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Regularity of domains of parameterized
families of closed linear operators
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To Professor Józef Siciak on the occasion of his 70th birthday

Abstract. The purpose of this paper is to provide a method of reduction of some
problems concerning families At = (A(t))t∈T of linear operators with domains (Dt)t∈T
to a problem in which all the operators have the same domain D. To do it we propose
to construct a family (Ψt)t∈T of automorphisms of a given Banach space X having two
properties: (i) the mapping t 7→ Ψt is sufficiently regular and (ii) Ψt(D) = Dt for t ∈ T .
Three effective constructions are presented: for elliptic operators of second order with the
Robin boundary condition with a parameter; for operators in a Hilbert space for which
eigenspaces form a complete orthogonal system of closed linear subspaces; and for a class
of closed operators having bounded inverses.

1. Introduction. Most of the results concerning differential operators
with a parameter t in the coefficients have been obtained under the as-
sumption that the operators (At = A(t))t∈T of a given family have domains
independent of t (see e.g. [2, 6, 7, 8]).

One of possible ways of handling some problems concerning operators
(At)t∈T with domains Dt ⊂ X depending on t is to find a sufficiently regular
(with respect to t ∈ T ) family Ψt of automorphisms of the Banach space X
such that Ψt(Dt) = D, where D is a fixed linear subspace of X.

In general, the domain of a differential operator is determined by some
boundary conditions. Thus it would be useful to find an effective construc-
tion of a family Ψt using the boundary conditions only. Such a construction
for a family of elliptic operators of order two with the Robin boundary con-
dition with a parameter (i.e. ∂u/∂n+a(x, t)u = 0 on ∂Ω) is presented in 2.1.
The problem of existence and construction of a family (Ψt)t∈T for general
types of boundary conditions is more delicate and still open.
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In Section 2.2 there is a construction of a continuous family Ψt for some
families (Dt)t∈T of domains of operators in a Hilbert space H for which
the corresponding eigenspaces form a complete orthogonal system of closed
linear subspaces of H.

If Dt is the domain of a closed invertible operator At : X → X and Rt =
A−1
t , for t ∈ T , then the natural candidate for Φt = Ψ−1

t is Rt0At whenever
Rt0At is closable. If it is closable then we may use some results presented
in [3] concerning the topology of generalized convergence to prove that the
expected family is good (for more details see Section 3). Unfortunately, if
Dt depends on t, it may happen that Rt0At is not closable.

2. Regularity of families of linear subspaces. Let X be a Banach
space, T an interval in R, and (Dt)t∈T a family of linear subspaces of X.

Definition 1. We say that the family (Dt)t∈T is of class Cak (resp.
strongly of class Cak) if there exist a linear subspace D of X and a family
(Ψt)t∈T of automorphisms of X such that

• the mapping T 3 t 7→ Ψt ∈ Aut(X) is of class Ck (resp. strongly of
class Ck (1) and
• Ψt(D) = Dt for t ∈ T .
Considering a family (At)t∈T of closed linear operators with the family

of domains (Dt = D(At))t∈T of class Cak we may reduce some problems to
a family with a constant domain. For example, suppose that u is a classical
solution of the evolution equation

du

dt
= A(t)u+ f(t)(1)

in which the family of domains (Dt = D(At) = D(A(t)))t∈T is of class Ca1.
Let (Ψt)t∈T be a family of automorphisms of X as above and (Φt = Ψ−1

t )t∈T
the family of inverses.

Since u(t) ∈ Dt, there exists v(t) ∈ D such that Ψt(v(t)) = u(t). We have
du

dt
=
dΨt
dt
v(t) + Ψt

dv

dt
and after a standard calculation we obtain

dv

dt
=
(
ΦtA(t)ψt −

dψt
dt

)

︸ ︷︷ ︸
B(t)

v(t) + Φtf(t)︸ ︷︷ ︸
F (t)

.

Thus v is a classical solution of the evolution equation
dv

dt
= B(t)v + F (t)(2)

with the family (Bt=B(t))t∈T of operators having domains independent of t.

(1) This means that for any x ∈ X the mapping t 7→ Ψtx is of class Ck.
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2.1. Construction using boundary conditions. Now we produce an ex-
ample of a family (Dt)t∈T of class Cak, k ≥ 1, of the domains for elliptic
operators of order two which is a nonconstant family of linear subspaces of
X = L2(Ω).

