A regularity theorem for the complex Monge–Ampère equation in \mathbb{CP}^n

by Sławomir Kołodziej (Kraków)

Dedicated to Professor Józef Siciak

Abstract. $C^{1,1}$ regularity of the solutions of the complex Monge–Ampère equation in \mathbb{CP}^n with the *n*-root of the right hand side in $C^{1,1}$ is proved.

0. Introduction. The purpose of this paper is to prove $C^{1,1}$ regularity of solutions of the complex Monge–Ampère equation in \mathbb{CP}^n when the *n*-root of the function on the right hand side belongs to $C^{1,1}(\mathbb{CP}^n)$ with an extra assumption on the zero-set of this function. If we denote by $[z_0, z_1, \ldots, z_n]$ the homogeneous coordinates in \mathbb{CP}^n then the closed positive (1, 1)-form

$$\omega = \frac{i}{2} \,\partial\overline{\partial} \log \|z\|^2 = \frac{1}{4} \,dd^c (\log \|z\|^2) \quad (d^c := i(\overline{\partial} - \partial))$$

induces the Fubini–Study metric. This is a Kähler metric invariant under holomorphic rotations of \mathbb{CP}^n . One can change the metric to obtain a given volume form $g\omega^n$, with some positive function g satisfying

(0.1)
$$\int_{\mathbb{CP}^n} g\omega^n = \int_{\mathbb{CP}^n} \omega^n = \pi^n.$$

For this we need to solve the Monge–Ampère equation

(0.2)
$$(\omega + dd^c u)^n = g\omega^n,$$

with unknown function u such that $\omega + dd^c u$ is a positive form. By the Calabi–Yau theorem [Y], if g > 0, $g \in C^k(\mathbb{CP}^n)$, $k \ge 3$, then there exists a solution $u \in C^{k+1,\alpha}(\mathbb{CP}^n)$, where α is any number from the interval (0, 1). The existence part of the Calabi–Yau theorem was generalized by the author in [K1], [K2]. In particular, if $g \ge 0$ and $g \in L^p(\mathbb{CP}^n)$, p > 1, satisfying

²⁰⁰⁰ Mathematics Subject Classification: Primary 32F07; Secondary 32F05.

Key words and phrases: plurisubharmonic function, complex Monge–Ampère operator. Partially supported by KBN Grant No. 2 PO3A 010 19.

(0.1) then one can find a continuous solution (in the weak sense) of (0.2). As observed by Z. Błocki (cf. [B2]), the following result follows from the second order estimates in [Y], the stability theorem in [K2] and Trudinger's estimates [T] adapted to the complex Monge–Ampère equation in [B1].

THEOREM. Let M be a compact Kähler manifold. If $g^{1/n} \in C^{1,1}(M)$, g > 0, satisfies (0.1) then the solution of (0.2) belongs to $C^{3,\alpha}(M)$ for some $\alpha \in (0, 1)$.

The regularity of solutions for the degenerate case $g \ge 0$ is harder. A particular case, when the set $\{g = 0\}$ is analytic, has been dealt with in [Y]. Here we show a partial result for $M = \mathbb{CP}^n$.

THEOREM 1. If $g^{1/n} \in C^{1,1}(\mathbb{CP}^n)$, $g \geq 0$, satisfies (0.1) and the set $\{g=0\}$ has volume 0 then the solution of (0.2) belongs to $C^{1,1}(\mathbb{CP}^n)$.

In fact from the proof one can extract that it is enough to assume that the volume of $\{g = 0\}$ is bounded from above by some fixed positive constant (smaller than $\pi^n/2$). A related result has been obtained in [K3], where the regularity of the solution is shown in the standard coordinate chart: \mathbb{C}^n embedded in \mathbb{CP}^n .

From [B2] it follows that for g as in Theorem 1 except for the assumption on the set $\{g = 0\}$, the solution has bounded Laplacian and so $g \in C^{1,\alpha}$, $\alpha < 1$.

