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On a funtional equation with derivative and symmetrizationby Adam Bobrowski (Lublin and Katowie) and
Małgorzata Kubalińska (Lublin)

Abstrat. We study existene, uniqueness and form of solutions to the equation
αg − βg′

+ γge = f where α, β, γ and f are given, and ge stands for the even part of asearhed-for di�erentiable funtion g. This equation emerged naturally as a result of theanalysis of the distribution of a ertain random proess modelling a population genetisphenomenon.1. Introdution. Let BUC(R) be the spae of bounded, uniformly on-tinuous funtions on R. In [2℄ we were led (see below for more details) toonsidering the following funtional equation in this spae:(1) αg − βg′ + γge = f,where g ∈ BUC(R) is a searhed-for di�erentiable funtion, ge is its even part
ge(t) = 1

2(g(t) + g(−t)), and the funtion f ∈ BUC(R) and the onstants
α, β > 0 and γ > −α are given. We showed that the unique solution to thisequation is(2) g =

1

β
(Rµf)′ +

α

β2
Rµfe +

µ

α
Rµfo =

1

β
(Rµf)′ +

α

β2
Rµf +

γ

β2
Rµfo,where µ = α(α + γ)/β2, fo = f − fe is the odd part of f, and(3) Rλf(t) =

1

2
√

λ

∞\
−∞

e−
√

λ|s|f(t + s) ds, λ > 0.

It is interesting that although (1) is a ��rst order� equation, its solutionsare given in terms of Rλ, λ > 0, whih is the resolvent of the seond orderdi�erential operator f 7→ f ′′ (with natural domain). The reason is that (1)2000 Mathematis Subjet Classi�ation: Primary 39B05; Seondary 60G35, 92D10,47D03.Key words and phrases: funtional equation, di�erential equation, Cauhy problem,semigroups of operators, geneti drift. [13℄



14 A. Bobrowski and M. Kubali«skais equivalent to the system
{

αge − β(go)
′ + γge = fe,

αgo − β(ge)
′ = fo,of di�erential equations for the omponents ge and go of g.In this paper we show, by onsidering two generalizations of equation (1),that the result obtained in [2℄ is a partiular ase of a more general priniple.In Setion 2, we �nd the general solution of (1) for arbitrary real onstants

α, β and γ, in Setion 3 we onsider (1) with variable oe�ients and inSetion 4 we onsider (1) in an abstrat Banah spae.The origin of equation (1) is related to the work on mathematial desrip-tion of geneti drift, a phenomenon known in population genetis. Genetidrift is often de�ned as a loss of variability of geneti material in a �nitepopulation, aused by random events, suh as death of a member arryingthis material. In the basi Fisher�Wright model of this phenomenon (see e.g.[3, 6, 17℄), the population onsists of a �xed number of individuals who live,eah independently of the others, for a random, exponential time. At thedeath of an individual, an exat opy of a randomly hosen member of pop-ulation replaes the member just deeased. In the absene of other genetifores, this proedure leads to gradual loss of variability in the population.In the real populations and in more ompliated models, the ation of ge-neti drift is ounterated by other fores suh as mutation, reombinationand seletion, with the drift striving to redue the variability being on-stantly introdued by these fores. Viewed bakwards, geneti drift is seenas a stohasti proess of oalesene of anestral lines in the time runningbakwards�this is the entral idea of the epoh-making papers by King-man [12℄ and Tajima [16℄. To be more spei�, the reprodutive mehanismmakes it lear that some random time ago there lived a ommon anestor ofthe whole Fisher�Wright population and the variability existing today is thesole result of the ation of other geneti fores (suh as mutations) on thegeneti material of his desendants; the desendants of the other membersof the population existing at the time of the ommon anestor die out in themeantime and this material is lost from the population.In the ase of a sample of two individuals, we deal with two stohastiproesses (modelling mutations on the genealogial lines) that, onditionalon their urrent states, evolve independently and with the same transitionprobabilities, and yet are dependent by the fat that some random timeago they evolved as a single proess; their independent evolution started atthe random time of split in the past. It is interesting that although in thease where these proesses are Lévy proesses there is no stationary distri-bution for the pair, the distribution of the relative di�erene stabilizes intime (see [11℄). In [2℄ we show that the limit distribution of the proess may



