A regularity theorem for the complex Monge-Ampère equation in $\mathbb{C P}^{n}$

by SŁawomir KoŁodziej (Kraków)

Dedicated to Professor Józef Siciak

Abstract

C^{1,1}\) regularity of the solutions of the complex Monge-Ampère equation in $\mathbb{C P}^{n}$ with the n-root of the right hand side in $C^{1,1}$ is proved.

0. Introduction. The purpose of this paper is to prove $C^{1,1}$ regularity of solutions of the complex Monge-Ampère equation in $\mathbb{C P}^{n}$ when the n-root of the function on the right hand side belongs to $C^{1,1}\left(\mathbb{C P}^{n}\right)$ with an extra assumption on the zero-set of this function. If we denote by $\left[z_{0}, z_{1}, \ldots, z_{n}\right]$ the homogeneous coordinates in $\mathbb{C P}^{n}$ then the closed positive $(1,1)$-form

$$
\omega=\frac{i}{2} \partial \bar{\partial} \log \|z\|^{2}=\frac{1}{4} d d^{c}\left(\log \|z\|^{2}\right) \quad\left(d^{c}:=i(\bar{\partial}-\partial)\right)
$$

induces the Fubini-Study metric. This is a Kähler metric invariant under holomorphic rotations of $\mathbb{C P}^{n}$. One can change the metric to obtain a given volume form $g \omega^{n}$, with some positive function g satisfying

$$
\begin{equation*}
\int_{\mathbb{C P}^{n}} g \omega^{n}=\int_{\mathbb{C P}^{n}} \omega^{n}=\pi^{n} \tag{0.1}
\end{equation*}
$$

For this we need to solve the Monge-Ampère equation

$$
\begin{equation*}
\left(\omega+d d^{c} u\right)^{n}=g \omega^{n} \tag{0.2}
\end{equation*}
$$

with unknown function u such that $\omega+d d^{c} u$ is a positive form. By the Calabi-Yau theorem $[\mathrm{Y}]$, if $g>0, g \in C^{k}\left(\mathbb{C P}^{n}\right), k \geq 3$, then there exists a solution $u \in C^{k+1, \alpha}\left(\mathbb{C P}^{n}\right)$, where α is any number from the interval $(0,1)$. The existence part of the Calabi-Yau theorem was generalized by the author in [K1], [K2]. In particular, if $g \geq 0$ and $g \in L^{p}\left(\mathbb{C P}^{n}\right), p>1$, satisfying

[^0](0.1) then one can find a continuous solution (in the weak sense) of (0.2). As observed by Z. Błocki (cf. [B2]), the following result follows from the second order estimates in [Y], the stability theorem in [K2] and Trudinger's estimates [T$]$ adapted to the complex Monge-Ampère equation in [B1].

Theorem. Let M be a compact Kähler manifold. If $g^{1 / n} \in C^{1,1}(M)$, $g>0$, satisfies (0.1) then the solution of (0.2) belongs to $C^{3, \alpha}(M)$ for some $\alpha \in(0,1)$.

The regularity of solutions for the degenerate case $g \geq 0$ is harder. A particular case, when the set $\{g=0\}$ is analytic, has been dealt with in $[\mathrm{Y}]$. Here we show a partial result for $M=\mathbb{C P}^{n}$.

Theorem 1. If $g^{1 / n} \in C^{1,1}\left(\mathbb{C P}^{n}\right), g \geq 0$, satisfies (0.1) and the set $\{g=0\}$ has volume 0 then the solution of (0.2) belongs to $C^{1,1}\left(\mathbb{C P}^{n}\right)$.

In fact from the proof one can extract that it is enough to assume that the volume of $\{g=0\}$ is bounded from above by some fixed positive constant (smaller than $\pi^{n} / 2$). A related result has been obtained in [K3], where the regularity of the solution is shown in the standard coordinate chart: \mathbb{C}^{n} embedded in $\mathbb{C P}{ }^{n}$.

From [B2] it follows that for g as in Theorem 1 except for the assumption on the set $\{g=0\}$, the solution has bounded Laplacian and so $g \in C^{1, \alpha}$, $\alpha<1$.

I am indebted to Z. Błocki for helpful discussions on the subject.