Let Ω be a bounded domain in Rn with boundary S = ∂Ω of class Ck+1,
T = [0, T ], and let a : Ω × T → R be a function of class Ck nonvanishing
on S. The sets

Dt =
{
u ∈ L2(Ω) : u ∈ H2(Ω) and

∂u

∂n
+ a(x, t)u = 0 on ∂Ω

}
,(3)

D =
{
u ∈ L2(Ω) : u ∈ H2(Ω) and

∂u

∂n
= 0 on ∂Ω

}
(4)

are dense linear subspaces of L2(Ω), where n is the interior unit normal
vector field on S.

Let η : Ω × T → R be a function of class Ck such that

1/2 ≤ ηt(x) = η(x, t) for x ∈ Ω, t ∈ T ,(5)

ηt(x) = 1 and
∂ηt(x)
∂n

= a(x, t) for x ∈ ∂Ω, t ∈ T .(6)

The function η can be constructed in the following way. We consider S
as the retract of class Ck (for ε > 0 small enough) of the open ε-tube

TUBε(S) = {x+ τn(x) : x ∈ S, |τ | < ε}.
Then we take a function hε of class C∞ in Rn satisfying the following con-
ditions:

hε(x) = 0 for x ∈ Rn \ TUBε(S),

hε(x) = 1 for x ∈ TUBε/2(S),

hε(x) ∈ [0, 1] for x ∈ Rn.
The function

fε : TUBε(S) 3 x+ τn(x) 7→ a(t, x)τ ∈ R(7)

is of class Ck, and for ε small enough, the function η = hεfε + 1 is one we
have been looking for.

Let Φt : L2(Ω)→ L2(Ω) be given by

Φt(u) = ηt · u for u ∈ L2(Ω), t ∈ [0, T ](8)

and let Ψt = Φ−1
t . One can verify that

• Φt ∈ Aut(L2(Ω)),
• Φt(Dt) = D and Ψt(D) = Dt,
• the mapping T 3 t 7→ Φt ∈ B(L2(Ω)) is of class Ck. Thus the mapping
T 3 t→ Ψt ∈ B(L2(Ω)) is also of class Ck.
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Considering parametrized boundary conditions of the form
∂u

∂µt
+ a(x, t)u = 0 on ∂Ω,(9)

where µt is a vector field on S parametrized by t ∈ T , one can look for Φt
of the form

Φtu = ηt · (u ◦ ϕt) for u ∈ L2(Ω),(10)

where ϕt is a diffeomorphism of Ω such that ϕ′t(x).n(x) = µt(x), ϕt(x) = x
for x ∈ S, t ∈ T , and η is as in (8). Indeed, if u satisfies (9) then

∂(u ◦ ϕ)
∂n

(x) + a(x, t)(u ◦ ϕ)(x) =
∂u

∂µt
+ a(x, t)u = 0 on ∂Ω.

Thus, v = u ◦ ϕt ∈ Dt, ηtv ∈ D and vice versa.
Let us remark that the boundary conditions (9) parametrized by t are

natural, for example, when we consider the family (At = tA+(1− t)∆)t∈[0,1]
in which A is a strongly elliptic operator of the second order. For an appli-
cation see the second part of the proof of Theorem 3.4 in [1].

2.2. Construction using eigenspaces. Let H be a Hilbert space, and Hj ,
j = 1, 2, . . . , a complete orthogonal sequence of closed linear subspaces of H.
We will use the following well known facts from the theory of Fourier series.

Lemma 1. If aj ∈ Hj for j = 1, 2, . . . then the series
∑∞

j=1 aj con-
verges to a point a ∈ H if and only if the series

∑∞
j=1 ‖aj‖2 is convergent.

Moreover , if

a =
∞∑

j=1

aj

then

‖a‖2 =
∞∑

j=1

‖aj‖2 and aj = pj(a) for j = 1, 2, . . . ,

where pj : H → Hj is the orthogonal projection of H onto Hj for j =
1, 2, . . .

To any sequence λ = {λj}∞j=1 of real (complex if H is a complex space)
numbers corresponds a closed linear operator A = Aλ(t) : H → H given by

Ax = Aλx =
∞∑

j=1

λjpj(x).

The operator A with domain

D := D(A) =
{
x ∈ H :

∞∑

j=1

λjpj(x) is convergent
}
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is a closed densely defined linear operator and λj is an eigenvalue of A
corresponding to the eigenspace Hj .