A funtional equation 15be derived by means of the resolvent of a semigroup of operators relatedto the proess of di�erenes between two independent Lévy proesses start-ing from the same initial state. As an example, we onsider the telegraphproess(4) pt =
(
v

t\
0

(−1)M(s) ds, (−1)M(t)
)
, t ≥ 0,where a and v are given positive onstants and {M(t), t ≥ 0} is a Poissonproess with E M(t) = at. (The reason why pt, t ≥ 0, is alled the tele-graph proess is that, as shown by M. Ka [10℄ inspired by S. Goldstein [8℄,the solutions to the telegraph equation may be expressed by means of theexpeted value of Tt0(−1)M(s) ds, t ≥ 0.) The telegraph proess is a Lévyproess when onsidered as a proess with values in a non-ommutative lo-ally ompat group G = R × {−1, 1} with topology indued from R

2 andmultipliation rule (τ, k)(ξ, l) = (lτ + ξ, kl) (see [14℄). In [2℄ we show thatthe generator A of the semigroup related to the proess of di�erenes isgiven by A(f1, f2) = (2a(f2)e − 2af1, 2vf ′
2 + 2a(f1)e − 2af2). The semigroupats in BUC(R) × BUC(R) (whih is isometrially isomorphi to the spaeof bounded funtions on G that are uniformly ontinuous with respet tothe left and right uniform strutures on G), and the domain D of A is theset of pairs (f1, f2) where both fi belong to BUC(R), and f2 is di�eren-tiable with f ′

2 ∈ BUC(R). To �nd the resolvent of A we needed to �nd,given λ > 0 and (f1, f2) ∈ BUC(R) × BUC(R), a pair (g1, g2) ∈ D suhthat(5) {
λg1 − 2a(g2)e + 2g1 = f1,

λg2 − 2vg′2 − 2a(g1)e + 2ag2 = f2.Substituting g1 = 2a
λ+2a

(g2)e + 1
λ+2a

f1 into the seond equation, we ob-tain
(λ + 2a)g2 − 2vg′2 −

4a2

λ + 2a
(g2)e =

2a

λ + 2a
(f1)e + f2.This is equation (1) with α = λ + 2a, β = 2v, γ = − 4a2

λ+2a
, g = g2 and

f = 2a
λ+2a

(f1)e + f2.2. The general solution to (1) with onstant oe�ients. Con-sider the di�erential equation(6) αg(t) − βg′(t) + γge(t) = f(t) for all t ∈ R,where f is a given funtion, g is a searhed-for di�erentiable funtion, ge isits even part: ge(t) = 1
2(g(t) + g(−t)), and α, β and γ are real numbers with

α2 + β2 + γ2 > 0.



16 A. Bobrowski and M. Kubali«skaLet ĝ(t) = g(−t), t ∈ R. Replaing g(t) by g(−t) in (6) we obtain(7) αĝ(t) + βĝ ′(t) + γge(t) = f̂(t), t ∈ R.Adding (6) and (7) and dividing by 2 gives(8) αge(t) − βg′o(t) + γge(t) = fe(t),where go is the odd part of g: go = g− ge. Analogously, subtrating (7) from(6) and dividing by 2 yields(9) αgo(t) − βg′e(t) = fo(t).Conversely, (8) and (9) imply (6). Hene, (6) is equivalent to the followingsystem of di�erential equations with onstant oe�ients:
{