1. Proof of Theorem 1. We denote the homogeneous coordinates in $\mathbb{C P}^{n}$ by $\left[z_{0}, z_{1}, \ldots, z_{n}\right]$. Fix a coordinate chart $w(z)=\left(z_{1} / z_{0}, \ldots, z_{n} / z_{0}\right)$ in $\left\{z: z_{0} \neq 0\right\}$ and in this chart consider the two balls $B=\{w:|w|<1 / 2\}$, $B_{1}=\{w:|w|<1\}$. The Lebesgue measure in \mathbb{C}^{n} will be denoted by $d V$.

Orthogonal transformations in \mathbb{C}^{n+1} of the form

$$
\begin{aligned}
& \widetilde{F}_{t}(z)=\left(\cos t z_{0}+\sin t z_{1},-\sin t z_{0}+\cos t z_{1}, z^{\prime}\right), \quad z^{\prime}=\left(z_{2}, z_{3}, \ldots, z_{n}\right) \\
& \widetilde{G}_{t}(z)=\left(\cos t z_{0}+i \sin t z_{1},-i \sin t z_{0}+\cos t z_{1}, z^{\prime}\right)
\end{aligned}
$$

induce automorphisms on $\mathbb{C P}^{n}$ which we denote by F_{t} and G_{t} respectively.
By means of F_{t} and G_{t} we shall define "difference quotients" for functions defined on $\mathbb{C P}^{n}$. Let $w_{t}(z)$ (resp. $\left.w_{t}^{\prime}(z)\right)$ be the midpoint of the interval $\left[w\left(F_{t}(z)\right), w\left(F_{-t}(z)\right)\right]$ (resp. $\left.\left[w\left(G_{t}(z)\right), w\left(G_{-t}(z)\right)\right]\right)$. Thus

$$
\begin{aligned}
& w_{t}(z)=\frac{w\left(F_{t}(z)\right)+w\left(F_{-t}(z)\right)}{2}=\frac{z_{0}}{\cos ^{2} t z_{0}^{2}-\sin ^{2} t z_{1}^{2}}\left(z_{1}, \cos t z^{\prime}\right) \\
& w_{t}^{\prime}(z)=\frac{w\left(G_{t}(z)\right)+w\left(G_{-t}(z)\right)}{2}=\frac{z_{0}}{\cos ^{2} t z_{0}^{2}+\sin ^{2} t z_{1}^{2}}\left(z_{1}, \cos t z^{\prime}\right)
\end{aligned}
$$

Observe that

$$
\begin{aligned}
w_{t}(z)-w\left(z_{0}, z_{1}, \cos t z^{\prime}\right) & =\frac{-\sin ^{2} t\left(z_{0}^{2}+z_{1}^{2}\right)}{\cos ^{2} t z_{0}^{2}+\sin ^{2} t z_{1}^{2}}\left(\frac{z_{1}}{z_{0}}, \frac{\cos t z^{\prime}}{z_{0}}\right) \\
& =\frac{-\sin ^{2} t\left(1+w_{1}^{2}\right)}{\cos ^{2} t-\sin ^{2} t w_{1}^{2}}\left(w_{1}, \cos t w^{\prime}\right) \\
w_{t}^{\prime}(z)-w\left(z_{0}, z_{1}, \cos t z^{\prime}\right) & =\frac{\sin ^{2} t\left(z_{0}^{2}-z_{1}^{2}\right)}{\cos ^{2} t z_{0}^{2}+\sin ^{2} t z_{1}^{2}}\left(\frac{z_{1}}{z_{0}}, \frac{\cos t z^{\prime}}{z_{0}}\right) \\
& =\frac{\sin ^{2} t\left(1-w_{1}^{2}\right)}{\cos ^{2} t+\sin ^{2} t w_{1}^{2}}\left(w_{1}, \cos t w^{\prime}\right)
\end{aligned}
$$

with $w=w(z)$ and $w^{\prime}=\left(w_{2}, w_{3}, \ldots, w_{n}\right)$. Therefore there exists $C_{0}>0$ such that for any $z \in w^{-1}\left(B_{1}\right)$ we have

$$
\begin{equation*}
\left|w_{t}(z)-w(z)\right| \leq C_{0} t^{2}, \quad\left|w_{t}^{\prime}(z)-w(z)\right| \leq C_{0} t^{2}, \quad 0<t<1 \tag{1.1}
\end{equation*}
$$