I am indebted to Z. Błocki for helpful discussions on the subject.

1. Proof of Theorem 1. We denote the homogeneous coordinates in \mathbb{CP}^n by $[z_0, z_1, \ldots, z_n]$. Fix a coordinate chart $w(z) = (z_1/z_0, \ldots, z_n/z_0)$ in $\{z : z_0 \neq 0\}$ and in this chart consider the two balls $B = \{w : |w| < 1/2\}$, $B_1 = \{w : |w| < 1\}$. The Lebesgue measure in \mathbb{C}^n will be denoted by dV.

Orthogonal transformations in \mathbb{C}^{n+1} of the form

$$\widetilde{F}_t(z) = (\cos t \, z_0 + \sin t \, z_1, -\sin t \, z_0 + \cos t \, z_1, z'), \qquad z' = (z_2, z_3, \dots, z_n),$$

$$\widetilde{G}_t(z) = (\cos t \, z_0 + i \sin t \, z_1, -i \sin t \, z_0 + \cos t \, z_1, z'),$$

induce automorphisms on \mathbb{CP}^n which we denote by F_t and G_t respectively.

By means of F_t and G_t we shall define "difference quotients" for functions defined on \mathbb{CP}^n . Let $w_t(z)$ (resp. $w'_t(z)$) be the midpoint of the interval $[w(F_t(z)), w(F_{-t}(z))]$ (resp. $[w(G_t(z)), w(G_{-t}(z))]$). Thus

$$w_t(z) = \frac{w(F_t(z)) + w(F_{-t}(z))}{2} = \frac{z_0}{\cos^2 t \, z_0^2 - \sin^2 t \, z_1^2} \, (z_1, \cos t \, z'),$$

$$w_t'(z) = \frac{w(G_t(z)) + w(G_{-t}(z))}{2} = \frac{z_0}{\cos^2 t \, z_0^2 + \sin^2 t \, z_1^2} \, (z_1, \cos t \, z').$$

Observe that

$$w_t(z) - w(z_0, z_1, \cos t z') = \frac{-\sin^2 t (z_0^2 + z_1^2)}{\cos^2 t z_0^2 + \sin^2 t z_1^2} \left(\frac{z_1}{z_0}, \frac{\cos t z'}{z_0}\right)$$
$$= \frac{-\sin^2 t (1 + w_1^2)}{\cos^2 t - \sin^2 t w_1^2} (w_1, \cos t w'),$$
$$w_t'(z) - w(z_0, z_1, \cos t z') = \frac{\sin^2 t (z_0^2 - z_1^2)}{\cos^2 t z_0^2 + \sin^2 t z_1^2} \left(\frac{z_1}{z_0}, \frac{\cos t z'}{z_0}\right)$$
$$= \frac{\sin^2 t (1 - w_1^2)}{\cos^2 t + \sin^2 t w_1^2} (w_1, \cos t w'),$$

with w = w(z) and $w' = (w_2, w_3, \ldots, w_n)$. Therefore there exists $C_0 > 0$ such that for any $z \in w^{-1}(B_1)$ we have

(1.1) $|w_t(z) - w(z)| \le C_0 t^2$, $|w'_t(z) - w(z)| \le C_0 t^2$, 0 < t < 1. Put similar computation

$$w(F_t(z)) - w(F_{-t}(z)) = \frac{-2\sin t}{\cos^2 t \, z_0^2 - \sin^2 t \, z_1^2} \left(\cos t \, (z_0^2 + z_1^2), z_1 z'\right)$$
$$= \frac{-2\sin t}{\cos^2 t - \sin^2 t \, w_1^2} \left(\cos t \, (1 + w_1^2), w_1 w'\right),$$
$$w(G_t(z)) - w(G_{-t}(z)) = \frac{-2i\sin t}{\cos^2 t \, z_0^2 + \sin^2 t \, z_1^2} \left(\cos t \, (z_0^2 + z_1^2), z_1 z'\right)$$
$$= \frac{-2i\sin t}{\cos^2 t + \sin^2 t \, w_1^2} \left(\cos t \, (1 + w_1^2), w_1 w'\right).$$

