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A regularity theorem for the complex
Monge–Ampère equation in CPn

by Sławomir Kołodziej (Kraków)

Dedicated to Professor Józef Siciak

Abstract. C1,1 regularity of the solutions of the complex Monge–Ampère equation
in CPn with the n-root of the right hand side in C1,1 is proved.

0. Introduction. The purpose of this paper is to prove C1,1 regularity
of solutions of the complex Monge–Ampère equation in CPn when the n-root
of the function on the right hand side belongs to C1,1(CPn) with an extra
assumption on the zero-set of this function. If we denote by [z0, z1, . . . , zn]
the homogeneous coordinates in CPn then the closed positive (1, 1)-form

ω =
i

2
∂∂ log ‖z‖2 =

1
4
ddc(log ‖z‖2) (dc := i(∂ − ∂))

induces the Fubini–Study metric. This is a Kähler metric invariant under
holomorphic rotations of CPn. One can change the metric to obtain a given
volume form gωn, with some positive function g satisfying

(0.1)
�
CPn

gωn =
�
CPn

ωn = πn.

For this we need to solve the Monge–Ampère equation

(0.2) (ω + ddcu)n = gωn,

with unknown function u such that ω + ddcu is a positive form. By the
Calabi–Yau theorem [Y], if g > 0, g ∈ Ck(CPn), k ≥ 3, then there exists a
solution u ∈ Ck+1,α(CPn), where α is any number from the interval (0, 1).
The existence part of the Calabi–Yau theorem was generalized by the author
in [K1], [K2]. In particular, if g ≥ 0 and g ∈ Lp(CPn), p > 1, satisfying
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(0.1) then one can find a continuous solution (in the weak sense) of (0.2).
As observed by Z. B locki (cf. [B2]), the following result follows from the
second order estimates in [Y], the stability theorem in [K2] and Trudinger’s
estimates [T] adapted to the complex Monge–Ampère equation in [B1].

Theorem. Let M be a compact Kähler manifold. If g1/n ∈ C1,1(M),
g > 0, satisfies (0.1) then the solution of (0.2) belongs to C3,α(M) for some
α ∈ (0, 1).

The regularity of solutions for the degenerate case g ≥ 0 is harder. A
particular case, when the set {g = 0} is analytic, has been dealt with in [Y].
Here we show a partial result for M = CPn.

Theorem 1. If g1/n ∈ C1,1(CPn), g ≥ 0, satisfies (0.1) and the set
{g = 0} has volume 0 then the solution of (0.2) belongs to C1,1(CPn).

In fact from the proof one can extract that it is enough to assume that
the volume of {g = 0} is bounded from above by some fixed positive constant
(smaller than πn/2). A related result has been obtained in [K3], where the
regularity of the solution is shown in the standard coordinate chart: Cn
embedded in CPn.

From [B2] it follows that for g as in Theorem 1 except for the assumption
on the set {g = 0}, the solution has bounded Laplacian and so g ∈ C1,α,
α < 1.

I am indebted to Z. B locki for helpful discussions on the subject.

1. Proof of Theorem 1. We denote the homogeneous coordinates in
CPn by [z0, z1, . . . , zn]. Fix a coordinate chart w(z) = (z1/z0, . . . , zn/z0) in
{z : z0 6= 0} and in this chart consider the two balls B = {w : |w| < 1/2},
B1 = {w : |w| < 1}. The Lebesgue measure in Cn will be denoted by dV .

Orthogonal transformations in Cn+1 of the form

F̃t(z) = (cos t z0 + sin t z1,− sin t z0 + cos t z1, z
′), z′ = (z2, z3, . . . , zn),

G̃t(z) = (cos t z0 + i sin t z1,−i sin t z0 + cos t z1, z
′),

induce automorphisms on CPn which we denote by Ft and Gt respectively.
By means of Ft and Gt we shall define “difference quotients” for functions

defined on CPn. Let wt(z) (resp. w′t(z)) be the midpoint of the interval
[w(Ft(z)), w(F−t(z))] (resp. [w(Gt(z)), w(G−t(z))]). Thus

wt(z) =
w(Ft(z)) + w(F−t(z))