By similar computation,

$$
\begin{aligned}
w\left(F_{t}(z)\right)-w\left(F_{-t}(z)\right) & =\frac{-2 \sin t}{\cos ^{2} t z_{0}^{2}-\sin ^{2} t z_{1}^{2}}\left(\cos t\left(z_{0}^{2}+z_{1}^{2}\right), z_{1} z^{\prime}\right) \\
& =\frac{-2 \sin t}{\cos ^{2} t-\sin ^{2} t w_{1}^{2}}\left(\cos t\left(1+w_{1}^{2}\right), w_{1} w^{\prime}\right) \\
w\left(G_{t}(z)\right)-w\left(G_{-t}(z)\right) & =\frac{-2 i \sin t}{\cos ^{2} t z_{0}^{2}+\sin ^{2} t z_{1}^{2}}\left(\cos t\left(z_{0}^{2}+z_{1}^{2}\right), z_{1} z^{\prime}\right) \\
& =\frac{-2 i \sin t}{\cos ^{2} t+\sin ^{2} t w_{1}^{2}}\left(\cos t\left(1+w_{1}^{2}\right), w_{1} w^{\prime}\right)
\end{aligned}
$$

Hence

$$
\begin{aligned}
\gamma(z) & :=\lim _{t \rightarrow 0} \frac{w\left(F_{t}(z)\right)-w\left(F_{-t}(z)\right)}{2}=-\left(1+w_{1}^{2}, w_{1} w^{\prime}\right) \\
\gamma^{\prime}(z) & :=\lim _{t \rightarrow 0} \frac{w\left(G_{t}(z)\right)-w\left(G_{-t}(z)\right)}{2}=-i\left(1+w_{1}^{2}, w_{1} w^{\prime}\right)
\end{aligned}
$$

Note that since

$$
|\gamma(z)|=\left|\gamma^{\prime}(z)\right|=\left(\left|1+w_{1}^{2}\right|^{2}+\left|w_{1}\right|^{2}\left|w^{\prime}\right|^{2}\right)^{1 / 2}
$$

we have

$$
\begin{equation*}
3 / 4 \leq|\gamma(z)| \leq 3 / 2 \quad \text { for } z \in w^{-1}(B) \tag{1.2}
\end{equation*}
$$

Let u be a smooth function on $\mathbb{C P}^{n}$ with $d d^{c} u+\omega \geq 0$. Then $U=$ $u \circ w^{-1}$ is defined and smooth on \mathbb{C}^{n}. Observe that there exists a constant C_{1} independent of u such that

$$
\begin{equation*}
\int_{B_{1}} \Delta U d V \leq C_{1} \tag{1.3}
\end{equation*}
$$

where Δ denotes the Laplacian with respect to the Euclidean metric. Indeed, from $d d^{c} u \wedge \omega^{n-1} \geq-\omega^{n}$ and $\int_{\mathbb{C P}^{n}} d d^{c} u \wedge \omega^{n-1}=0$ we have

$$
\int_{w^{-1}\left(B_{1}\right)} d d^{c} u \wedge \omega^{n-1}=-\int_{\mathbb{C P}^{n} \backslash w^{-1}\left(B_{1}\right)} d d^{c} u \wedge \omega^{n-1} \leq \int_{\mathbb{C P}^{n} \backslash w^{-1}\left(B_{1}\right)} \omega^{n} \leq \pi^{n}
$$

