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Analytic continuation for some classes of separately
analytic functions of real variables

by Nguyen Thanh Van (Toulouse)

En hommage à Monsieur le Professeur Józef Siciak

Abstract. For functions that are separately solutions of an elliptic homogeneous
PDE with constant coefficients, we prove an analogue of Siciak’s theorem for separately
holomorphic functions.

1. Definitions and the principal result

Definition. Let Q be an elliptic homogeneous polynomial of N real
variables. A complex function f defined in an open subset Ω of RN is called
Q-analytic if it is real-analytic and satisfies

Q

(
∂

∂x1
, . . . ,

∂

∂xN

)
f = 0.

The set of Q-analytic functions in Ω will be denoted AQ(Ω).

Definition. Let Dj be an open subset of RNj and Ej a compact subset
of Dj , j = 1, . . . , p. Put

Γ = Γ (D1, . . . ,Dp;E1, . . . , Ep) = (D1×E2×Ep)∪. . .∪(E1×. . .×Ep−1×Dp).

Let Qj (1 ≤ j ≤ p) be an elliptic homogeneous polynomial of Nj real
variables. A function f : Γ → C is called (Q1, . . . , Qp)-separately analytic
if for every fixed j ∈ {1, . . . , p} and every fixed x ∈ ∏p

k=1Ek, the function
t 7→ f(x̆j, t) is Qj-analytic in Dj, where x̆j = (x1, . . . , xj−1, xj+1, . . . , xp).

Problem. Under some hypothesis on Ej and Dj , find an open neigh-
bourhood V of Γ such that every (Q1, . . . , Qp)-separately analytic function
on Γ can be analytically continued to a real-analytic function on V.

We shall need some extremal functions studied by Hécart [2]–[4], first
introduced by Zahariuta [11].
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Definition. Let D be an open subset of RN , E a compact set in D
and Q an elliptic homogeneous polynomial of N real variables. We define

KQ,ε(D,E, x) = sup{α log |u(x)| : u ∈ AQ(D), 0 < α < ε,

‖u‖E ≤ 1, ‖u‖D ≤ exp(1/α)} (ε > 0),

χQ,ε(D,E, x) = lim sup
x′→x

K(D,E, x′),

χQ,0(D,E, x) = lim
ε→0

χQ,ε(D,E, x),

χQ(D,E, x) = lim
s→∞

χQ,0(Ds, E, x),

where E ⊂ Ds b Ds+1 and
⋃
Ds = D.

Theorem 1. If Dj is connected and Ej is L-regular in CNj (1 ≤ j ≤ p),
then every (Q1, . . . , Qp)-separately analytic function on Γ can be analytically
continued to

Γ̂ =
{

(x1, . . . , xp) ∈ D1 × . . .×Dp :
p∑

j=1

χQj (Dj, Ej , xj) < 1
}
.

Remarks. • We consider RN as the real part of CN .
• A compact set E in CN is called L-regular if its Siciak extremal function

φE is continuous; for details we refer to Klimek’s book [5].
• The L-regularity of Ej implies that Γ̂ is an open neighbourhood of Γ.

2. Preliminary results

Proposition 1. Let Q be an elliptic homogeneous polynomial in RN .
For every r > 0, there exist % = %(r,Q) > 0 and C = C(r,Q) such that every
Q-analytic function f in the real ball B(0, r) is analytically continuable to
the complex ball B̂(0, %), and the continuation f̂ satisfies ‖f̂‖B̂ ≤ C‖f‖B.

Proposition 2. Let Ωj be a bounded pseudoconvex open set in CNj
and Ej a Borel set in Ωj (1 ≤ j ≤ p). If f is separately holomorphic on the
crossed set

X = (Ω1 × E2 × . . .× Ep) ∪ . . . ∪ (E1 × . . .× Ep−1 ×Ωp),
then f is holomorphically continuable to

X̂ =
{

(z1, . . . , zp) ∈ Ω1 × . . .×Ωp :
p∑

j=1

ω∗(Ωj , Ej , zj) < 1
}

where ω∗(Ωj , Ej , ·) is the (0, 1)-psh extremal function associated to Ej
and Ωj .

Proposition 3. Let D be a bounded domain in RN , E an L-regular
compact subset of D and µ = (ddc logφE)N the Monge–Ampère measure
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on E. Let Q be an elliptic homogeneous polynomial in RN , and put

L2
Q(D) = AQ(D) ∩ L2(D,λ),

where λ is the Lebesgue N -dimensional measure. Then there exists an or-
thogonal basis (Bk) of the Hilbert space L2

Q(D) such that

(i)
∑
µ−δk < ∞ for all δ > 0, with µk = (

�
D |Bk|2 dλ)1/2 increasing

to ∞,

(ii) �
E

BkBl dµ =
{

0 if k 6= l,
1 if k = l,

(iii) for every ε > 0 there exists C = C(ε) such that ‖Bk‖E := supE |Bk|
≤ Cµεk.

