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Multidimensional analogue of the
van der Corput–Visser inequality

and its application to the estimation of the Bohr radius

by L. Aizenberg (Ramat-Gan), E. Liflyand (Ramat-Gan)
and A. Vidras (Nicosia)

Abstract. We present a multidimensional analogue of an inequality by van der
Corput–Visser concerning the coefficients of a real trigonometric polynomial. As an appli-
cation, we obtain an improved estimate from below of the Bohr radius for the hypercone
Dn1 = {z ∈ Cn : |z1|+ . . .+ |zn| < 1} when 3 ≤ n ≤ 10.

1. Bohr radius. The following classical result can be found in [9]: If
the power series

∞∑

k=0

ckz
k
1

converges in the unit disk {z1 ∈ C : |z1| < 1} and the modulus of its sum is
smaller than 1, then

∞∑

k=0

|ckzk1 | < 1

in the disk {z1 ∈ C : |z1| < 1/3} and the constant 1/3 cannot be improved.
We now turn to the formulation of multidimensional analogues of this result.
Let D be a complete Reinhardt domain. We denote by R(D) the largest
nonnegative number r with the following property: if the power series

∑

|α|≥0

cαz
α,

where α = (α1, . . . , αn), all αj are nonnegative integers, zα = zα1
1 . . . zαnn ,

|α| = |α1|+ . . .+ |αn|, converges in D and the modulus of its sum is smaller
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than 1, then ∑

|α|≥0

|cαzα| < 1

in the homothety rD. The number R(D) is called the Bohr radius. We do
not know of any bounded domain D ⊂ Cn for which the precise value of the
Bohr radius is known. However, there are a number of cases where estimates
for the Bohr radius from above and from below have been obtained. Such is
the case of the estimates in [8]. There, for the unit polydisk

Un = {z ∈ Cn : |zj| < 1, j = 1, . . . , n},
the following inequalities are proved for n > 1:

1
3
√
n
< R(Un) <

2
√

logn√
n

.

This means that R(Un) tends to 0 as n→∞.
In [2] the following estimates for the Bohr radius of the hypercone

Dn1 = {z ∈ Cn : |z1|+ . . .+ |zn| < 1}
are obtained:

1
3 3
√
e
< R(Dn1 ) ≤ 1

3
.(1.1)

We point out that unlike the case of the polydisk, this Bohr radius does not
tend to 0 as n→∞.

Further estimates of the Bohr radius for the domain

Dnp = {z ∈ Cn : |z1|p + . . .+ |zn|p < 1},
where 1 ≤ p <∞, can be found in [7]. Other multidimensional analogues of
the Bohr theorem can be found in [3]–[6], [11].

The estimate (1.1) was significantly improved in [1] for the case n = 2.
The main ingredient there was the following result due to J. G. van der
Corput and C. Visser ([10]): Let

F (t) =
N∑

j=−N
aje

ijt

be a real trigonometric polynomial. Then

|a0|+ |ak|+ |a−k| ≤ max
0≤t≤2π

|F (t)|(1.2)

whenever k > N/2.
We remark here that the function eiNtF (t) is a holomorphic polynomial

in eit. This implies that the inequality (1.2) is significantly sharper than the
Cauchy estimates.
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In the present article we obtain a multidimensional analogue for the
inequality (1.2), which, in turn, improves the estimate (1.1) of the Bohr
radius from below for small dimensions n.

2. Multivariate van der Corput–Visser inequality. Consider the
trigonometric polynomial

F (t) = F (t1, . . . , tn) =
∑

|α|≤N
aαe

i(α1t1+...+αntn).(2.1)

Denote by ej = (0, . . . , 0, 1, 0, . . . , 0) the unit vector in Rn with all entries
zero except the jth one which is 1. Now, we state the following

Theorem 2.1. If the trigonometric polynomial (2.1) is real , then

|a0|+
n∑

j=1

(|aNej |+ |a−Nej |) ≤ max
0≤tj≤2π
j=1,...,n

|F (t)|.(2.2)

Proof. The proof is by induction. For n = 1 this is the inequality (1.2).
Assume that (2.2) holds for n− 1. Then we write the polynomial (2.1) as

F (t) =
N∑

αn=−N
eiαnt

∑

|α1|+...+|αn−1|≤N−|αn|
aαe

i(α1t1+...+αn−1tn−1).