αge(t) − βg′o(t) + γge(t) = fe(t),

αgo(t) − βg′e(t) = fo(t).In order to �nd the general solution to this system we need to onsider thefollowing ases:2.1. β = 0. This ase splits naturally into the following three subases.(We note that α = 0 and α + γ = 0 is impossible, for this would imply that
α = β = γ = 0.)1. Suppose α 6= 0 and α + γ 6= 0. Then the system takes the form





ge(t) =
1

α + γ
fe(t),

go(t) =
1

α
fo(t),and the solution of (6) is g = ge + go = 1

α+γ
fe + 1

α
fo.2. Suppose α = 0 and γ 6= 0. Then the system takes the form

{
γge(t) = fe(t),

fo(t) = 0.A solution to this system exists if and only if f is even. In that ase
g is given by g = (1/γ)fe + h = (1/γ)f + h, where h is an arbitraryodd funtion.3. Suppose α 6= 0 and α + γ = 0. Then the system takes the form

{
fe(t) = 0,

go(t) =
1

α
fo(t).A solution to this system exists if and only if f is odd. In that ase

g is given by g = (1/α)fo + h = (1/α)f + h, where h is an arbitraryeven funtion.



A funtional equation 172.2. β 6= 0. In this ase we may write
(10) 




g′o(t) =
α + γ

β
ge(t) −

1

β
fe(t),

g′e(t) =
α

β
go(t) −

1

β
fo(t).Introduing

A =

(
0 (α + γ)/β

α/β 0

)

and using A2n = (α(α + γ)/β2)nI, n ≥ 1, we �nd that
etA = cosh

(
t

√
α(α + γ)

β

)
I +

β√
α(α + γ)

sinh

(
t

√
α(α + γ)

β

)
A,provided α(α + γ) 6= 0. For α(α + γ) = 0, we have etA = I + At. Hene, thegeneral solution (go(t)

ge(t)

) to (10) is

 C1 cosh(t

√
α(α + γ)/β) + C2

√
(α + γ)/α sinh(t

√
α(α + γ)/β)

C1

√
α/(α + γ) sinh(t

√
α(α + γ)/β) + C2 cosh(t

√
α(α + γ)/β)




− 1

β




Tt
0 fe(t − s) cosh(s

√
α(α + γ)/β) ds

√
α/(α + γ)

Tt
0 fe(t − s) sinh(s

√
α(α + γ)/β) ds




− 1

β




√
(α + γ)/α

Tt
0 fo(t − s) sinh(s

√
α(α + γ)/β) dsTt

0 fo(t − s) cosh(s
√

α(α + γ)/β) ds




and so g is given by
g(t) = (C1 + C2) cosh

(
t

√
α(α + γ)

β

)(11)
+

(C1 + C2)α + C2γ√
α(α + γ)

sinh

(
t

√
α(α + γ)

β

)

− 1

β

t\
0

f(t − s) cosh

(
s

√
α(α + γ)

β

)
ds

−
√

α(α + γ)

αβ

t\
0

f(t − s) sinh

(
s

√
α(α + γ)

β

)
ds

+
γ

β
√

α(α + γ)

t\
0

fe(t − s) sinh

(
s

√
α(α + γ)

β

)
ds.



18 A. Bobrowski and M. Kubali«skaIf (α + γ)α = 0, then
g(t) = (C1 + C2) +

(
α + γ

β
C2 +

α

β
C1

)
t − 1

β

t\
0

f(t − s) ds

− α + γ

β2

t\
0

sf(t − s) ds +
γ

β2

t\
0

sfe(t − s) ds.

Example 1. Let f be a given member of BUC(R) and let α, β > 0,
γ > −α. Our result implies that in BUC(R) there exists exatly one solutionto (1), given by (2). To see this, rewrite (11) as follows:

g(t) = C̃1e
t
√

µ + C̃2e
−t

√
µ(12)

− β
√

µ + α

2αβ

t\
0

f(s)e(t−s)
√

µ ds +
γ

2β2√µ

t\
0

fe(s)e
(t−s)

√
µ ds

+
β
√

µ − α

2αβ

t\
0

f(s)e−(t−s)
√

µ ds − γ

2β2√µ

t\
0

fe(s)e
−(t−s)