Since the Euclidean metric and the pull-back of the Fubini-Study metric are equivalent we thus get

$$
\int_{B_{1}} \Delta\left(U+\frac{1}{4} \log \left(1+|w|^{2}\right)\right) d V \leq C_{2} \int_{w^{-1}\left(B_{1}\right)}\left(d d^{c} u+\omega\right) \wedge \omega^{n-1} \leq 2 C_{2} \pi^{n}
$$

from which (1.3) follows. By (1.2) and the fact that $\gamma(z)=i \gamma^{\prime}(z)$ we can estimate

$$
\begin{align*}
\Phi_{u}(z) & :=D_{\gamma(z) \gamma(z)} U(w(z))+D_{\gamma^{\prime}(z) \gamma^{\prime}(z)} U(w(z)) \tag{1.4}\\
& \leq \frac{9}{4} \Delta U(w(z)), \quad w(z) \in B,
\end{align*}
$$

where $D_{\gamma \gamma}$ denotes the second derivative in the direction of vector γ. Consider the sets

$$
\begin{aligned}
\Omega(M) & =\left\{w \in B: D_{\gamma(z) \gamma(z)} U(w) \geq M\right\} \\
\Omega^{\prime}(M) & =\left\{w \in B: D_{\gamma^{\prime}(z) \gamma^{\prime}(z)} U(w) \geq M\right\} .
\end{aligned}
$$

By (1.3) and (1.4),

$$
2 M V\left(\Omega(M) \cap \Omega^{\prime}(M)\right) \leq \int_{\Omega(M) \cap \Omega^{\prime}(M)} \Phi_{u} \circ w^{-1} d V \leq \frac{9}{4} \int_{B} \Delta U d V \leq \frac{9}{4} C_{1} .
$$

Take M_{0} so large that $V\left(\Omega\left(M_{0}\right) \cap \Omega^{\prime}\left(M_{0}\right)\right)<\frac{1}{4} V(B)$. Then either

$$
\begin{equation*}
V\left(\Omega\left(M_{0}\right)\right)<\frac{3}{4} V(B) \tag{1.5}
\end{equation*}
$$

or

$$
V\left(\Omega^{\prime}\left(M_{0}\right)\right)<\frac{3}{4} V(B) .
$$

From now on we assume that (1.5) holds. The proof for the other case is analogous.

Define

$$
\gamma_{t}(z)=\frac{1}{t} \frac{-\sin t}{\cos ^{2} t-\sin ^{2} t w_{1}^{2}}\left(\cos t\left(1+w_{1}^{2}\right), w_{1} w^{\prime}\right), \quad w=w(z) .
$$

So

$$
\begin{equation*}
\lim _{t \rightarrow 0} \gamma_{t}(z)=\gamma(z) \tag{1.6}
\end{equation*}
$$

For smooth u we have, by Taylor expansion,

$$
D_{\zeta \zeta} U(w)=\lim _{t \rightarrow 0} \frac{U(w+t \zeta)+U(w-t \zeta)-2 U(w)}{t^{2}}
$$

and the convergence is uniform on the set $\left\{(w, \zeta) \in \mathbb{C}^{2}:|w| \leq 1,|\zeta| \leq 3\right\}$. So for any $\varepsilon>0$ there exists $t_{0}>0$ such that

$$
\begin{equation*}
\left|\delta_{u}(t, z)-D_{\gamma_{t}(z) \gamma_{t}(z)} U\left(w_{t}(z)\right)\right|<\varepsilon, \quad t<t_{0} \tag{1.7}
\end{equation*}
$$

where

$$
\begin{aligned}
\delta_{u}(t, z) & =\frac{u\left(F_{t}(z)\right)+u\left(F_{-t}(z)\right)-2 U\left(w_{t}(z)\right)}{t^{2}} \\
& =\frac{U\left(w_{t}(z)+t \gamma_{t}(z)\right)+U\left(w_{t}(z)-t \gamma_{t}(z)\right)-2 U\left(w_{t}(z)\right)}{t^{2}}
\end{aligned}
$$

Using (1.1) and (1.6) we can decrease t_{0} (recall that we work with smooth u) so that

$$
\begin{equation*}
\left|D_{\gamma_{t}(z) \gamma_{t}(z)} U\left(w_{t}(z)\right)-D_{\gamma(z) \gamma(z)} U(w(z))\right|<\varepsilon \tag{1.8}
\end{equation*}
$$

Combining (1.7) and (1.8) we conclude that given $\varepsilon>0$ we have

$$
\begin{equation*}
\left|\delta_{u}(t, z)-D_{\gamma(z) \gamma(z)} U(w(z))\right|<2 \varepsilon \quad \text { for } t<t_{0},|w(z)|<1 \tag{1.9}
\end{equation*}
$$