2
=

z0

cos2 t z2
0 − sin2 t z2

1

(z1, cos t z′),

w′t(z) =
w(Gt(z)) + w(G−t(z))

2
=

z0

cos2 t z2
0 + sin2 t z2

1

(z1, cos t z′).
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Observe that

wt(z)− w(z0, z1, cos t z′) =
− sin2 t (z2

0 + z2
1)

cos2 t z2
0 + sin2 t z2

1

(
z1

z0
,

cos t z′

z0

)

=
− sin2 t (1 + w2

1)
cos2 t − sin2 t w2

1

(w1, cos t w′),

w′t(z)− w(z0, z1, cos t z′) =
sin2 t (z2

0 − z2
1)

cos2 t z2
0 + sin2 t z2

1

(
z1

z0
,

cos t z′

z0

)

=
sin2 t (1− w2

1)
cos2 t + sin2 t w2

1

(w1, cos t w′),

with w = w(z) and w′ = (w2, w3, . . . , wn). Therefore there exists C0 > 0
such that for any z ∈ w−1(B1) we have

(1.1) |wt(z)− w(z)| ≤ C0t
2, |w′t(z)− w(z)| ≤ C0t

2, 0 < t < 1.

By similar computation,

w(Ft(z))− w(F−t(z)) =
−2 sin t

cos2 t z2
0 − sin2 t z2

1

(cos t (z2
0 + z2

1), z1z
′)

=
−2 sin t

cos2 t − sin2 t w2
1

(cos t (1 + w2
1), w1w

′),

w(Gt(z))− w(G−t(z)) =
−2i sin t

cos2 t z2
0 + sin2 t z2

1

(cos t (z2
0 + z2

1), z1z
′)

=
−2i sin t

cos2 t + sin2 t w2
1

(cos t (1 + w2
1), w1w

′).

Hence

γ(z) := lim
t→0

w(Ft(z))− w(F−t(z))
2

= −(1 + w2
1, w1w

′),

γ′(z) := lim
t→0

w(Gt(z))− w(G−t(z))
2

= −i(1 + w2
1, w1w

′).

Note that since

|γ(z)| = |γ′(z)| = (|1 + w2
1|2 + |w1|2|w′|2)1/2

we have

(1.2) 3/4 ≤ |γ(z)| ≤ 3/2 for z ∈ w−1(B).

Let u be a smooth function on CPn with ddcu + ω ≥ 0. Then U =
u ◦ w−1 is defined and smooth on Cn. Observe that there exists a constant
C1 independent of u such that

(1.3)
�
B1

∆U dV ≤ C1,
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where ∆ denotes the Laplacian with respect to the Euclidean metric. Indeed,
from ddcu ∧ ωn−1 ≥ −ωn and � CPn ddcu ∧ ωn−1 = 0 we have

�
w−1(B1)

ddcu ∧ ωn−1 = −
�

CPn\w−1(B1)

ddcu ∧ ωn−1 ≤
�

CPn\w−1(B1)

ωn ≤ πn.

Since the Euclidean metric and the pull-back of the Fubini–Study metric
are equivalent we thus get

�
B1

∆

(
U +

1
4

log(1 + |w|2)
)
dV ≤ C2

�
w−1(B1)

(ddcu+ ω) ∧ ωn−1 ≤ 2C2π
n,

from which (1.3) follows. By (1.2) and the fact that γ(z) = iγ ′(z) we can
estimate

Φu(z) := Dγ(z)γ(z)U(w(z)) +Dγ′(z)γ′(z)U(w(z))(1.4)

≤ 9
4
∆U(w(z)), w(z) ∈ B,

where Dγγ denotes the second derivative in the direction of vector γ. Con-
sider the sets

Ω(M) = {w ∈ B : Dγ(z)γ(z)U(w) ≥M},
Ω′(M) = {w ∈ B : Dγ′(z)γ′(z)U(w) ≥M}.

By (1.3) and (1.4),

2MV (Ω(M) ∩Ω′(M)) ≤
�

Ω(M)∩Ω′(M)

Φu ◦ w−1dV ≤ 9
4

�
B

∆U dV ≤ 9
4
C1.