From now on we assume that Hj and λj depend on the parameter t ∈ T .
This implies that the projections pj , j = 1, 2, . . . , also depend on t. Thus,
Hj(t), λj(t), pj(t), j = 1, 2, . . . , are sequences of closed subspaces, numbers
and projections, respectively, parametrized by t ∈ T .

Proposition 2. Suppose that for given t, t0 ∈ T , Φj(t) : H → H,
j = 1, 2, . . . , are bounded linear mappings satisfying the following condi-
tions:

(i) Φj(t)(Hj(t)) = Hj(t0) and Φj(t)|Hj(t) : Hj(t) → Hj(t0) is an iso-
morphism of Banach spaces for j = 1, 2, . . . ,

(ii) there exist positive constants M(t),m(t) > 0 such that

m(t)‖x‖ ≤ ‖Φj(t)x‖ ≤M(t)‖x‖ for x ∈ Hj(t), j = 1, 2, . . . ,

(iii) there exist positive constants δ(t),∆(t) > 0 such that

δ(t) ≤
∣∣∣∣
λj(t0)
λj(t)

∣∣∣∣ ≤ ∆(t) for j = 1, 2, . . .

Then

Φt := Φ(t) =
∞∑

j=1

Φj(t) ◦ pj(t)(11)

is an automorphism of H such that Φt(Dt) = Dt0.

Proof. We begin by proving that Φt is well defined. Since

‖Φj(t)(pj(t)x)‖2 ≤ ‖Φj(t)‖2‖pj(t)x‖2 ≤M2(t)‖pj(t)x‖2

and the series
∑∞

j=1 ‖pj(t)x‖2 is convergent (because
∑∞

j=1 pj(t)x is conver-
gent), the series defining Φtx is convergent for any (t, x) ∈ I ×H.

Since

‖Φtx‖2 =
∞∑

j=1

‖Φj(t)pj(t)x‖2 ≤M2(t)‖x‖2,

the operator Φt is bounded.
Injectivity of Φt follows from Lemma 1. Indeed,

kerΦt = {x ∈ H : Φj(t)pj(t)x = 0, j = 1, 2, . . .} = {0}.
Let y ∈ H and

x =
∞∑

j=1

(Φj(t))−1pj(t0)y.(12)

To prove surjectivity we must prove that the series (12) defining x is con-
vergent and that Φtx = y.
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Assuming the convergence for the moment, we have

Φtx =
∞∑

j=1

Φj(t)pj(t)x =
∞∑

j=1

Φj(t)(Φj(t))−1pj(t0)y =
∞∑

j=1

pj(t0)y = y.

The convergence of
∑∞

j=1(Φj(t))−1pj(t0)y follows from Lemma 1, because
of the estimates

‖(Φj(t))−1pj(t0)y‖2 ≤ 1
m(t)

‖pj(t)y‖2 for j = 1, 2, . . . , y ∈ X.

For x ∈ Dt the series
∑∞

j=1 λj(t)pj(t)x is convergent and we have Φtx = y =∑∞
j=1 pj(t0)y. Thus

∞∑

j=1

Φj(t)pj(t)x =
∞∑

j=1

pj(t0)y,

which implies that

pj(t0)y = Φj(t)pj(t)x.(13)

Since ∥∥∥∥
λj(t0)
λj(t)

Φj(t)(λj(t)pj(t))x

∥∥∥∥
2

≤
∣∣∣∣
λj(t0)
λj(t)

∣∣∣∣
2

M2(t)‖λj(t)pj(t)‖2

≤ ∆2(t)M2(t)‖λj(t)pj(t)‖2,
the series

∞∑

j=1

λj(t0)
λj(t)

Φj(t)(λj(t)pj(t))x

is convergent and hence, because of (13), so is
∑∞

j=1 λj(t0)pj(t0)y. This
means that Φt(Dt) ⊂ Dt0 . The proof of the inverse inclusion is similar.

Remark 1. If, in Proposition 2, Φj(t) : Hj(t) → Hj(t0) is an isometry
for all j and t, then Φt is also an isometry.

Theorem 3. If the mappings

I 3 t 7→ pj(t) and I 3 t 7→ Φj(t) for j = 1, 2, . . .

are continuous and there exist M,m > 0 such that

m‖x‖ ≤ ‖Φj(t)x‖ ≤M‖x‖ for j = 1, 2, . . . , x ∈ X,
then for any compact set K ⊂ I × H, the mapping K 3 (t, x) 7→ Φtx is
continuous.