Applying to F (t) the one-dimensional result, we obtain

|aNen |+ |a−Nen |+ |
∑

|α1|+...+|αn−1|≤N
aα1,...,αn−1,0e

i(α1t1+...+αn−1tn−1)|

≤ max |F (t)|.
Since the trigonometric polynomial

∑

|α1|+...+|αn−1|≤N
aα1,...,αn−1,0e

i(α1t1+...+αn−1tn−1)

is real and its modulus does not exceed

max |F (t)| − |aNen | − |a−Nen |,
we apply the result for dimension n− 1 and complete the proof.

3. An estimate of the Bohr radius. We are now going to apply the
inequality (2.2) to the estimation from below of the Bohr radius for the
hypercone Dn1 .

Consider the homogeneous polynomial of degree k in n complex variables

Pk(z) =
∑

|α|=k
cαz

α, k = 1, 2, . . . ,
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satisfying

|Pk(z)| ≤ 1, z ∈ Dn1 .(3.1)

For such homogeneous polynomials, define

Ank = sup
∑

|α|=k
|cα| |zα|,

where the sup is taken not only over z ∈ Dn1 but also over all the homoge-
neous polynomials of degree k which satisfy (3.1).

Theorem 3.1. We have

Ank ≤
√(

n+ k − 1
k

)
− n

√
1− n−2k(3n− 2) + n1−k, k = 1, 2, . . .(3.2)

Proof. From the assumption (3.1) it follows that
∣∣∣∣Pk
(

1
n
,

1
n
eit2 , . . . ,

1
n
eitn
)∣∣∣∣ ≤ 1.

Therefore

n2k
∣∣∣∣Pk
(

1
n
,

1
n
eit2 , . . . ,

1
n
eitn
)∣∣∣∣

2

≤ n2k.(3.3)

The left-hand side of (3.3) is a trigonometric polynomial in n− 1 variables.
This polynomial is obviously real and is equal to

∑

|α|=k
|cα|2 +

n∑

j=2

(c̄ke1ckeje
iktj + cke1 c̄keje

−iktj)

+ terms with at least two nonzero indices.

Applying (2.2) we deduce that
∑

|α|=k
|cα|2 + 2|cke1 |(|cke2|+ . . .+ |cken|) ≤ n2k.(3.4)

Similarly to (3.4) one gets the other n − 1 inequalities, in which the factor
next to 2 is of the type |ckej | (i.e. k is at place j, j = 2, . . . , n − 1). Taking
the arithmetic mean of those n inequalities we obtain

(3.5)
∑

|α|=k
α∈I

|cα|2 +
n− 2
n

(|cke1 |2 + . . .+ |cken|2)

+
2
n

(|cke1 |+ . . .+ |cken |)2 ≤ n2k,

where I = {α ∈ Nn : αj 6= k, j = 1, . . . , n}. The inequality (3.5) and a
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classical inequality imply that
∑

|α|=k
α∈I

|cα|2 +
3n− 2
n2 (|cke1 |+ . . .+ |cken |)2 ≤ n2k.(3.6)

Note that we pass from (3.5) to (3.6) in order to make the subsequent
calculations easier. Proceeding with (3.5) cannot improve the final result.

Furthermore, one observes that the modulus of the polynomial Pk(z)
does not exceed 1 on the sections of the hypercone by coordinate hyperplanes
{z ∈ Cn : zl = 0, l = 1, . . . , j − 1, j + 1, . . . , n}, j = 1, . . . , n. That is, in the
disks {zj ∈ C : |zj| < 1} one has |Pk(z)| ≤ 1. Therefore

|ckej | ≤ 1, j = 1, . . . , n.(3.7)

Now, we deduce that
Ank ≤ Bn

k = sup
∑

|α|=k
|cα|xα,

where the sup is taken over all (x1, . . . , xn) with xj ≥ 0, j = 1, . . . , n, and
x1 + . . . + xn = 1 and over all |cα| satisfying (3.6) and (3.7) at the same
time.