√
µ ds,

where
C̃1 =

C1 + C2

2
+

αC1 + (α + γ)C2

2β
√

µ
, C̃2 =

C1 + C2

2
− αC1 + (α + γ)C2

2β
√

µ
,

and µ = α(α + γ)/β2. As in [3, p. 244℄ we hek that the only hoie for C̃1and C̃2 that leads to g in BUC(R) is
C̃1 =

β
√

µ + α

2αβ

∞\
0

f(s)e−s
√

µ ds − γ

2β2√µ

∞\
0

fe(s)e
−s

√
µ ds,

C̃2 =
β
√

µ − α

2αβ

0\
−∞

f(s)es
√

µ ds − γ

2β2√µ

0\
−∞

fe(s)e
s
√

µ ds.

For these onstants equation (12) beomes
g(t) =

α

2β2√µ

∞\
−∞

f(s)e−|t−s|√µ ds +
γ

2β2√µ

∞\
−∞

fo(s)e
−|t−s|√µ ds(13)

− 1

2β

t\
−∞

f(s)e−(t−s)
√

µ ds +
1

2β

∞\
t

f(s)e(t−s)
√

µ ds.

Sine (Rµf)′(t)=−1
2

Tt
−∞ f(s)e−(t−s)

√
µ ds+ 1

2

T∞
t

f(s)e(t−s)
√

µ ds, this agreeswith (2).



A funtional equation 193. Equation (1) with variable oe�ients. Let a, b, c : R → R bebounded, ontinuous funtions. Consider the equation(14) g′ = ag + bge + c.Given ω > 0 we searh for solutions of this problem in the lass Bω ofontinuous funtions g suh that supt∈R e−ω|t||g(t)| is �nite. We note that
Bω is a Banah spae with the norm

‖g‖ω = sup
t∈R

e−ω|t||g(t)|.We refer to Bω as the Bieleki spae (see [1, 4℄).Proposition 1. Fix ω > 2M where
M = max{sup

t∈R

|a(t)|, sup
t∈R

|b(t)|, sup
t∈R

|c(t)|}.The Cauhy problem for the equation (14) with initial ondition g(0) = κ ∈ Rhas a unique solution in the Bieleki spae Bω.Proof. A funtion g satis�es (14) with initial ondition g(0) = κ i� it isa �xed point of the operator F in Bω given by(15) [F (g)](t) = κ +

t\
0

a(s)g(s) ds +

t\
0

b(s)ge(s) ds +

t\
0

c(s) ds, t ∈ R.We note that F indeed maps Bω into itself. For, learly, F (g) is a ontinuousfuntion. Moreover, |κ +
Tt
0 c(s) ds| ≤ |κ|+ M |t|, so that t 7→ κ +

Tt
0 c(s) ds isa member of Bω, ω > 0. Also, for any t ∈ R and g ∈ Bω,

∣∣∣e−ω|t|
t\
0

b(s)ge(s) ds
∣∣∣ ≤ M

∣∣∣
t\
0

e−ω(|t|−|s|)e−ω|s||ge(s)| dy
∣∣∣(16)

≤ M‖ge‖ω

∣∣∣
t\
0

e−ω(|t|−|s|) ds
∣∣∣ ≤ Mω−1‖g‖ω,whih shows that the third term in (15) is a member of Bω. Similarly, weshow that so is the seond term there.A alulation similar to the one in (16) shows that ‖F (f) − F (g)‖ω <

(2M/ω)‖f − g‖ω. Hene, for ω > 2M , F is a ontration in Bω and so, bythe Banah �xed point theorem, there exists a unique �xed point of F.Remark 1. Sine Bω ⊂ Bω′ for ω < ω′, by Proposition 1, there an beno more than one solution to (14) in Bω where ω ≤ 2M. Moreover, if g is a�xed point of F in Bω for some ω then it is a �xed point of F in all Bω′ where
ω′ > ω. Hene our proposition states that there exists a unique solution tothe Cauhy problem related to (14) and this solution belongs to Bω for all
ω > 2M.