Define

$$
u_{t}(z)=\frac{u\left(F_{t}(z)\right)+u\left(F_{-t}(z)\right)}{2}
$$

and $U_{t}=u_{t} \circ w^{-1}$. Note that $u_{t}(z)-u(z)=\left(t^{2} / 2\right) \delta_{u}(t, z)$. Set

$$
\Omega_{t}(M)=\left\{z \in \mathbb{C P}^{n}: u(z)<u_{t}(z)-M t^{2}\right\}=\left\{\delta_{u}(t, z)>2 M\right\}
$$

By (1.9) for small t we have $w\left(\Omega_{t}\left(M_{0}\right)\right) \cap B_{1} \subset \Omega\left(M_{0}\right)$. Therefore, using (1.5) we obtain $V\left(w\left(\Omega_{t}\left(M_{0}\right)\right) \cap B\right) \leq \frac{3}{4} V(B)$. Hence, given g as in the assumptions, there exist $c>1$ and $c_{0}>0$ such that

$$
\int_{\Omega_{t}\left(M_{0}\right)}\left(c g+c_{0}\right) \omega^{n} \leq \int_{\mathbb{C P}^{n}} g \omega^{n}, \quad t<t_{1}
$$

for some $t_{1}>0$.
Let h_{t} be the solution of

$$
\left(\omega+d d^{c} h_{t}\right)^{n}= \begin{cases}\left(c g+c_{0}\right) \omega^{n} & \text { on } \Omega_{t}\left(M_{0}\right) \\ c_{1} \omega^{n} & \text { on } \mathbb{C P}^{n} \backslash \Omega_{t}\left(M_{0}\right)\end{cases}
$$

satisfying $\max h_{t}=0$, where $t<t_{1}$ and $c_{1} \geq 0$ is chosen so that the integral of the right hand side over $\mathbb{C P}^{n}$ is equal to $\int_{\mathbb{C P}^{n}} \omega^{n}$. The solution exists by [K1] and moreover there exists c_{2} independent of t such that

$$
-c_{2}<h_{t} \leq 0
$$

One can increase c_{2} and add a constant to u to have also

$$
-c_{2}<u_{t} \leq 0
$$

Set

$$
\Omega^{\prime}(t, A)=\left\{u<\left(1-A t^{2}\right) u_{t}+A t^{2} h_{t}-\left(M_{0}+c_{2} A\right) t^{2}\right\}
$$

for $A>0$ and $t<t_{1}$ so small that $2 n A t_{1}^{2}<1$. Note that $\Omega^{\prime}(t, A) \subset \Omega_{t}\left(M_{0}\right)$, since $h_{t}-u_{t}-c_{2}<0$.

Lemma. For $g \geq 0$ with $g^{1 / n} \in C^{2}\left(\mathbb{C P}^{n}\right)$ and u which is the solution of $\left(d d^{c} u+\omega\right)^{n}=g \omega^{n}$, define u_{t} as above and let g_{t} be the functions satisfying $\left(d d^{c} u_{t}+\omega\right)^{n}=g_{t} \omega^{n}$. Then there exists c_{3} independent of t such that

$$
g_{t}^{1 / n} \geq g^{1 / n}-c_{3} t^{2}, \quad t<t_{1}
$$

with c_{3} depending only on $\left\|D^{2} g^{1 / n}\right\|$.
Proof of Lemma. Since F_{t} are isometric with respect to the Fubini-Study metric we have

$$
d d^{c} u_{t}+\omega=\frac{1}{2}\left[F_{t}^{*}\left(d d^{c} u+\omega\right)+F_{-t}^{*}\left(d d^{c} u+\omega\right)\right]
$$

From the concavity of the mapping $A \mapsto \operatorname{det}^{1 / n} A$ defined on the set of positive definite Hermitian matrices we have

$$
g_{t}^{1 / n} \geq \frac{1}{2}\left[g^{1 / n} \circ F_{t}+g^{1 / n} \circ F_{-t}\right]
$$

By Taylor expansion,

$$
\left|\frac{g^{1 / n} \circ F_{t}(w)+g^{1 / n} \circ F_{-t}(w)}{2}-g^{1 / n}\left(w_{t}\right)\right| \leq c_{3}^{\prime} t^{2}
$$

where c_{3}^{\prime} depends only on $\left\|D^{2} g^{1 / n}\right\|$. Combining this inequality with (1.1) we get the statement.