Hence

$$\gamma(z) := \lim_{t \to 0} \frac{w(F_t(z)) - w(F_{-t}(z))}{2} = -(1 + w_1^2, w_1 w'),$$

$$\gamma'(z) := \lim_{t \to 0} \frac{w(G_t(z)) - w(G_{-t}(z))}{2} = -i(1 + w_1^2, w_1 w').$$

Note that since

$$|\gamma(z)| = |\gamma'(z)| = (|1 + w_1^2|^2 + |w_1|^2|w'|^2)^{1/2}$$

we have

(1.2)
$$3/4 \le |\gamma(z)| \le 3/2 \quad \text{for } z \in w^{-1}(B).$$

Let u be a smooth function on \mathbb{CP}^n with $dd^c u + \omega \ge 0$. Then $U = u \circ w^{-1}$ is defined and smooth on \mathbb{C}^n . Observe that there exists a constant C_1 independent of u such that

(1.3)
$$\int_{B_1} \Delta U \, dV \le C_1,$$

where Δ denotes the Laplacian with respect to the Euclidean metric. Indeed, from $dd^c u \wedge \omega^{n-1} \geq -\omega^n$ and $\int_{\mathbb{CP}^n} dd^c u \wedge \omega^{n-1} = 0$ we have

$$\int_{w^{-1}(B_1)} dd^c u \wedge \omega^{n-1} = -\int_{\mathbb{CP}^n \setminus w^{-1}(B_1)} dd^c u \wedge \omega^{n-1} \le \int_{\mathbb{CP}^n \setminus w^{-1}(B_1)} \omega^n \le \pi^n.$$

Since the Euclidean metric and the pull-back of the Fubini–Study metric are equivalent we thus get

$$\int_{B_1} \Delta \left(U + \frac{1}{4} \log(1 + |w|^2) \right) dV \le C_2 \int_{w^{-1}(B_1)} (dd^c u + \omega) \wedge \omega^{n-1} \le 2C_2 \pi^n,$$

from which (1.3) follows. By (1.2) and the fact that $\gamma(z) = i\gamma'(z)$ we can estimate

(1.4)
$$\Phi_u(z) := D_{\gamma(z)\gamma(z)}U(w(z)) + D_{\gamma'(z)\gamma'(z)}U(w(z))$$
$$\leq \frac{9}{4}\Delta U(w(z)), \quad w(z) \in B,$$

where $D_{\gamma\gamma}$ denotes the second derivative in the direction of vector γ . Consider the sets

$$\Omega(M) = \{ w \in B : D_{\gamma(z)\gamma(z)}U(w) \ge M \},$$

$$\Omega'(M) = \{ w \in B : D_{\gamma'(z)\gamma'(z)}U(w) \ge M \}.$$

By (1.3) and (1.4),

$$2MV(\Omega(M) \cap \Omega'(M)) \leq \int_{\Omega(M) \cap \Omega'(M)} \Phi_u \circ w^{-1} dV \leq \frac{9}{4} \int_B \Delta U \, dV \leq \frac{9}{4} C_1.$$

Take M_0 so large that $V(\Omega(M_0) \cap \Omega'(M_0)) < \frac{1}{4}V(B)$. Then either

(1.5)
$$V(\Omega(M_0)) < \frac{3}{4}V(B)$$

or

$$V(\Omega'(M_0)) < \frac{3}{4} V(B).$$

From now on we assume that (1.5) holds. The proof for the other case is analogous.

