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Approximation of holomorphic maps
by algebraic morphisms
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Dedicated to Professor Józef Siciak on his seventieth birthday

Abstract. LetX be a nonsingular complex algebraic curve and let Y be a nonsingular
rational complex algebraic surface. Given a compact subset K of X, every holomorphic
map from a neighborhood of K in X into Y can be approximated by rational maps from
X into Y having no poles in K. If Y is a nonsingular projective complex surface with the
first Betti number nonzero, then such an approximation is impossible.

1. Introduction. Given two topological spaces S and T , we denote by
C(S, T ) the space of all continuous maps from S into T , endowed with the
compact-open topology.

Throughout this paper we call quasiprojective irreducible complex alge-
braic varieties simply algebraic varieties. Algebraic morphisms will be called
regular maps. Unless explicitly stated otherwise, we consider algebraic va-
rieties endowed with the topology induced by the usual metric topology
on C.

Let X and Y be algebraic varieties and let S be a subset of X. We say
that a continuous map f : S → Y can be approximated by regular (resp.
rational) maps from X into Y if for every neighborhood N of f in C(S, Y )
there exists a regular map g : X → Y (resp. there exist a Zariski neighbor-
hood X0 of S in X and a regular map g : X0 → Y ) such that the restriction
g|S belongs to N . The approximation problem becomes interesting if f is
holomorphic, that is, extends to a holomorphic map on a neighborhood of S.
Results in this direction include the classical Runge approximation theorem
[8], Runge-type approximation theorems for maps into Grassmannians [5],
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and, only loosely related, theorems on approximation of holomorphic maps
by Nash maps [2, 6].

In the present paper we prove the following.

Theorem 1.1. Let X be a nonsingular algebraic curve and let Y be
a nonsingular rational algebraic surface. Given a compact subset K of X,
every holomorphic map from K into Y can be approximated by rational
maps from X into Y .

Recall that an algebraic surface is said to be rational if it is birationally
equivalent to C2, that is, if it contains a nonempty Zariski open subvariety
isomorphic to a Zariski open subvariety of C2; cf. [1] for the theory and
examples of rational algebraic surfaces.

Clearly, if X = C and Y = C2, Theorem 1.1 is equivalent to the classical
Runge approximation theorem.

If Y is projective, then every rational map fromX into Y is automatically
regular and therefore Theorem 1.1 implies the following.

Corollary 1.2. Let X be a nonsingular algebraic curve and let Y be a
nonsingular projective rational surface. Given an open subset U of X, every
holomorphic map from U into Y can be approximated by regular maps from
X into Y .

We do not know to what extent the assumption of rationality of Y can
be relaxed. Our next result shows that it cannot be relaxed too much.

Theorem 1.3. Let X be a nonsingular algebraic curve and let Y be
a nonsingular projective algebraic variety. Let D be an open subset of X
biholomorphic to the unit disc {z ∈ C | |z| < 1}. If every holomorphic map
from D into Y can be approximated by regular maps from X into Y , then
the first Betti number of Y is equal to 0.

2. Proofs. As usual, Pn will denote the complex projective n-space.
The unit disc in C will be denoted by D,

D = {z ∈ C | |z| < 1},
and the unit ball in Cn by Bn,

Bn = {w ∈ Cn | ‖w‖ < 1}.
We let πn : B̃n → Bn denote the monoidal transformation of Bn at 0,

B̃n = {(w, `) ∈ Bn × Pn−1 | w ∈ `}, πn(w, `) = w,

where we regard Pn−1 as the variety of 1-dimensional vector subspaces of Cn.
Given a holomorphic map f : M → N between complex analytic mani-

folds, a point x in M , and a nonnegative integer r, we denote by jrf(x) the
r-jet of f at x.
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Let X be a nonsingular algebraic curve and let Y be a nonsingular alge-
braic variety. Let y0 be a point in Y and let π : Ỹ → Y be the monoidal trans-
formation of Y at y0, that is, the blowing up of Y at y0. Let f : U → Y be a
holomorphic map defined on an open subset U of X such that f−1(y0) is a
discrete subset of U . Then there exists a unique holomorphic map f̃ : U → Ỹ
satisfying π ◦ f̃ = f .

Lemma 2.1. With the notation as above, let Ñ be a neighborhood of f̃
in C(U, Ỹ ), let A be a finite subset of U , and let s be a nonnegative integer.
Then there exist a neighborhood N of f in C(U, Y ), a finite subset B of U ,
and a nonnegative integer r such that for every holomorphic map g : U → Y
in N , with the set g−1(y0) discrete in U and jrg(x) = jrf(x) for all x in
A ∪B, the following conditions are satisfied :

(i) g̃ is in Ñ ,
(ii) jsg̃(a) = jsf̃(a) for all a in A.