20 A. Bobrowski and M. Kubali«skaAlthough it seems that a losed form of the general solution to (14) isnot available, we an still show that this equation is equivalent to a systemof two ordinary di�erential equations for the even and odd parts of g. Tothis end we note �rst that, as an be heked diretly, for any funtions fand g on R, (fg)e = fge − ĝfo and (fg)o = fge − ĝfe. Hene, alulatingthe even part of both sides of equation (14) and noting that (g′)e = g′o, weobtain
g′o = gae − âgo + gebe + ce = geae + goae − âgo + gebe + ce

= ge[a + b]e + goao + ce.Analogously, g′e = ge[a+ b]o +aego + co. Conversely, the equations for ge and
go determine the equation for g. In other words, (14) is equivalent to thefollowing system of di�erential equations:(17) (

go

ge

)′
=

(
ao (a + b)e

ae (a + b)o

)(
go

ge

)
+

(
ce

co

)
.Clearly, if a and b are onstants equal to α/β and γ/β, respetively, thissystem redues to (2) with c = −(1/β)f. Formula (17) may be used as astarting point for investigation of (14) in a more general ase, where, forexample, a, b and c are ontinuous but unbounded.4. Equation (1) in an abstrat Banah spae. Suppose that X is aBanah spae and G is the generator (see e.g. [9℄) of a strongly ontinuousgroup {U(t), t ∈ R} of equibounded operators in X:(18) sup

t∈R

‖U(t)‖ =: M < ∞.Reall that the operators C(t) = 1
2(U(t) + U(−t)), t ∈ R, form a stronglyontinuous osine operator funtion (see e.g. [7, 15℄) so that the osine fun-tional equation 2C(t)C(s) = C(t + s) + C(t − s), s, t ∈ R, is satis�ed. Thegenerator of {C(t), t ∈ R}, de�ned as limh→0

2
h2 [C(h)f − f ] for all f ∈ Xfor whih this limit exists, an be heked to be equal to G2 with naturaldomain (see e.g. [7, p. 77℄, f. [13℄). By the Sova generation theorem ([7, 15℄),all positive λ belong to the resolvent set of G2 and

λ(λ2 − G2)−1 =

∞\
0

e−λtC(t) dt(19)
=

1

2

∞\
0

e−λtU(t) dt +
1

2

∞\
0

e−λtU(−t) dt

=
1

2
(λ − G)−1 +

1

2
(λ + G)−1(all integrals in the strong topology).



A funtional equation 21Suppose also that X is a diret sum of two subspaes: XP and XQ wherethe projetions P (on XP ) and Q (on XQ) are bounded in norm by 1. Bythe Phillips perturbation theorem [9℄, for any a ∈ R, both Ga := G + aPand −Ga generate strongly ontinuous semigroups, say {Sa(t), t ≥ 0} and
{S−

a (t), t ≥ 0}, respetively, suh that ‖Sa(t)‖, ‖S−
a (t)‖ ≤ Me|a|t, t ≥ 0.Hene, by the Hille�Yosida generation theorem for groups ([5, 9℄), Ga is thegenerator of a strongly ontinuous group {Sa(t), t ∈ R} of operators in Xand ‖Sa(t)‖ ≤ Me|at|, t ∈ R. In partiular, any λ ∈ R suh that |λ| > |a|belongs to the resolvent set of Ga.Suppose �nally that for f in the domain D(G) of G, Pf belongs to D(G)and GPf = QGf . This implies that Qf belongs to D(G) and

GQf = G(f − Pf) = Gf − QGf = PGf.Proposition 2. Under the above assumptions, for f ∈ X and |λ| > |a|,the resolvent Rλ,a := (λ − Ga)
−1 of Ga is given by

Rλ,af = G(µ − G2)−1f + (µ − G2)−1(λ−1µQf + λPf)(20)
= G(µ − G2)−1f + (µ − G2)−1(λf − aQf),where µ = λ(λ − a) > 0.Proof. In view of the above remarks, for any f ∈ X, the resolvent equa-tion of Ga,(21) λg − Gag = f,has a unique solution. We are to hek that g = Rλ,af de�ned in (20) solvesthis equation. Clearly, g ∈ D(G). Moreover, a diret alulation shows thatfor any h ∈ X, k = P (µ − G2)−1h solves µk − G2k = Ph. Sine the uniquesolution to the last equation is k = (µ−G2)−1Ph, we see that P ommuteswith (µ − G2)−1. Hene, so does Q. Using

