or with separately holomorphic mappings. The author apologizes
for not having been able to cite all of them.

Summary. So far we have discussed the situation of an arbitrary N -fold
cross X and separately holomorphic functions given on the whole of X.

3. Third period 1998–2001 characterized by cross theorems
with analytic singularities. This period started with a paper by Öktem
investigating the range problem in mathematical tomography (cf. [Ökt 1998]
and [Ökt 1999]) Let me describe that problem:

The exponential Radon transform is given by the mapping (µ 6= 0)

C∞c (R2,R) 3 h 7→ Rµ(h): S1 × R→ R,

Rµ(h)(ω, p) :=
�

x·ω=p

h(x) exp(µx · ω⊥) dΛ1(x),

where S1 denotes the unit circle in R2, ω⊥ := (− sinα, cosα) ∈ S1 the vector
orthogonal to ω = (cosα, sinα), Λ1 the one-dimensional Lebesgue measure,
and where “·” means the scalar product in R2.

The main problem is to recover h from Rµ(h) which is measured. So it
is important to know the shape of the range of Rµ.

Theorem 17 (Öktem (1998)). Let g: S1 × R→ C and µ 6= 0. Then the
following statements are equivalent :

(a) there is an h ∈ C∞c (R2,C) with g = Rµ(h);
(b) g ∈ C∞c (S1 × R,C) and ĝ(ω, it) = ĝ(σ,−it) whenever tω + µω⊥ =

−tσ + µσ⊥.

To prove Theorem 17, Öktem used the following theorem, whose proof
is based on the classical cross theorem.
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Theorem 18 (Öktem (1998–1999)). Let D1 = D2 = C, A1 = A2 = R,
and M := {z ∈ C2: z1 = z2}. Put X := X(A1, A2;D1,D2). Then

∀f∈Os(X\M) ∃!f̂∈O(C2\M): f̂ |X\M = f.

Observe that Theorem 18 is the first result dealing with a cross theorem
with singularities.

This result was generalized by Siciak [Sic 2000].

Theorem 19 (Siciak (2000)). Let D1 = . . . = DN = C, Aj ⊂ Dj with
CapAj > 0 (4), and let M := {z ∈ CN : P (z) = 0}, P a polynomial. Define
X as above. Then

∀f∈Os(X\M) ∃!f̂∈O(CN\M): f̂ |X\M = f.

Observe that the following general principle of analytic continuation
across thin subsets (cf. [Gr-Re 1956/57]) was used in the proof of Theo-
rem 19.

Theorem (Grauert & Remmert (1956/57)). Let G ⊂ Cn be a domain
and Ĝ its envelope of holomorphy. Moreover , let A ⊂ Ĝ be a pure 1-
codimensional analytic subset of Ĝ. Then the envelope of holomorphy Ĝ \A
of G\A is Ĝ\A. (Here Ĝ may be thought of as a Riemann domain over Cn.)

This general principle was generalized by Dloussky (cf. [Dlo 1977]);
whereas above the analytic singularity set is already given in the whole
envelope of holomorphy, it could also be the case that A is only assumed to
exist in G.

Theorem (Dloussky (1977)). Let G ⊂ Cn be a domain and assume that
A ⊂ G is a proper analytic subset. Then there exists an analytic subset Â of
Ĝ with

Ĝ \A = Ĝ \ Â and Â ∩G ⊂ A.

Remark. Recently a nice proof of the theorem of Dloussky was given
by Porten (2001) (cf. [Por 2000]).

Based on this extension result of Dloussky the following general cross the-
orem with analytic singularities is true (cf. [Jar-Pfl 2001a], [Jar-Pfl 2001b],
[Jar-Pfl 2001c] (5)).