Proof. By Dini’s theorem, the sequence

Sν(t, x) =
ν∑

j=1

‖pj(t)x‖2, ν = 1, 2, . . . ,
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converges uniformly to ‖x‖2 on compact subsets of I ×H. Since
∥∥∥
p+s∑

j=p

Φj(t)(pj(t)x)
∥∥∥

2
≤M2

p+s∑

j=p

‖pj(t)x‖2,

the Cauchy condition of uniform convergence is satisfied for the series∑∞
j=1 Φj(t)(pj(t)x) and so Φ is continuous on K.

To obtain a higher regularity for the family (Φt) we must assume a higher
regularity for Φj(t) and some assumptions that guarantee differentiability
of series term by term.

Example 1. The mapping

Φj(t) := pj(t0) ◦ pj(t) : H → Hj(t0) ⊂ H
is a bounded linear map. Assuming, for example, that

H⊥j (t0) ∩Hj(t) = {0}
we see that Φj(t) is injective.

If additionally we assume that dimHj(t) = kj < ∞ is independent of t
then

Φj(t)|Hj(t) : Hj(t)→ Hj(t0)

is an isomorphism. Moreover

‖Φj(t)x‖2 ≤ ‖pj(t)x‖2 and Φj(t0) = pj(t0).

Therefore, using the same method as in the proof of Theorem 3, we may
prove that the continuity of the mapping I ×H 3 (t, x) 7→ pj(t)x ∈ H for
j = 1, 2, . . . implies the continuity of Φ on compact subsets of I ×H.

3. Families of closed operators with bounded inverses. Let X,Y
be Banach spaces over the field K of real or complex numbers. We endow
the space C(X,Y ) of closed linear operators A : X → Y with the topology
of generalized convergence [3, Ch. IV]. The domain of a given operator
A : X → Y is denoted by D(A). The space of bounded linear operators
A : X → Y is denoted by B(X,Y ), and Isom(X,Y ) is the subspace of
B(X,Y ) of bijective bounded linear operators with bounded inverses. The
subspace of C(X,Y ) consisting of the invertible densely defined operators A
such that A−1 ∈ B(Y,X) will be denoted byR(X,Y ). If X = Y we will write
C(X), B(X), Aut(X), R(X) instead of C(X,X), B(X,X), Isom(X,X),
R(X,X), respectively. Since B(X,Y ) ⊂ C(X,Y ), we may consider B(X,Y )
with the induced topology, which by [3, Ch. IV, Theorem 2.23] is equivalent
to the norm topology in B(X,Y ). Let us also recall that by the same theorem,
the convergence of An to A in R(X,Y ) is equivalent to the convergence of
A−1
n to A−1 in B(Y,X), Isom(X,Y ) is open in C(X,Y ) and Aut(X) is open

in C(X).
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Lemma 4. Let H be a metric space, Ah ∈ R(X,Y ) and Φh ∈ Aut(X)
for h ∈ H. If the mappings

H 3 h 7→ Ah ∈ C(X,Y ) and H 3 h 7→ Φh ∈ B(X)(14)

are continuous then the mapping

H 3 h 7→ Ah ◦ Φh ∈ R(X,Y )(15)

is also continuous.

Proof. Since Ah ∈ R(X,Y ), the continuity of H 3 h 7→ Ah ∈ C(X,Y ) is
equivalent to the continuity of H 3 h 7→ A−1

h ∈ B(Y,X). Thus the mapping
H 3 h 7→ (Ah ◦Φh)−1 = Φ−1

h ◦A−1
h ∈ B(Y,X) is continuous, and hence so is

the mapping (15).

Lemma 5. Let Aj ∈ R(X,Y ) and Rj = A−1
j for j = 1, 2. If Rj ◦ Ai is

bounded for i, j = 1, 2, then D(A∗1) = D(A∗2).

Proof. By symmetry, it is enough to prove that D(A∗1) ⊂ D(A∗2). Take
y∗ ∈ D(A∗1). Since

|〈A2x, y
∗〉| = |〈A1 ◦ (R1 ◦ A2)x, y∗〉| = |〈(R1 ◦A2)x,A∗1y

∗〉|
≤ ‖A∗1y∗‖ · ‖R1 ◦ A2‖ · ‖x‖ for x ∈ D(A2),

we have y∗ ∈ D(A∗2) and so D(A∗1) ⊂ D(A∗2).