Take M0 so large that V (Ω(M0) ∩Ω′(M0)) < 1
4V (B). Then either

(1.5) V (Ω(M0)) <
3
4
V (B)

or
V (Ω′(M0)) <

3
4
V (B).

From now on we assume that (1.5) holds. The proof for the other case is
analogous.

Define

γt(z) =
1
t

− sin t
cos2 t− sin2 t w2

1

(cos t (1 + w2
1), w1w

′), w = w(z).

So

(1.6) lim
t→0

γt(z) = γ(z).

For smooth u we have, by Taylor expansion,

DζζU(w) = lim
t→0

U(w + tζ) + U(w − tζ)− 2U(w)
t2
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and the convergence is uniform on the set {(w, ζ) ∈ C2 : |w| ≤ 1, |ζ| ≤ 3}.
So for any ε > 0 there exists t0 > 0 such that

(1.7) |δu(t, z)−Dγt(z)γt(z)U(wt(z))| < ε, t < t0,

where

δu(t, z) =
u(Ft(z)) + u(F−t(z))− 2U(wt(z))

t2

=
U(wt(z) + tγt(z)) + U(wt(z)− tγt(z))− 2U(wt(z))

t2
.

Using (1.1) and (1.6) we can decrease t0 (recall that we work with smooth u)
so that

(1.8) |Dγt(z)γt(z)U(wt(z))−Dγ(z)γ(z)U(w(z))| < ε.

Combining (1.7) and (1.8) we conclude that given ε > 0 we have

(1.9) |δu(t, z)−Dγ(z)γ(z)U(w(z))| < 2ε for t < t0, |w(z)| < 1.

Define

ut(z) =
u(Ft(z)) + u(F−t(z))

2
and Ut = ut ◦ w−1. Note that ut(z)− u(z) = (t2/2)δu(t, z). Set

Ωt(M) = {z ∈ CPn : u(z) < ut(z)−Mt2} = {δu(t, z) > 2M}.
By (1.9) for small t we have w(Ωt(M0)) ∩ B1 ⊂ Ω(M0). Therefore, using
(1.5) we obtain V (w(Ωt(M0)) ∩ B) ≤ 3

4V (B). Hence, given g as in the
assumptions, there exist c > 1 and c0 > 0 such that�

Ωt(M0)

(cg + c0)ωn ≤
�
CPn

gωn, t < t1,

for some t1 > 0.
Let ht be the solution of

(ω + ddcht)n =
{

(cg + c0)ωn on Ωt(M0),
c1ω

n on CPn \Ωt(M0),

satisfying maxht = 0, where t < t1 and c1 ≥ 0 is chosen so that the integral
of the right hand side over CPn is equal to � CPn ωn. The solution exists by
[K1] and moreover there exists c2 independent of t such that

−c2 < ht ≤ 0.

One can increase c2 and add a constant to u to have also

−c2 < ut ≤ 0.

Set
Ω′(t, A) = {u < (1−At2)ut + At2ht − (M0 + c2A)t2}
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for A > 0 and t < t1 so small that 2nAt21 < 1. Note that Ω′(t, A) ⊂ Ωt(M0),
since ht − ut − c2 < 0.

Lemma. For g ≥ 0 with g1/n ∈ C2(CPn) and u which is the solution of
(ddcu+ ω)n = gωn, define ut as above and let gt be the functions satisfying
(ddcut + ω)n = gtω

n. Then there exists c3 independent of t such that

g
1/n
t ≥ g1/n − c3t2, t < t1,

with c3 depending only on ‖D2g1/n‖.

Proof of Lemma. Since Ft are isometric with respect to the Fubini–Study
metric we have

ddcut + ω =
1
2

[F ∗t (ddcu+ ω) + F ∗−t(dd
cu+ ω)].

From the concavity of the mapping A 7→ det1/nA defined on the set of
positive definite Hermitian matrices we have

g
1/n
t ≥ 1

2
[g1/n ◦ Ft + g1/n ◦ F−t].

By Taylor expansion,
∣∣∣∣
g1/n ◦ Ft(w) + g1/n ◦ F−t(w)

2
− g1/n(wt)

∣∣∣∣ ≤ c′3t2,

where c′3 depends only on ‖D2g1/n‖. Combining this inequality with (1.1)
we get the statement.