Theorem 20 (Jarnicki & Pflug (2000–2001)). (a) Let Dj ⊂ Ckj be a
pseudoconvex domain, and let Aj ⊂ Dj be a locally pluriregular subset (j =
1, . . . , N). Put , as usual , X := X(A1, . . . , AN ;D1, . . . ,DN ). Moreover , let U

(4) Here Cap means the logarithmic capacity.
(5) M. Jarnicki and the author learnt about this extension problem at the Complex

Analysis Seminar in Kraków when Siciak was lecturing on his theorem.
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be a domain with X ⊂ U ⊂ X̂, and let M ⊂ U be a proper analytic subset.
Then there are an analytic subset M̂ ⊂ X̂ and an open set U0 such that

• X ⊂ U0 ⊂ U and M̂ ∩ U0 ⊂M ,
• for any f ∈ Os(X \M) there exists exactly one f̂ ∈ O(X̂ \ M̂) with

f̂ |X\M = f .

(b) Let the situation be as in (a) with U = X̂. Define M̂ to be the
union of all irreducible 1-codimensional components of M . Then for any
f ∈ Os(X \M) there is exactly one f̂ ∈ O(X̂ \ M̂) such that f̂ |X\M = f .

Sketch of proof. Part (a) is obtained by applying part (b), the classical
cross theorem, and the theorem of Dloussky. Using the classical cross theo-
rem, the description of pure 1-codimensional analytic sets, and the Grauert–
Remmert theorem finally leads to (b).

Summarizing we have the same general extension principle for separately
holomorphic function with analytic singularities on an N -fold cross as de-
scribed for holomorphic functions on domains by Dloussky’s theorem.

Summary. So far we have discussed the situation of an arbitrary N -fold
cross X and separately holomorphic functions given on X off a set (perhaps
empty) which is analytic in a neighborhood of X.

4. Fourth period (2001–????) characterized by cross theorems
with more general singularities. Let me first recall what could happen
in Theorem 20 with the analytic singularities.

Fix a ∈ A1 × . . . × AN and j ∈ {1, . . . , N}. Then the fiber of M over
(a1, . . . , âj , . . . , aN ) has only two possibilities, namely either M(a1,...,âj ,...,aN )
= Dj or M(a1,...,âj ,...,aN ) is a proper analytic subset of Dj . Moreover, the set
{(a1,...,âj ,...,aN )∈(A1×...×Aj−1)×(Aj+1×...×AN ):M(a1,...,âj ,...,aN )=Dj}
is analytic in Dj; in particular, it is pluripolar.

Concerning the notion of pluripolarity, we recall another principle of
analytic extension through thin sets of singularities (cf. [Chi 1993]).

Theorem (Chirka (1993)). Let G ⊂ Cn be a domain and assume that
A ⊂ G is a pluripolar subset , closed in G. Then there exists a pluripolar
subset Â of Ĝ, closed in Ĝ, with

Ĝ \A = Ĝ \ Â and Â ∩G ⊂ A.
So it seems reasonable to consider the following situation of separately

holomorphic functions on N -fold crosses with singularities:

General assumptions. Let M ⊂ X. Put

Σj := {(a′, a′′) ∈ (A1 × . . .× Aj−1)× (Aj+1 × . . .× AN ):

M(a1,...,âj ,...,aN ) not pluripolar}.
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In the future we will always assume that all the sets Σj are pluripolar. So
thick fibers of the singularity set M are only allowed over a thin set.

A surprise. Examples:

(a) Let D1 = D2 = C and A1 = A2 = E, where E denotes the unit
disc in the plane. Put M := {0}×E. Obviously, M is pluripolar in C2. Put
X := X(A1, A2;D1,D2). Then Σ1 = ∅ and Σ2 = {0} are pluripolar. Observe
that X̂ = C2.

Now consider the following function f0 ∈ Os(X \M):

f0(z, w) :=
{

1/z if z 6= 0,
0 if z = 0, |w| > 1.

The best one can get via continuation is the function f̂0 ∈ O(C∗×C) defined
by f̂0(z, w) := 1/z.

Therefore, the “old” singularities propagate inside X to M̂ := {0} × C,
which is strictly larger than M .