Proof. The conclusion readily follows from the construction of f̃ , which
we recall below for the convenience of the reader.

Choose a neighborhood V of y0 in Y and a biholomorphic map ψ : V →
Bn such that ψ(y0) = 0. There exists a biholomorphic map ψ̃ : π−1(V )→ B̃n

satisfying πn ◦ ψ̃ = ψ ◦ (π|π−1(V )). Let x0 be a point in f−1(y0). Choose a
neighborhood U0 of x0 in U and a biholomorphic map ϕ : U0 → D such that
ϕ(x0) = 0 and U0 ∩ f−1(y0) = {x0}. The holomorphic map

ψ ◦ f ◦ ϕ−1 : D→ Bn, ψ ◦ f ◦ ϕ−1 = (f1, . . . , fn),

satisfies

(ψ ◦ f ◦ ϕ−1)(0) = 0, (ψ ◦ f ◦ ϕ−1)(D \ {0}) ⊆ Bn \ {0} ,
and hence

(ψ ◦ f ◦ ϕ−1)(z) = zp(λ1(z), . . . , λn(z))

for z in D, where p is a positive integer, λj : D→ C is a holomorphic function
for 1 ≤ j ≤ n, and (λ1(z), . . . , λn(z)) belongs to Cn \{0} for all z in D. Then
f̃ : U0 → Ỹ is given by

f̃(x) = ψ̃−1((f1(z), . . . , fn(z)), (λ1(z) : . . . : λn(z)))

for x in U0 with ϕ(x) = z.

Lemma 2.2. Let f : X → Pn be a holomorphic map defined on a 1-
dimensional complex analytic manifold X. If X has no compact connected
component , then there exists a holomorphic map

F = (F0, . . . , Fn) : X → Cn+1 \ {0}
such that

f(x) = (F0(x) : . . . : Fn(x)) for all x in X.
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Proof. Let γn be the universal line bundle on Pn. Recall that

{(`, w) ∈ Pn × Cn+1 | w ∈ `}
is the total space of γn. The pullback line bundle f ∗γn on X is a holomorphic
subbundle of the trivial vector bundle on X with total space X × Cn+1.
Since X has no compact connected component, f ∗γn is holomorphically
trivial and hence there exists a holomorphic section u : X → f ∗γn such that
u(x) 6= 0 for all x in X (cf. [3, Theorem 30.3]). Note that u is of the form
u(x) = (x, F (x)) for all x in X, where F : X → Cn+1 \ {0} is a holomorphic
map. The conclusion follows.

Let X be a nonsingular algebraic curve. We say that a nonsingular alge-
braic variety Y has property (X) if for every holomorphic map f : U → Y
defined on an open subset U of X, every neighborhood N of f in C(U, Y ),
every finite subset A of U , and every nonnegative integer s, there exists a
regular map g : X → Y such that g|U belongs to N and jsg(a) = jsf(a) for
all a in A. In particular, if Y has property (X), then given an open subset
U of X, every holomorphic map from U into Y can be approximated by
regular maps from X into Y .

Lemma 2.3. Let Y be a nonsingular algebraic variety and let π : Ỹ →Y
be the monoidal transformation of Y at a point y0 in Y . Let X be a non-
singular algebraic curve. Then Y has property (X) if and only if Ỹ has
property (X).

Proof. Assume that Y has property (X). Let ϕ : U → Ỹ be a holomor-
phic map defined on an open subset U of X, let Ñ be a neighborhood of ϕ in
C(U, Ỹ ), let A be a finite subset of U , and let s be a nonnegative integer. We
assume below that U has no compact connected component, since otherwise
U = X, X is projective, and ϕ is a regular map.

Choose a compact subset K of U and a neighborhood ÑK of ϕ|K in
C(K, Ỹ ) such that K contains A and every holomorphic map ϕ′ : U → Ỹ

belongs to Ñ , provided that ϕ′|K is in ÑK .
We assert that there exists a holomorphic map ψ : V → Ỹ , defined on a

neighborhood V of K in U , such that ψ|K belongs to ÑK , jsψ(a) = jsϕ(a)
for all a in A, and the set ψ−1(π−1(y0)) is finite. It suffices to prove this
assertion for U connected and ϕ satisfying ϕ(U) ⊆ π−1(y0), and therefore
we assume that these conditions are satisfied. Choose a neighborhood M
of y0 in Y biholomorphic to Bn, where n = dimY . Then there exists a
biholomorphic map σ : π−1(M) → B̃n with σ(π−1(y0)) = {0} × Pn−1. By
Lemma 2.2, there exists a holomorphic map

H = (H1, . . . ,Hn) : U → Cn \ {0}
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such that

(σ ◦ ϕ)(x) = (0, (H1(x) : . . . : Hn(x))) for all x in U.