Lemma 6. If A ∈ C(X,Y ) and Φ ∈ B(X) is such that D(A ◦ Φ) is
dense in X then D(A∗) ⊂ D((A ◦ Φ)∗). Moreover , if Φ ∈ Aut(X) then
D(A∗) = D((A ◦ Φ)∗).

Proof. Let y∗ ∈ D(A∗). Since Φ is continuous, for x ∈ D(A ◦Φ) we have

|〈(A ◦ Φ)x, y∗〉| = |〈Φx,A∗y∗〉| ≤ ‖A∗y∗‖ · ‖Φx‖ ≤ ‖A∗y∗‖ · ‖Φ‖ · ‖x‖
and so y∗ ∈ D((A ◦ Φ)∗).

If Φ is invertible then by the above D((A ◦ Φ)∗) ⊂ D((A ◦ Φ ◦ Φ−1)∗) =
D(A∗).

Theorem 7. Let (H, %) be a connected metric space and (Ah)h∈H a
family of linear operators Ah ∈ R(X,Y ). If Rk ◦ Ah is closable for each
h, k ∈ H, and for each k ∈ H the mapping

H 3 h 7→ Rk ◦Ah ∈ C(X)(16)

is continuous, then:

(i) Rk ◦Ah ∈ Aut(X) for each h, k ∈ H,
(ii) for any h, k ∈ H there exist m,M > 0 such that

m‖Rhy‖ ≤ ‖Rky‖ ≤M‖Rhy‖ for y ∈ Y ,
(iii) D(A∗h) = D∗ = const,
(iv) D(A∗h ◦R∗k) = X∗ for all h, k ∈ H.
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Proof. Since Aut(X) is open in C(X) and Rk ◦Ak = IdX ∈ Aut(X),
there exists δ = δ(k) > 0 such that Rk ◦ Ah ∈ Aut(X) for any h ∈ H such
that %(h, k) < δ. Thus, for a given k ∈ H,

M = {h ∈ H : Rk ◦ Ah ∈ Aut(X)} 6= ∅.
To prove that M = H it is enough to prove that M is open and closed. For
given h0 ∈M, h ∈ H we have

Rk ◦ Ah = Rk ◦Ah0 ◦Rh0 ◦ Ah.
Since Rk ◦Ah0 ∈ Aut(X), and by the same argument as before there exists
δ = δ(h0) > 0 such that Rh0 ◦Ah ∈ Aut(X) for any h ∈ H satisfying
%(h, h0) < δ, the set M is open. Suppose now that hn ∈M for n = 1, 2, . . .
and hn → h0 ∈ H as n→∞. Then there exists n ∈ N such that Rh0 ◦Ahn ∈
Aut(X), by the previous part of the proof. Since Rk ◦ Ahn = Rk ◦Ah0 ◦
Rh0 ◦ Ahn and Rk ◦ Ahn , Rh0 ◦Ahn are automorphisms of X, it follows that
h0 ∈M and so M is closed.

To prove (ii) fix h, k ∈ H. Since Rk ◦Ah ∈ Aut(X), there exist m,M > 0
such that

m‖x‖ ≤ ‖(Rk ◦Ah)x‖ ≤M‖x‖ for x ∈ D(Ah).

Since Ah is onto, taking y = Ahx we get

m‖Rhy‖ ≤ ‖Rky‖ ≤M‖Rhy‖ for y ∈ Y .
To prove (iii) observe that for k, h ∈ H we have Ah = Ak ◦ Rk ◦Ah.

Thus, by Lemma 6, D(A∗h) = D(A∗k), because Rk ◦Ah ∈ Aut(X).
(iv) is a consequence of the fact that R∗k ∈ B(X∗, Y ∗) is the inverse to

A∗k (see e.g. [3, Ch. III, Theorem 5.30]), which has the same domain as A∗h,
because of (3).

Remark 2. Observe that for h, k ∈ H, if Rk◦Ah and Rh◦Ak are closable
then conditions (i)–(iv) of Theorem 7 are equivalent. If D(A∗h ◦R∗k) is dense
in X∗ in the weak* topology on X∗ then Rk ◦ Ah is closable. If condition
(iii) of Theorem 7 is satisfied, then Rk ◦Ah is closable and (i), (ii), (iv) hold.