(b) Let D1 = D2 = C, A1 := E, A2 := {w ∈ C: r < |w| < 1}, where
0 < r < 1, and X as usual. Put M := {0} × {w ∈ C: |w| = r}. Then M

is pluripolar in C2 and X̂ = C2. Again, the sets Σ1 = ∅ and Σ2 = {0} are
pluripolar.

Now we look at the following function f0 ∈ Os(X \M):

f0(z, w) :=
{
w if z 6= 0 or z = 0, |w| > r,
0 if z = 0, |w| < r.

Obviously, f̂0 ∈ O(C2) with f̂0(z, w) = w is the maximal extension of f0.
But now

f0(0, w) 6= f̂0(0, w), 0 < |w| < 1.

Therefore, the maximal extension f̂0 may not coincide with f0 on X \M .

Conclusion. From the examples it follows that we can only hope to
get the following result when dealing with pluripolar singularities:

• M̂ ∩X ′ ⊂M , where X ′ := X(A1 \Σ2, A2 \Σ1;D1,D2) ⊂ X,
• f̂ = f only on X ′ \M .

According to the experiences with the examples above we introduce the
following modified N -fold cross:

X ′ := T(A1, . . . , AN ;D1, . . . ,DN ;Σ1, . . . , ΣN )

:=
N⋃

j=1

{(z′, zj , z′′) ∈ (A1×. . .×Aj−1)×Dj×(Aj+1×. . .×AN ): (z′, z′′) 6∈ Σj}.

Observe that
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1) T(A1, . . . , AN ;D1, . . . ,DN ; ∅, . . . , ∅) = X;
2) if N = 2, then T(A1, A2;D1,D2;Σ1, Σ2) = X(A1\Σ2, A2\Σ1;D1,D2),

i.e. the modified 2-fold cross is always a 2-fold cross in the usual sense.

With these notions we have the following final result (cf. [Jar-Pfl 2001d]):

Theorem 21 (Jarnicki & Pflug (December 2001)). Let N,Aj ,Dj be as
before. Put X := X(A1, . . . , AN ;D1, . . . ,DN ). Let U be an open neighborhood
of X, and let M ⊂ U be relatively closed such that Σj is pluripolar, j =
1, . . . , N . Then there exists a relatively closed pluripolar set M̂ ⊂ X̂ with
the following properties:

• M̂ ∩X ′ ⊂M ,
• for any function f ∈ Os(X \M) there exists a unique extension f̂ ∈

O(X̂ \ M̂) such that f̂ = f on X ′ \M ,
• X̂ \ M̂ is pseudoconvex.

Remark. (a) If M is pluripolar, then the assumptions are fulfilled.
(b) In the case that all fibers M(a1,...,âj ,...,aN ) are pluripolar we obviously

have X ′ = X, i.e. we are back in the good situation we have discussed in
the analytic case.

The proof of the last theorem is based on the Chirka theorem, the struc-
ture of polar sets, the classical cross theorem, and the following modification
of a result due to Chirka and Sadullaev [Chi-Sad 1988] (see also [Jar-Pfl
2001d]):

Theorem (Sadullaev & Chirka (1988), Jarnicki & Pflug (2001)). Let
D1 = En−1, D2 := C, A1 = A and A2 := E. Put X := X(A1, A2;D1,D2).
Assume U ⊂ En−1 × C is an open neighborhood of X and let M ⊂ U ,
relatively closed , with M ∩En = ∅ and M(a,b̂) polar for all (a, b) ∈ A1×A2.

Then there exists a relatively closed pluripolar set S ⊂ En−1 × C such that

• S ∩X ⊂M ,
• X̂ \ S = En−1 × C \ S is pseudoconvex ,
• for any function f ∈ Os(X \M) there is an extension f̂ ∈ O(En−1 ×

C \ S) with f = f̂ on En.

Notice that this result may be viewed as a special case of Theorem 21.

Open problems. (a) Observe that Theorem 20 is a special case of Theo-
rem 21, except that we do not see how to prove directly that the exceptional
set M̂ is analytic.

(b) It is not clear what will happen with the statement in Theorem 21
when the singularity set M is not assumed to be closed in X.
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Ozan Öktem
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