Define

$$\gamma_t(z) = \frac{1}{t} \frac{-\sin t}{\cos^2 t - \sin^2 t \, w_1^2} (\cos t \, (1 + w_1^2), w_1 w'), \quad w = w(z).$$

So

(1.6)
$$\lim_{t \to 0} \gamma_t(z) = \gamma(z).$$

For smooth u we have, by Taylor expansion,

$$D_{\zeta\zeta}U(w) = \lim_{t \to 0} \frac{U(w + t\zeta) + U(w - t\zeta) - 2U(w)}{t^2}$$

and the convergence is uniform on the set $\{(w, \zeta) \in \mathbb{C}^2 : |w| \le 1, |\zeta| \le 3\}$. So for any $\varepsilon > 0$ there exists $t_0 > 0$ such that

(1.7)
$$|\delta_u(t,z) - D_{\gamma_t(z)\gamma_t(z)}U(w_t(z))| < \varepsilon, \quad t < t_0,$$

where

$$\delta_u(t,z) = \frac{u(F_t(z)) + u(F_{-t}(z)) - 2U(w_t(z))}{t^2}$$
$$= \frac{U(w_t(z) + t\gamma_t(z)) + U(w_t(z) - t\gamma_t(z)) - 2U(w_t(z))}{t^2}$$

Using (1.1) and (1.6) we can decrease t_0 (recall that we work with smooth u) so that

(1.8)
$$|D_{\gamma_t(z)\gamma_t(z)}U(w_t(z)) - D_{\gamma(z)\gamma(z)}U(w(z))| < \varepsilon.$$

Combining (1.7) and (1.8) we conclude that given $\varepsilon > 0$ we have

(1.9)
$$|\delta_u(t,z) - D_{\gamma(z)\gamma(z)}U(w(z))| < 2\varepsilon$$
 for $t < t_0$, $|w(z)| < 1$.

Define

$$u_t(z) = \frac{u(F_t(z)) + u(F_{-t}(z))}{2}$$

and $U_t = u_t \circ w^{-1}$. Note that $u_t(z) - u(z) = (t^2/2)\delta_u(t, z)$. Set

$$\Omega_t(M) = \{ z \in \mathbb{CP}^n : u(z) < u_t(z) - Mt^2 \} = \{ \delta_u(t, z) > 2M \}.$$

By (1.9) for small t we have $w(\Omega_t(M_0)) \cap B_1 \subset \Omega(M_0)$. Therefore, using (1.5) we obtain $V(w(\Omega_t(M_0)) \cap B) \leq \frac{3}{4}V(B)$. Hence, given g as in the assumptions, there exist c > 1 and $c_0 > 0$ such that

$$\int_{\Omega_t(M_0)} (cg + c_0) \omega^n \le \int_{\mathbb{CP}^n} g \omega^n, \quad t < t_1,$$

for some $t_1 > 0$.

Let h_t be the solution of

$$(\omega + dd^{c}h_{t})^{n} = \begin{cases} (cg + c_{0})\omega^{n} & \text{on } \Omega_{t}(M_{0}), \\ c_{1}\omega^{n} & \text{on } \mathbb{CP}^{n} \setminus \Omega_{t}(M_{0}), \end{cases}$$

satisfying max $h_t = 0$, where $t < t_1$ and $c_1 \ge 0$ is chosen so that the integral of the right hand side over \mathbb{CP}^n is equal to $\int_{\mathbb{CP}^n} \omega^n$. The solution exists by [K1] and moreover there exists c_2 independent of t such that

$$-c_2 < h_t \le 0.$$

One can increase c_2 and add a constant to u to have also

$$-c_2 < u_t \le 0.$$

 Set

$$\Omega'(t,A) = \{ u < (1 - At^2)u_t + At^2h_t - (M_0 + c_2A)t^2 \}$$

for A > 0 and $t < t_1$ so small that $2nAt_1^2 < 1$. Note that $\Omega'(t, A) \subset \Omega_t(M_0)$, since $h_t - u_t - c_2 < 0$.