A sufficient condition for the assumptions of Theorem 7 to hold is pre-
sented in the following

Proposition 8. If H = [0, T ], all the operators of the family (A∗t )t∈[0,T ]
have the same domain D∗ and for every y∗ ∈ D∗ the mapping

[0, T ] 3 t 7→ A∗t y
∗ ∈ X∗(17)

is of class C1 then the family (At)t∈[0,T ] satisfies the assumptions of Theo-
rem 7.

Proof. By [4, Ch. II, Lemma 1.5], the family (A∗t ◦R∗s)s,t∈[0,T ] of bounded
operators is continuous with respect to (s, t). Since also A∗t ◦R∗s = (Rs ◦At)∗
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and D((Rs ◦At)∗) = X∗, the mapping Rs ◦At is closable, and by [3, Ch. IV,
Theorem 2.23], the continuity of the family (Rs ◦At)∗ with respect to (s, t)
implies the continuity of (Rs ◦At).

3.1. Some remarks on the case of differential operators. Let Ω be a
bounded domain in Rn with smooth boundary ∂Ω, and H a connected
metric space. Let

Ah =
∑

|α|≤m
aα(x, h)Dα for h ∈ H(18)

be a family of differential operators of order m with coefficients aα contin-
uous in Ω × H. Closedness of Ah and continuity of the mapping h 7→ Ah
depend on the domain D(Ah), the space X in which D(Ah) is contained,
and the space Y of values of Ah.

• If D(Ah) = X = Hm(Ω) and Y = L2(Ω) then Ah is bounded and the
mapping H 3 h 7→ Ah ∈ B(X,Y ) is continuous.
• Let X = Y = L2(Ω) and let D be a closed subspace of Hm(Ω) such

that D is dense in L2(Ω), and the mapping Ah : D → L2(Ω) is one-to-one
and onto for h ∈ H. Then Rh = A−1

h ∈ B(Y,X) and the mapping H 3 h 7→
Ah ∈ C(X,Y ) is continuous. This situation often occurs when considering
strongly elliptic operators Ah with boundary operators independent of h,

Bj =
∑

|α|≤mj

bjα(x)Dα, 1 ≤ j ≤ m/2,(19)

which cover Ah for each h ∈ H. If additionally we know that D(A∗h) = D∗
is independent of h then Rk ◦Ah is closable for each h, k.

Now we show an example of a family (Ãt)t∈T of elliptic operators with
pairwise different domains for which the corresponding family (Dt)t∈T of
domains is of class Cak and the family of domains of the conjugate operators
is independent of t.

Keep the notation of Section 2.1 and assume that a(x, t) = t. The sets
Dt given by (3) are dense linear subspaces of L2(Ω) such that Dt 6= Dτ for
t 6= τ ∈ [0, T ] and D0 = D, where D is given by (4). The operator

A = −∆+ λI(20)

is well defined on H2(Ω); when considered as defined only on Dt, it is closed,
and for λ large enough, it is onto and one-to-one. By the closed graph
theorem its inverse is bounded. Let At denote the operator given by (20)
with domain Dt.

Example 2. The family

Ãt = A0 ◦ Φt : Dt → L2(Ω)
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parametrized by t ∈ [0, T ] is a continuous (with respect to t) family of closed
densely defined linear differential operators with pairwise different domains.
Indeed, since (Bt = At ◦ Ψt)t∈[0,T ] is a family of closed differential operators
of order two with coefficients continuous with respect to both x and t, and
with domains independent of t, the mapping [0, T ] 3 t 7→ Bt ∈ C(L2(Ω))
is continuous and, by Lemma 4, the mapping [0, T ] 3 t 7→ At = Bt ◦ Φt ∈
C(L2(Ω)) is also continuous.

By Lemma 6, the domain D(Ã∗t ) = D(A∗) is the same for all t ∈ [0, T ].

The next example show that in Theorem 7 the assumption of continuity
of the mapping (16) cannot be replaced by the continuity of the family
(Ah)h∈H.

Example 3. Let (At)t∈[0,T ] be a family of self-adjoint operators with
pairwise different domains, and with the same property for the family A∗t .
Since C∞0 (Ω) ⊂ ⋂t∈[0,T ]Dt, C∞0 is dense in L2(Ω), (Rτ ◦At)u = (Rτ ◦Aτ )u =
u for u ∈ C∞0 (Ω) and (Rτ ◦ At)u 6= u for u ∈ Dt \ Dτ , it follows that the
operator Rτ ◦ At is not closable for t 6= τ . Thus, the mapping (16) is even
not well defined.
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Reçu par la Rédaction le 15.5.2002
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