Choose a holomorphic function λ : U → C with λ−1(0) = A and jsλ(a) = 0
for all a in A (cf. [3, Theorem 26.5]). If ε > 0 is sufficiently small, then one
can find a neighborhood V of K in U such that ελ(x)H(x) is in Bn for all
x in V . If ε > 0 is small enough, then the holomorphic map

ψ : V → Ỹ , ψ(x) = σ−1(ελ(x)H(x), (H1(x) : . . . : Hn(x)))

satisfies all the requirements, and hence the assertion is proved.
Put f = π ◦ ψ. Clearly, the set f−1(y0) is finite and, in the notation

of Lemma 2.1, f̃ = ψ. Let N be a neighborhood of f in C(V, Y ), let B
be a finite subset of V , and let r be a nonnegative integer. Since Y has
property (X), there exists a regular map g : X → Y such that g|V is in N
and jrg(x) = jrf(x) for all x in A ∪ B. Shrinking N , if necessary, we see
that the set g−1(y0) is finite. Furthermore, in view of Lemma 2.1, a suitable
choice of N , B, and r ensures that g̃|K is in ÑK and jsg̃(a) = jsϕ(a) for
all a in A. By construction, g̃|U is in Ñ . Since g̃ is a regular map, it follows
that Ỹ has property (X).

The converse is obvious: if Ỹ has property (X), then so does Y . Indeed,
it suffices to note that any holomorphic map α : U → Y is of the form
α = π ◦ β for some holomorphic map β : U → Ỹ .

Given a topological space T , a continuous function f : T → C, and a
compact subset K of T , we set

‖f‖K = sup{|f(t)| | t ∈ K}.
Lemma 2.4. Let X be a nonsingular algebraic curve. Let f : U → C

be a holomorphic function defined on an open subset U of X. Let K be a
compact subset of U , let A be a finite subset of U , and let s be a nonnegative
integer. Given ε > 0, there exists a rational function g : X → C, without
poles on U , such that

‖g − f‖K < ε, jsg(a) = jsf(a) for all a in A.

Proof. If U = X and X is projective, then f is a constant function
and the conclusion is obvious. Otherwise, by removing finitely many points
from X \ U , we may assume that X is an affine algebraic curve and X \ U
has no compact connected component. Then every holomorphic function on
U can be uniformly approximated on compact subsets of U by holomorphic
functions on X [3, Theorem 25.5], and hence also by regular functions on X.
The last assertion is easy to justify. Indeed, regard X as an algebraic subset
of Cn for some n. Since X is a Stein submanifold of Cn, every holomorphic
function on X extends to a holomorphic function on Cn [4, p. 245, Theorem
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18], and the latter can be uniformly approximated by polynomial functions
on Cn. Thus the assertion follows.

By the Riemann–Roch theorem, there exists a regular function µ : X →
C with µ−1(0) = B, where B is a finite set containing A. Set λ = µs, and
choose a positive integer r such that jrλ(a) 6= 0 for all a in B (in particular,
r > s). Choose a regular function ϕ : X → C with jrϕ(a) = jrf(a) for all a
in B. Then (f −ϕ)/λ is a holomorphic function on U , and therefore we can
find a regular function ψ : X → C satisfying

‖λ(ψ − (f − ϕ)/λ)‖K < ε.

Obviously, g = ϕ+ λψ is a regular function on X. Moreover,

g − f = ϕ+ λψ − f = λ(ψ − (f − ϕ)/λ),

and hence ‖g − f‖K < ε. By construction,

jsg(a) = js(ϕ+ λψ) = jsϕ(a) = jsf(a)

for all a in B.

Lemma 2.5. Projective n-space Pn has property (X) for every nonsin-
gular algebraic curve X.

Proof. The conclusion follows from Lemmas 2.2 and 2.4, and the fact
that every rational map from X into Pn is regular.