LEMMA. For $g \geq 0$ with $g^{1/n} \in C^2(\mathbb{CP}^n)$ and u which is the solution of $(dd^c u + \omega)^n = g\omega^n$, define u_t as above and let g_t be the functions satisfying $(dd^c u_t + \omega)^n = g_t\omega^n$. Then there exists c_3 independent of t such that

$$g_t^{1/n} \ge g^{1/n} - c_3 t^2, \quad t < t_1,$$

with c_3 depending only on $||D^2g^{1/n}||$.

 $Proof \ of \ Lemma.$ Since F_t are isometric with respect to the Fubini–Study metric we have

$$dd^{c}u_{t} + \omega = \frac{1}{2} \left[F_{t}^{*}(dd^{c}u + \omega) + F_{-t}^{*}(dd^{c}u + \omega) \right].$$

From the concavity of the mapping $A \mapsto \det^{1/n} A$ defined on the set of positive definite Hermitian matrices we have

$$g_t^{1/n} \ge \frac{1}{2} \left[g^{1/n} \circ F_t + g^{1/n} \circ F_{-t} \right].$$

By Taylor expansion,

$$\left|\frac{g^{1/n} \circ F_t(w) + g^{1/n} \circ F_{-t}(w)}{2} - g^{1/n}(w_t)\right| \le c'_3 t^2,$$

where c'_3 depends only on $||D^2g^{1/n}||$. Combining this inequality with (1.1) we get the statement.

In what follows we can assume that $c_2 = c_3$ by just taking the larger of the two numbers. Choose A > 0 so that

$$A > 2nc_2c_0^{-1/n}$$
 and $A > \sup_{[0,\sup g]} f(x),$

where $f(x) = c_2 x^{-1/n} [(c+c_0/x)^{1/n} - 1]^{-1}$. Note that $\sup_{[0, \sup g]} f(x)$ is finite since $\lim_{x \to 0} f(x) = c_2 c_0^{-1/n}$.

Reasoning by contradiction suppose that $\Omega' = \Omega'(t, A) \neq \emptyset$ for fixed small $t < t_1$. Set

$$\Omega'' = \Omega''(t, A) = \Omega' \cap \{g^{1/n} > 2nc_2 t^2\}.$$

For brevity, in the estimates below we write $a_t = 1 - At^2$, $b_t = g^{1/n} - c_2 t^2$. Applying, in turn, the comparison principle from [K2], Lemma 1.2 from [K2] and the above Lemma we obtain

$$\begin{split} &\int_{\Omega'} g\omega^n \geq \int_{\Omega'} a_t^n (dd^c u_t + \omega)^n + nAt^2 a_t^{n-1} (dd^c u_t + \omega)^{n-1} \wedge (dd^c h_t + \omega) \\ &\quad + A^n t^{2n} (dd^c h_t + \omega)^n \\ &\geq \int_{\Omega'} [a_t^n g_t + nAt^2 a_t^{n-1} g_t^{(n-1)/n} (cg + c_0)^{1/n} + A^n t^{2n} c_0] \omega^n \\ &= \int_{\Omega' \backslash \Omega''} \dots + \int_{\Omega''} \dots \\ &\geq \int_{\Omega' \backslash \Omega''} A^n t^{2n} c_0 \omega^n + \int_{\Omega''} [a_t^{n-1} b_t^{n-1} (a_t b_t + nAt^2 (cg + c_0)^{1/n}) + c_0] \omega^n. \end{split}$$

A contradiction is reached when the following two inequalities hold:

$$A^n t^{2n} (cg + c_0) > g$$
 on $\Omega' \setminus \Omega''$

and

(1.10)
$$a_t^{n-1}b_t^{n-1}(a_tb_t + nAt^2(cg+c_0)^{1/n}) \ge g \quad \text{on } \Omega''.$$

The first one follows from the choice of A and the fact that $g \leq (2nc_2)^n t^{2n}$ away from Ω'' . To get the second one, divide both sides by g and use the inequalities of the type $a_t^{n-1} \geq 1 - (n-1)At^2$ to conclude that (1.10) follows from