Since Bn
k is homogeneous with respect to |cα|, we may consider

∑

|α|=k
α∈I

|cα|2 +
3n− 2
n2 A2 = n2k

instead of (3.6), where A =
∑n

j=1 |ckej |. Ignoring (3.7) for a moment, we
arrive at a conditional extremum problem with respect to the variables |cα|,
α ∈ I, and x. It can be easily solved by using the Lagrange multiplier
method. First, the maximum is achieved for x1 = . . . = xn = 1/n, and thus
xα = n−k, and, secondly, all |cα|, α ∈ I, are equal. Since the number of
these |cα| is

(
n+k−1

k

)
− n (see, e.g., [12, Ch. IV, §2]), we obtain

Bn
k = n−k

√(
n+ k − 1

k

)
− n

√
n2k − 3n− 2

n2 A2 + n−kA.

It is a routine matter to show that Bn
k increases in A. Recalling (3.7), we

take A = n and readily arrive at (3.2). This completes the proof of the
theorem.

4. Applications. In the proof of Theorem 9 in [2] it was shown that

Ank ≤ kk/k!.(4.1)

The advantage of the estimate (4.1) is that it is independent of the number n
of independent variables. At the same time, (3.2) for small n sometimes gives
a better bound than (4.1), for example, for n = 2 and k = 2, 3, 4, 5, even
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though there are cases where the converse is true: if n = 4 and k = 2, then
(4.1) gives the bound of 2 while (3.2) gives the bound of 2.6511. Therefore
the following corollary might be of importance.

Corollary 4.1.

Ank ≤ min
(√(

n+ k − 1
k

)
− n

√
1− n−2k(3n− 2) + n1−k,

kk

k!

)
.(4.2)

This result allows one in some cases to improve the estimate from below
in (1.1), that is,

R(Dn1 ) >
1

3 3
√
e
.(4.3)

The right-hand side is approximately equal to 0.238844. We remark here
that in [8] the following estimate was obtained for n > 1:

R(Un) >
2

5
√
n

from which the same estimate holds for any complete Reinhardt domain, in
particular, for the hypercone:

R(Dn1 ) >
2

5
√
n
.(4.4)

The estimate (4.4) is better than (4.3) for n = 2, but weaker if n > 2. With
the help of inequality (1.2), in [1] the estimate (3.2) is given for n = 2:

R(D2
1) > 0.304236,

which is sharper than (4.3) and (4.4).
Similarly, we will now use Theorem 3.1 in order to improve, for some

cases when n > 2, the estimate (4.3) (and therefore (4.4) since (4.3) is
better than (4.4) for n > 2).

Corollary 4.2. The following estimates hold :

R(D3
1) > 0.271114, R(D4

1) > 0.258685, R(D5
1) > 0.251975,

R(D6
1) > 0.247485, R(D7

1) > 0.245426, R(D8
1) > 0.243525,

R(D9
1) > 0.242473, R(D10

1 ) > 0.241522.

Proof. Let f(z) =
∑
|α|≥0 cαz

α be a holomorphic function in the hyper-
cone Dn1 with |f(z)| < 1 for z ∈ Dn1 . Then, as shown in [1], for k ≥ 1 we
have the Cauchy–Landau type estimate

∣∣∣
∑

|α|=k
cαz

α
∣∣∣ < 2(1− |c0,...,0|), z ∈ Dn1 .
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Furthermore, using Corollary 4.1, one has

∑

|α|≥0
|z1|+...+|zn|≤x

|cαzα| < |c0,...,0|+ 2(1− |c0,...,0|)
∞∑

k=1

Cnk x
k,

where Cnk denotes the right-hand side in (4.2). Hence it can be readily seen
that R(Dn1 ) ≥ xk, where xk is the root of the equation

∞∑

k=1

Cnk x
k = 1/2.(4.5)

After solving numerically the equation (4.5) for n = 3, . . . , 10 by using
MAPLE we find the results claimed in the statement of Corollary 4.2.

Concluding, we remark that for sufficiently large n the min in (4.2) is
equal to the right-hand side of (4.1) and we again return to the earlier
estimate (4.3).

Remark 4.1. The bounds of the Bohr radius from Corollary 4.2 also
hold for every Reinhardt domain of the type

D = {z ∈ Cn : Φ(|z1|, . . . , |zn|) < 0},
where Φ is a convex function, that is, D is a union of hypercones

{z ∈ Cn : a1|z1|+ . . .+ an|zn| < 1}.
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