Proof of Theorem 1.1. It is well known that Y can be regarded as a
Zariski open subvariety of a nonsingular projective surface. Hence we may
assume without loss of generality that Y itself is projective. Then every
birational equivalence σ : Y → P2 is the composition of finitely many alge-
braic isomorphisms, monoidal transformations and their inverses [1, Theo-
rem II.7]. We complete the proof by applying Lemmas 2.3 and 2.5.

Let us record the following direct consequence of Lemmas 2.3 and 2.5.

Remark 2.6. Let Y = Yk → Yk−1 → . . . → Y0 = Pn be a sequence of
monoidal transformations. Let X be a nonsingular algebraic curve. Given
an open subset U of X, every holomorphic map from U into Y can be
approximated by regular maps from X into Y .

We shall now begin the preparation for the proof of Theorem 1.3. Given
a set X, an Abelian group A, a positive integer n, and a map f : X → A,
we let f (n) denote the map from the Cartesian n-fold product Xn into A
defined by

f (n)(x1, . . . , xn) = f(x1) + . . .+ f(xn)

for all (x1, . . . , xn) in Xn.

Lemma 2.7. Let X be a nonsingular algebraic curve, let U be an open
subset of X, and let x0 be a point in U . Let f : X → A be a regular map
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satisfying f(x0) = 0, where A is a simple Abelian variety. Then there exists
a positive integer nX,U such that for every integer n ≥ nX,U , one has either
f (n)(Un) = {0} or f (n)(Un) = A.

Proof. Without loss of generality, we may assume that X is projective.
Let g be the genus of X.

If g = 0, then f(X) = {0} [1, p. 84], and hence the conclusion follows
with nX,U = 1.

Suppose now that g ≥ 1. Let J be the Jacobian variety of X and let
µ : X → J be the canonical regular map corresponding to x0 (in particular,
µ(x0) = 0). It follows from the universal property of (J, µ) that there exists
a morphism of Abelian varieties ϕ : J → A satisfying f = ϕ ◦ µ (cf. [1, pp.
82, 84]). Since A is simple, one has either ϕ(J) = {0} or ϕ(J) = A.

It is well known that µ(g)(Xg) = J (cf. [3, Theorem 21.9]), and hence
µ(g)(U g) contains a nonempty open subset G of J . Since J is a complex
torus, there exists a positive integer k such that the sum G+ . . .+G, with
k terms, is equal to J . Set nX,U = kg and let n be an integer, n ≥ nX,U . By
construction, µ(n)(Un) = J . The conclusion follows since f (n) = ϕ ◦ µ(n).

Proof of Theorem 1.3. Suppose that the first Betti number of Y is
nonzero. Then the Albanese variety Alb(Y ) of Y is nontrivial. Choose a point
y0 in Y and let α : Y → Alb(Y ) be the corresponding Albanese map (in par-
ticular, α(y0) = 0). There exists an isogeny λ : Alb(Y )→ A1×. . .×Ar, where
the Ai are simple Abelian varieties [7, p. 122]. Let π : A1 × . . .× Ar → A1
be the canonical projection and let ϕ = π ◦λ ◦α. Put A = A1. Since the set
α(Y ) generates Alb(Y ) as a group [1, p. 84], it follows that the regular map
ϕ : Y → A is nonconstant. Of course, ϕ(y0) = 0.

Fix an integer n with n ≥ nX,D. Choose a small neighborhood V of y0

in Y such that the set A \ ϕ(n)(V n) has a nonempty interior. By shrinking
V if necessary, we may assume that there exists a biholomorphic map σ :
V → Bm with σ(y0) = 0, where m = dimY . Since V is Zariski dense in Y
and ϕ is continuous in the Zariski topology, it follows that ϕ is nonconstant
on V . Choose a point y1 in V with ϕ(y1) 6= 0. Let L be the vector subspace
of Cm generated by the vector σ(y1) and let M = σ−1(L ∩ Bm). Then M is
a complex analytic submanifold of V containing y0 and biholomorphic to D
such that ϕ is nonconstant on M . Choose a holomorphic map f : D → Y
such that f maps biholomorphically D onto M . We claim that f cannot
be approximated by regular maps from X into Y . Indeed, by construction,
A \ (ϕ ◦ f)(n)(Dn) has a nonempty interior and (ϕ ◦ f)(n) is nonconstant
on Dn. On the other hand, by Lemma 2.7, if g : X → Y is a regular map,
then either (ϕ ◦ g)(n)(Dn) = {0} or (ϕ ◦ g)(n)(Dn) = A. Obviously, g|D
cannot be arbitrarily close to f in the compact-open topology.
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