(1.11)
$$(1 - (n - 1)At^2) \left(1 - \frac{(n - 1)c_2t^2}{g^{1/n}} \right)$$

 $\times \left[\left(1 - \frac{c_2t^2}{g^{1/n}} \right) (1 - At^2) + nAt^2 \left(c + \frac{c_0}{g} \right)^{1/n} \right] \ge 1.$

The left hand side of (1.11) is not smaller than

$$\left(1 - (n-1)At^2 - \frac{(n-1)c_2t^2}{g^{1/n}}\right) \left[1 - \frac{c_2t^2}{g^{1/n}} - At^2 + nAt^2\left(c + \frac{c_0}{g}\right)^{1/n}\right]$$

and the last expression is not less than 1 if

$$nAt^{2}\left(c+\frac{c_{0}}{g}\right)^{1/n}\left[1-(n-1)At^{2}-\frac{(n-1)c_{2}t^{2}}{g^{1/n}}\right] \ge nAt^{2}+\frac{nc_{2}t^{2}}{g^{1/n}}.$$

Since the expression in the square brackets tends to 1 as $t \to 0$ we reach a contradiction as soon as

$$A > \frac{c_2}{g^{1/n}[(c+c_0/g)^{1/n}-1]}.$$

The last inequality follows from the choice of A. The contradiction proves that Ω' is empty for t sufficiently small. So

$$u > (1 - At^2)u_t + At^2h_t - (M_0 + c_2A)t^2.$$

Therefore there exists A_0 such that for t small enough $u > u_t - A_0 t^2$, or

equivalently,

$$\delta_u(t,z) \le 2A_0.$$

In view of (1.9) the last inequality implies

(1.10) $D_{\gamma(z)\gamma(z)}U(w(z)) \le \text{const}$

for $|w(z)| \leq 1/2$. The last estimate has been obtained for smooth u. It remains valid for all directions at a given point if we apply automorphisms of \mathbb{CP}^n .

To get the general case let us approximate a given g (in $C^{1,1}$ norm) by a sequence of smooth g_j normalized by $\int g_j \omega^n = \int \omega^n$ and such that the same constant c in the proof works for all j. By the above the solutions of

$$(dd^c u_j + \omega)^n = g_j \omega^n$$

have pure second order derivatives uniformly upper bounded. Thus (1.10) holds also for the original g. By the argument from [BT] a bound for pure second order derivatives also gives an upper bound for mixed second order derivatives of a plurisubharmonic function. But $U(w) + \log(1 + w^2)$ is plurisubharmonic and the second term is smooth. Thus U is $C^{1,1}$.

References

- [BT] E. Bedford and B. A. Taylor, The Dirichlet problem for the complex Monge–Ampère operator, Invent. Math. 37 (1976), 1–44.
- [B1] Z. Błocki, On regularity of the complex Monge-Ampère operator, in: Contemp. Math. 222, Amer. Math. Soc., 1999, 181–189.
- [B2] —, Regularity of the degenerate Monge-Ampère equation on compact Kähler manifolds, Math. Z., to appear.
- [K1] S. Kołodziej, The complex Monge-Ampère equation, Acta Math. 180 (1998), 69– 117.
- [K2] —, Stability of solutions to the complex Monge-Ampère equation on compact Kähler manifolds, Indiana Univ. Math. J., to appear.
- [K3] —, Regularity of entire solutions to the complex Monge-Ampère equation, Comm. Anal. Geom., to appear.
- [T] N. S. Trudinger, Regularity of solutions of fully nonlinear elliptic equations, Boll. Un. Mat. Ital. 3 (1984), 421–430.
- [Y] S.-T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, Comm. Pure Appl. Math. 31 (1978), 339–411.

Jagiellonian University Institute of Mathematics Reymonta 4 30-059 Kraków, Poland E-mail: kolodzie@im.uj.edu.pl

(1386)