G2(µ − G2)−1f = µ(µ − G2)−1f − f,we obtain
Gag = Gg + aPg = G2(µ − G2)−1f + G(µ − G2)−1[λf − aQf + aQf ]

+ aλ(µ − G2)−1Pf

= (µ − G2)−1[µf + aλPf ] + λG(µ − G2)−1f − f.Sine λg = λG(µ − G2)−1f + (µ − G2)−1[µQf + λ2Pf ], the left-hand sideof (21) with g = Rλ,af equals
[−µ + λ2 − aλ](µ − G2)−1Pf + f = f,as desired.



22 A. Bobrowski and M. Kubali«skaRemark 2. Clearly, the way to derive relation (20) is to note that ap-plying P and Q to both sides of (21) we obtain the following system of twoequations that is equivalent to (21):(22) {
λPg − GQg − aPg = Pf,

λQg − GPg = Qf.This system, under the additional assumption that f ∈D(G), an be solvedby plugging Qg = λ−1[Qf + GPg] into the �rst equation, and this leadsto (20).Example 2. Let X = BUC(R) be the spae of uniformly ontinuousfuntions on R with the supremum norm, and {U(t), t ∈ R} be the group oftranslations U(t)f(s) = f(s + t), s, t ∈ R. Clearly, ‖U(t)‖ = 1, t ∈ R. Thein�nitesimal generator G of this group is G = d/ds with natural (maximal)domain.Let P be the projetion of X onto the subspae XP of even funtionsin X, and Q be the projetion on the spae of odd funtions in X. Obviously,
Pf = fe and Qf = fo and ‖P‖ = ‖Q‖ = 1. Note that P leaves the setof di�erentiable funtions invariant and we have GPf = QGf for all di�er-entiable funtions f. In other words, the assumptions of Proposition 2 aresatis�ed. Therefore, the solution to equation (1) is given by g = (1/β)Rλ,afwith a = −γ/β and λ = α/β. To be more spei�,

g =
1

β
(Rµ)′ +

α

β2
Rµf +

γ

β2
Rµfo,where

µ = λ(λ − a) = α(α + γ)/β2 and Rµ = (µ − G2)−1.Sine
(λ − G)−1f(t) =

∞\
0

e−λsf(t + s) ds,

(λ + G)−1f(t) =

0\
−∞

eλsf(s + t) dt,relation (19) gives
Rµf(t) =

1

2
√

µ

∞\
−∞

e−
√

µ|t|f(t + s) ds.This establishes (2) one again.Remark 3. For γ = 0, (1) redues to an ordinary linear di�erentialequation of �rst order with onstant oe�ients. Hene, in that ase, (2)should redue to the resolvent of a �rst-order di�erential operator. More



A funtional equation 23generally, for a = 0, (20) should redue to the resolvent of G. To hek thiswe note that, by (19), G(λ−G)−1f = λ(λ−G)−1f − f and G(λ+G)−1f =
f − λ(λ + G)−1f, and relation (20) may be written in the form
Rλ,af =

1

2
[(
√

µ − G)−1f − (
√

µ + G)−1f ] + (µ − G2)−1(λ−1µQf + λPf).For a = 0 this redues to
1

2
[(λ − G)−1f − (λ + G)−1f ] + (λ2 − G2)−1(λQf + λPf)

=
1

2
[(λ − G)−1f − (λ + G)−1f ] + λ(λ2 − G2)−1f = (λ − G)−1f(where we used (19) again), as expeted.Aknowledgements. This work was supported by the Polish Govern-ment researh fund for 2005-2008, grant no. 1 P03A 044 29 (0356/P03/2005/29).
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