In what follows we can assume that $c_{2}=c_{3}$ by just taking the larger of the two numbers. Choose $A>0$ so that

$$
A>2 n c_{2} c_{0}^{-1 / n} \quad \text { and } \quad A>\sup _{[0, \sup g]} f(x)
$$

where $f(x)=c_{2} x^{-1 / n}\left[\left(c+c_{0} / x\right)^{1 / n}-1\right]^{-1}$. Note that $\sup _{[0, \sup g]} f(x)$ is finite since $\lim _{x \rightarrow 0} f(x)=c_{2} c_{0}^{-1 / n}$.

Reasoning by contradiction suppose that $\Omega^{\prime}=\Omega^{\prime}(t, A) \neq \emptyset$ for fixed small $t<t_{1}$. Set

$$
\Omega^{\prime \prime}=\Omega^{\prime \prime}(t, A)=\Omega^{\prime} \cap\left\{g^{1 / n}>2 n c_{2} t^{2}\right\}
$$

For brevity, in the estimates below we write $a_{t}=1-A t^{2}, b_{t}=g^{1 / n}-c_{2} t^{2}$. Applying, in turn, the comparison principle from [K2], Lemma 1.2 from [K2] and the above Lemma we obtain

$$
\begin{aligned}
\int_{\Omega^{\prime}} g \omega^{n} \geq & \int_{\Omega^{\prime}} a_{t}^{n}\left(d d^{c} u_{t}+\omega\right)^{n}+n A t^{2} a_{t}^{n-1}\left(d d^{c} u_{t}+\omega\right)^{n-1} \wedge\left(d d^{c} h_{t}+\omega\right) \\
& +A^{n} t^{2 n}\left(d d^{c} h_{t}+\omega\right)^{n} \\
\geq & \int_{\Omega^{\prime}}\left[a_{t}^{n} g_{t}+n A t^{2} a_{t}^{n-1} g_{t}^{(n-1) / n}\left(c g+c_{0}\right)^{1 / n}+A^{n} t^{2 n} c_{0}\right] \omega^{n} \\
= & \int_{\Omega^{\prime} \backslash \Omega^{\prime \prime}} \ldots+\int_{\Omega^{\prime \prime}} \ldots \\
\geq & \int_{\Omega^{\prime} \backslash \Omega^{\prime \prime}} A^{n} t^{2 n} c_{0} \omega^{n}+\int_{\Omega^{\prime \prime}}\left[a_{t}^{n-1} b_{t}^{n-1}\left(a_{t} b_{t}+n A t^{2}\left(c g+c_{0}\right)^{1 / n}\right)+c_{0}\right] \omega^{n} .
\end{aligned}
$$

A contradiction is reached when the following two inequalities hold:

$$
A^{n} t^{2 n}\left(c g+c_{0}\right)>g \quad \text { on } \Omega^{\prime} \backslash \Omega^{\prime \prime}
$$

and

$$
\begin{equation*}
a_{t}^{n-1} b_{t}^{n-1}\left(a_{t} b_{t}+n A t^{2}\left(c g+c_{0}\right)^{1 / n}\right) \geq g \quad \text { on } \Omega^{\prime \prime} \tag{1.10}
\end{equation*}
$$

The first one follows from the choice of A and the fact that $g \leq\left(2 n c_{2}\right)^{n} t^{2 n}$ away from $\Omega^{\prime \prime}$. To get the second one, divide both sides by g and use the inequalities of the type $a_{t}^{n-1} \geq 1-(n-1) A t^{2}$ to conclude that (1.10) follows from

$$
\begin{align*}
(1-(n-1) & \left.A t^{2}\right)\left(1-\frac{(n-1) c_{2} t^{2}}{g^{1 / n}}\right) \tag{1.11}\\
\times & {\left[\left(1-\frac{c_{2} t^{2}}{g^{1 / n}}\right)\left(1-A t^{2}\right)+n A t^{2}\left(c+\frac{c_{0}}{g}\right)^{1 / n}\right] \geq 1 }
\end{align*}
$$