Proposition 1 is taken from Armitage, Bagby and Gauthier [1].
Proposition 2, a general version of the Siciak–Zahariuta theorem, is

from [10].

Proof of Proposition 3. It is easy to verify that

L2
Q(D) ↪→ AQ(D) ↪→ L2(E,µ),

where ↪→ means a compact imbedding defined by the restriction operator.
Because AQ(D) is a nuclear Fréchet space with the compact convergence
topology [3], a theorem of Mityagin [7] gives the existence of an orthogonal
basis (Bk) of L2

Q(D) satisfying (i) and (ii).
We now deduce (iii). Put

D̂ =
⋃

z∈D
B̂(z, %z) with %z = %(dist(z, ∂D), Q).

Following Proposition 1, we can continue Bk to a holomorphic function B̂k
in D̂ such that for every K compact ⊂ D̂,

‖B̂k‖K ≤M(K)µk, ∀k.
From this inequality we see that the family (log

∣∣Bk
∣∣/logµk) is locally upper

bounded in B̂. We put

W = lim sup
log |Bk|
logµk

, W ∗ = reg supW.

A known argument [10] yields

W ∗(z) ≤ 0, ∀z ∈ E \E′,
for some E′ with µ(E′) = 0. By Levenberg [6], E \ E ′ satisfies the (L0)
condition of Leja at every point of E. Because of the polynomial convexity
of E in CN and the fact that W ∗ ∈ PSH(D̂) with D̂ ⊃ E, we have W ∗ ≤ 0
on E, by [8, Th. 2]. This last inequality and the classical Hartogs Lemma
imply (iii).
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3. Proof of Theorem 1

3.1. For every j = 1, . . . , p, we choose a domain D′j such that Ej ⊂ D′j
b Dj . Because Dj is a polynomially convex subset of D̂j, it has a bounded
pseudoconvex open neighbourhood Ωj in D̂j (for the definition of D̂j , see
the beginning of the proof of Proposition 3).

For fixed (x1, . . . , xp) ∈ E1× . . .×Ep, let f̂(x̆j , ·) be the analytic contin-
uation of f(x̆j , ·) to D̂j ; gluing up these functions, we obtain a separately
holomorphic function f̂ on the crossed set

X = (Ω1 × E2 × . . .× Ep) ∪ . . . ∪ (E1 × . . .× Ep−1 ×Ωp).

By Proposition 2, there exists a holomorphic function g on

X̂ =
{

(z1, . . . , zp) ∈ Ω1 × . . .×Ωp :
p∑

j=1

ω∗(Ωj , Ej , xj) < 1
}
,

with g = f̂ on X.

In the next paragraphs, it is important to note that X̂ is an open neigh-
bourhood in CN1+...+Np of (D′1×E2× . . .×Ep)∪ . . .∪(E1× . . .×Ep−1×D′p).

3.2. For every j = 1, . . . , p, let (Bj
k)k=0,1,... be the doubly orthogonal

basis of L2
Qj

(D′j) given by Proposition 3, and µj the measure (ddc logφEj )
Nj .

For α = (α1, . . . , αp) ∈ Np, put

Cα = �
E1×...×Ep

f(x1, . . . , xp)B1
α1

(x1) . . . Bp
αp(xp) dµ

1(x1) ∧ . . . ∧ dµp(xp).

We have |Cα| ≤M/µjαj , with M independent of j and αj , and

µjαj =
( �
D′j

|Bj
αj |2 dλj

)1/2
(λj = Lebesgue measure in RNj ).

In fact, this inequality results, via obvious estimates, from the following
identities:

Cα = �
Ĕj

( �
Ej

f(x1, . . . , xp) dµj(xj)
)∏

k 6=j
Bk
αk

(xk)
∧

k 6=j
dµk(xk),

where Ĕj = E1 × . . .× Ej−1 × Ej+1 × . . .× Ep, and

�
Ej

f(x1, . . . , xp)B
j
αj (xj) dµ

j(xj) = (µjαj )
−2 �

D′j

f(x1, . . . , xp)B
j
αj(xj) dλ

j(xj).
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3.3. Now we prove the local absolute uniform convergence of the series∑
α∈Np CαBα(z) with Bα(z) = B1

α1
(z1) . . . Bp

αp(zp) in the open set

Γ̂ ′ =
{

(x1, . . . , xp) ∈ D′1 × . . .×D′p :
p∑

j=1

χQj (D
′
j , Ej , xj) < 1

}
.

Let a = (a1, . . . , ap) ∈ Γ̂ ′. We can choose domains D′′j and θj > 0 (j =
1, . . . , p) such that

• ∑ θj < 1,
• Ej ⊂ D′′j b D′j,
• aj ∈ D′′j (θj) := {x ∈ D′′j : χQj (D

′′
j , Ej , x) < θj}.