In what follows we can assume that c2 = c3 by just taking the larger of
the two numbers. Choose A > 0 so that

A > 2nc2c
−1/n
0 and A > sup

[0,sup g]
f(x),

where f(x) = c2x
−1/n[(c+c0/x)1/n−1]−1. Note that sup[0,sup g] f(x) is finite

since limx→0 f(x) = c2c
−1/n
0 .

Reasoning by contradiction suppose that Ω′ = Ω′(t, A) 6= ∅ for fixed
small t < t1. Set

Ω′′ = Ω′′(t, A) = Ω′ ∩ {g1/n > 2nc2t2}.

For brevity, in the estimates below we write at = 1−At2, bt = g1/n − c2t2.
Applying, in turn, the comparison principle from [K2], Lemma 1.2 from [K2]
and the above Lemma we obtain
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�
Ω′

gωn≥
�
Ω′

ant (ddcut +ω)n +nAt2an−1
t (ddcut +ω)n−1 ∧ (ddcht +ω)

+Ant2n(ddcht +ω)n

≥
�
Ω′

[ant gt +nAt2an−1
t g

(n−1)/n
t (cg+ c0)1/n +Ant2nc0]ωn

=
�

Ω′\Ω′′
. . .+

�
Ω′′

. . .

≥
�

Ω′\Ω′′
Ant2nc0ω

n +
�
Ω′′

[an−1
t bn−1

t (atbt +nAt2(cg+ c0)1/n) + c0]ωn.

A contradiction is reached when the following two inequalities hold:

Ant2n(cg + c0) > g on Ω′ \Ω′′

and

(1.10) an−1
t bn−1

t (atbt + nAt2(cg + c0)1/n) ≥ g on Ω′′.

The first one follows from the choice of A and the fact that g ≤ (2nc2)nt2n

away from Ω′′. To get the second one, divide both sides by g and use the
inequalities of the type an−1

t ≥ 1−(n−1)At2 to conclude that (1.10) follows
from

(1.11) (1− (n− 1)At2)
(

1− (n− 1)c2t2

g1/n

)

×
[(

1− c2t
2

g1/n

)
(1− At2) + nAt2

(
c+

c0
g

)1/n]
≥ 1.

The left hand side of (1.11) is not smaller than
(

1− (n− 1)At2 − (n− 1)c2t2

g1/n

)[
1− c2t

2

g1/n
− At2 + nAt2

(
c+

c0
g

)1/n]

and the last expression is not less than 1 if

nAt2
(
c+

c0
g

)1/n[
1− (n− 1)At2 − (n− 1)c2t2

g1/n

]
≥ nAt2 +

nc2t
2

g1/n
.

Since the expression in the square brackets tends to 1 as t → 0 we reach a
contradiction as soon as

A >
c2

g1/n[(c+ c0/g)1/n − 1]
.

The last inequality follows from the choice of A. The contradiction proves
that Ω′ is empty for t sufficiently small. So

u > (1−At2)ut + At2ht − (M0 + c2A)t2.

Therefore there exists A0 such that for t small enough u > ut − A0t
2, or
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equivalently,
δu(t, z) ≤ 2A0.

In view of (1.9) the last inequality implies

(1.10) Dγ(z)γ(z)U(w(z)) ≤ const

for |w(z)| ≤ 1/2. The last estimate has been obtained for smooth u. It re-
mains valid for all directions at a given point if we apply automorphisms
of CPn.

To get the general case let us approximate a given g (in C1,1 norm) by a
sequence of smooth gj normalized by � gjωn = � ωn and such that the same
constant c in the proof works for all j. By the above the solutions of

(ddcuj + ω)n = gjω
n

have pure second order derivatives uniformly upper bounded. Thus (1.10)
holds also for the original g. By the argument from [BT] a bound for pure
second order derivatives also gives an upper bound for mixed second or-
der derivatives of a plurisubharmonic function. But U(w) + log(1 + w2) is
plurisubharmonic and the second term is smooth. Thus U is C1,1.
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