The left hand side of (1.11) is not smaller than

$$
\left(1-(n-1) A t^{2}-\frac{(n-1) c_{2} t^{2}}{g^{1 / n}}\right)\left[1-\frac{c_{2} t^{2}}{g^{1 / n}}-A t^{2}+n A t^{2}\left(c+\frac{c_{0}}{g}\right)^{1 / n}\right]
$$

and the last expression is not less than 1 if

$$
n A t^{2}\left(c+\frac{c_{0}}{g}\right)^{1 / n}\left[1-(n-1) A t^{2}-\frac{(n-1) c_{2} t^{2}}{g^{1 / n}}\right] \geq n A t^{2}+\frac{n c_{2} t^{2}}{g^{1 / n}}
$$

Since the expression in the square brackets tends to 1 as $t \rightarrow 0$ we reach a contradiction as soon as

$$
A>\frac{c_{2}}{g^{1 / n}\left[\left(c+c_{0} / g\right)^{1 / n}-1\right]}
$$

The last inequality follows from the choice of A. The contradiction proves that Ω^{\prime} is empty for t sufficiently small. So

$$
u>\left(1-A t^{2}\right) u_{t}+A t^{2} h_{t}-\left(M_{0}+c_{2} A\right) t^{2}
$$

Therefore there exists A_{0} such that for t small enough $u>u_{t}-A_{0} t^{2}$, or
equivalently,

$$
\delta_{u}(t, z) \leq 2 A_{0}
$$

In view of (1.9) the last inequality implies

$$
\begin{equation*}
D_{\gamma(z) \gamma(z)} U(w(z)) \leq \mathrm{const} \tag{1.10}
\end{equation*}
$$

for $|w(z)| \leq 1 / 2$. The last estimate has been obtained for smooth u. It remains valid for all directions at a given point if we apply automorphisms of $\mathbb{C P}^{n}$.

To get the general case let us approximate a given g (in $C^{1,1}$ norm) by a sequence of smooth g_{j} normalized by $\int g_{j} \omega^{n}=\int \omega^{n}$ and such that the same constant c in the proof works for all j. By the above the solutions of

$$
\left(d d^{c} u_{j}+\omega\right)^{n}=g_{j} \omega^{n}
$$

have pure second order derivatives uniformly upper bounded. Thus (1.10) holds also for the original g. By the argument from $[\mathrm{BT}]$ a bound for pure second order derivatives also gives an upper bound for mixed second order derivatives of a plurisubharmonic function. But $U(w)+\log \left(1+w^{2}\right)$ is plurisubharmonic and the second term is smooth. Thus U is $C^{1,1}$.

References

[BT] E. Bedford and B. A. Taylor, The Dirichlet problem for the complex Monge-Ampère operator, Invent. Math. 37 (1976), 1-44.
[B1] Z. Błocki, On regularity of the complex Monge-Ampère operator, in: Contemp. Math. 222, Amer. Math. Soc., 1999, 181-189.
[B2] -, Regularity of the degenerate Monge-Ampère equation on compact Kähler manifolds, Math. Z., to appear.
[K1] S. Kołodziej, The complex Monge-Ampère equation, Acta Math. 180 (1998), 69117.
[K2] -, Stability of solutions to the complex Monge-Ampère equation on compact Kähler manifolds, Indiana Univ. Math. J., to appear.
[K3] -, Regularity of entire solutions to the complex Monge-Ampère equation, Comm. Anal. Geom., to appear.
[T] N. S. Trudinger, Regularity of solutions of fully nonlinear elliptic equations, Boll. Un. Mat. Ital. 3 (1984), 421-430.
$[\mathrm{Y}] \quad \mathrm{S} .-\mathrm{T} . \mathrm{Yau}$, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, Comm. Pure Appl. Math. 31 (1978), 339-411.

Jagiellonian University
Institute of Mathematics
Reymonta 4
30-059 Kraków, Poland
E-mail: kolodzie@im.uj.edu.pl

[^0]: 2000 Mathematics Subject Classification: Primary 32F07; Secondary 32F05.
 Key words and phrases: plurisubharmonic function, complex Monge-Ampère operator. Partially supported by KBN Grant No. 2 PO3A 01019.