We now choose θ′j > θj with
∑
θ′j = 1. From the estimate of |Cα| given in

3.2, we deduce that

|Cα| ≤M(µ1
α1

)−θ
′
1 . . . (µpαp)

−θ′p .

Let Vj be a compact neighbourhood of aj in D′′j (θj). By the two-constants
theorem [2], [3], for every ε ∈ ]0, 1− θj [ there exists C = C(Vj, ε) such that

‖u‖Vj ≤ C‖u‖
1−θj−ε
Ej

‖u‖θj+ε
D′′j

, ∀u ∈ AQ(D′′j ).

From Proposition 3(iii) and the obvious fact

‖Bj
αj‖D′′j ≤ C

′µjαj

we have, for every ε ∈ ]0, inf θj [,

‖Bα‖V ≤ C ′′
p∏

j=1

(µjαj)
ε(1−θj−ε)(µjαj )

θj+ε,

where V = V1 × . . .× Vp, so

|Cα| ‖Bα‖V ≤ C ′′
p∏

j=1

(µjαj)
ε−ε2−εθj+θj−θ′j .

Since θ′j > θj , for ε small enough we have ε− ε2 − εθj + θj − θ′j =: −δj < 0,
for all j. Hence

∑
α |Cα| ‖Bα‖V is majorized by the series

∑

α

C ′′(µ1
α1

)−δ1 . . . (µpαp)
−δp = C ′′

p∏

j=1

∞∑

k=0

(µjk)
−δj <∞

(here we use Proposition 3(i)).

3.4. Put g(x) =
∑

αCαBα(x), x ∈ Γ̂ ′. The real analyticity of g in Γ̂ ′ can
be proved easily by using the local uniform convergence and Proposition 1;
we also have the (Q1, . . . , Qp)-analyticity of g in Γ̂ ′, i.e. for all x ∈ Γ̂ ′ and
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j = 1, . . . , p, g(x̆j, ·) satisfies

Qj

(
∂

∂u1
, . . . ,

∂

∂uNj

)
g(x̆j, ·) = 0 in {t ∈ C : (x̆j, t) ∈ Γ̂ ′}.

We now prove that g = f on Ĕj ×Dj for all j = 1, . . . , p. We can suppose
j = p and that the property to be proved true for p− 1 (induction hypoth-
esis). For x′ = (x1, . . . , xp−1) ∈ E1 × . . . × Ep−1, the function t 7→ f(x′, t)
is Qp-analytic in Dp c D′p, so it belongs to L2

Qp
(D′j) and we can write

(1) f(x′, t) =
∑

k

Ak(x′)B
p
k(t),

where the series converges uniformly on any compact set in D′j and

Ak(x′) = �
Ep

f(x′, υ)Bp
k(υ) dµp(υ).

Put x = (x′, t) with x′ = (x1, . . . , xp−1) and α = (α′, k), α′ = (α1, . . . , αp−1).
By the absolute convergence of

∑
αCαBα on E1 × . . .× Ep, we can write

(2) g(x′, t) =
∞∑

k=0

(∑
Cα′,kB

1
α1

(x1) . . . Bp−1
αp−1

(xp−1)
)
Bp
k(t)

for (x′, t) ∈ E1 × . . .× Ep. We claim that

(3)
∑

α′
Cα′,kB

1
α1

(x1) . . . Bp−1
αp−1

(xp−1) = �
Ep

f(x′, υ)Bp
k(υ) dµp(υ).

In fact with the notation Bα′(u) = B1
α1

(u1) . . . Bp−1
αp−1(up−1), we see that the

left hand side is equal to

(4) �
Ep

(∑

α′

( �
Ĕp

f(·, υ)Bα′ d(µ1 ⊗ . . .⊗ µp−1)
)
Bα′(x′)

)
Bp
k(υ) dµp(υ).

By the induction hypothesis and paragraph 3.3, we have

(5) f(·, υ) =
∑

α′

( �
Ĕp

f(·, υ)Bα′ d(µ1 ⊗ . . .⊗ µp−1)
)
Bα′ .

with absolute uniform convergence on Ĕp.

Now (5) and (4) give (3).
Finally (3), (2) and (1) give

f(x′, t) = g(x′, t), ∀t ∈ Ep, ∀x′ ∈ Ĕp.
Because f(x′, t) and g(x′, t) are Qp-analytic functions of t in the domain D′1,
and Ep is L-regular in CNp , we conclude that f(x′, t) = g(x′, t) on Ĕp×D′p.

Because of the arbitrariness of D′1, . . . ,D
′
p, the theorem is true.
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Remarks. We conjecture that the result is true if instead of the L-
regularity of Ej , we suppose that Ej satisfies the Leja condition for Qj-
analytic polynomials. This is proved in the following cases:

• Nj = 2, Qj(D) = Laplacian (Zeriahi [12]).
• p = 2 (Hécart [3], [4]).
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