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Infinitely many solutions for systems of n two-point
Kirchhoff-type boundary value problems

by Shapour Heidarkhani (Kermanshah and Tehran)

Abstract. Using Ricceri’s variational principle, we establish the existence of infinitely
many solutions for a class of two-point boundary value Kirchhoff-type systems.

1. Introduction. Let Ki : [0,+∞[→ R for 1 ≤ i ≤ n be n continuous
functions such that there exist n positive numbers mi with Ki(t) ≥ mi for
all t ≥ 0 for 1 ≤ i ≤ n, and denote m := min{mi; 1 ≤ i ≤ n}.

Consider the following double eigenvalue Kirchhoff-type system on a
bounded interval [a, b] in R (a < b):

(1.1)

−Ki

( b�
a

|u′i(x)|2 dx
)
u′′i = λFui(x, u1, . . . , un)+µGui(x, u1, . . . , un),

ui(a) = ui(b) = 0,

for 1 ≤ i ≤ n. In (1.1), λ is a positive parameter, µ is a non-negative
parameter, F : [a, b] × Rn → R is a function such that F (·, t) is continuous
in [a, b] for all t = (t1, . . . , tn) ∈ Rn, F (x, ·, . . . , ·) is C1 in Rn for every
x ∈ [a, b], F (x, 0, . . . , 0) = 0 for all x ∈ [a, b] and for every % > 0,

sup
|t|≤%

n∑
i=1

|Fti(·, t)| ∈ L1([a, b]),

G : [a, b] × Rn → R is a function such that G(·, t) is measurable in [a, b]
for all t = (t1, . . . , tn) ∈ Rn, G(x, ·, . . . , ·) is C1 in Rn for every x ∈ [a, b]
and G(x, 0, . . . , 0) = 0 for all x ∈ [a, b], and Fui and Gui denote the partial
derivatives of F and G with respect to ui for 1 ≤ i ≤ n, respectively.

Basing on the variational principle of [25], we will prove the existence of
infinitely many solutions for the system (1.1); see [5].
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Corresponding to Ki we introduce the functions K̃i : [0,+∞[→ R by

K̃i(t) =

t�

0

Ki(s) ds for t ≥ 0 and 1 ≤ i ≤ n.

For all γ > 0 we set

(1.2) Q(γ) =
{
t = (t1, . . . , tn) ∈ Rn :

n∑
i=1

|ti| ≤ γ
}
.

A special case of our main result is the following theorem.

Theorem 1.1. Let fi : Rn → R be a continuous function for 1 ≤ i ≤ n
such that the differential 1-form w :=

∑n
i=1 fi(ξ1, . . . , ξn)dξi is integrable

and let F be a primitive of w such that F (ξ1, . . . , ξn) ≥ 0 in Rn. Assume
that

lim inf
ξ→+∞

maxt∈Q(ξ) F (t)

ξ2
= 0

and

lim sup
(t1,...,tn)→(+∞,...,+∞)

F (t1, . . . , tn)∑n
i=1 K̃i

(
8
b−a t

2
i

) = +∞.

Then the system

(1.3)

−Ki

( b�
a

|u′i(x)|2 dx
)
u′′i = fi(u1, . . . , un) in (a, b),

ui(a) = ui(b) = 0,

for 1 ≤ i ≤ n, has a sequence of pairwise distinct positive weak solu-
tions.

Problems of Kirchhoff type have been widely investigated. We refer the
reader to [1, 13, 16–20, 23, 24, 27, 29] and the references therein. For in-
stance, B. Ricceri in an interesting paper [27] established the existence of
at least three weak solutions to a class of Kirchhoff-type double eigenvalue
boundary value problems using Theorem A of [26]. In [19], motivated by [27],
based on a three critical points theorem proved in [2], the existence of two in-
tervals of positive real parameters λ was established for which the boundary
value problem of Kirchhoff type−K

( b�
a

|u′(x)|2 dx
)
u′′ = λf(x, u),

u(a) = u(b) = 0,

where K : [0,+∞[ → R is a continuous function, f : [a, b] × R → R is
a Carathéodory function and λ > 0, admits three weak solutions whose
norms are uniformly bounded with respect to λ belonging to one of certain
two intervals. In [16], the authors studied the existence of infinitely many
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non-negative solutions for a p(x)-Kirchhoff-type Dirichlet problem by apply-
ing Ricceri’s variational principle [25] and the theory of variable exponent
Sobolev spaces.

By a (weak) solution of the system (1.1), we mean any u = (u1, . . . , un) ∈
(W 1,2

0 ([a, b]))n such that

n∑
i=1

Ki

( b�
a

|u′i(x)|2 dx
) b�
a

u′i(x)v′i(x) dx

− λ
b�

a

n∑
i=1

Fui(x, u1(x), . . . , un(x))vi(x) dx

− µ
b�

a

n∑
i=1

Gui(x, u1(x), . . . , un(x))vi(x) dx = 0

for every v = (v1, . . . , vn) ∈ (W 1,2
0 ([a, b]))n.

For a discussion of the existence of infinitely many solutions for some
differential equations, applying a smooth version of Theorem 2.1 of [5], which
is a more precise version of Ricceri’s variational principle [25], we refer the
reader to [5, 6, 7, 10]. A non-smooth version of Ricceri’s variational principle
due to Marano and Motreanu [22] is employed in [11]. Here, our motivation
comes from the recent paper of Bonanno and Di Bella [4].

Below we recall Theorem 2.5 of [25] which is our main tool.

Theorem 1.2. Let X be a reflexive real Banach space, let Φ, Ψ : X → R
be two Gâteaux differentiable functionals such that Φ is sequentially weakly
lower semicontinuous, strongly continuous, and coercive, and Ψ is sequen-
tially weakly upper semicontinuous. For every r > infX Φ, put

ϕ(r) := inf
u∈Φ−1(]−∞,r[)

supv∈Φ−1(]−∞,r]) Ψ(v)− Ψ(u)

r − Φ(u)
,

γ := lim inf
r→+∞

ϕ(r), δ := lim inf
r→(infX Φ)+

ϕ(r).

Then:

(a) For every r > infX Φ and every λ ∈ ]0, 1/ϕ(r)[, the restriction of the
functional Iλ = Φ − λΨ to Φ−1(]−∞, r[) admits a global minimum,
which is a critical point (local minimum) of Iλ in X.

(b) If γ < +∞ then, for each λ ∈ ]0, 1/γ[, either

(b1) Iλ possesses a global minimum, or
(b2) there is a sequence {un} of critical points (local minima) of Iλ

such that

lim
n→∞

Φ(un) = +∞.
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(c) If δ < +∞ then, for each λ ∈ ]0, 1/δ[, either

(c1) there is a global minimum of Φ which is a local minimum of Iλ,
or

(c2) there is a sequence of pairwise distinct critical points (local
minima) of Iλ which weakly converges to a global minimum of Φ.

For other studies on the subject, we refer the reader to [8, 9, 14, 15].

2. Main results. We state our main result as follows:

Theorem 2.1. Assume that there exist positive constants α and β with
β + α < b− a such that

(A1) F (x, t) ≥ 0 for each (x, t) ∈ ([a, a+ α]∪[b− β, b])× Rn;

(A2) lim inf
ξ→+∞

	b
a supt∈Q(ξ) F (x, t) dx

ξ2
<

4m

n2(b−a)
lim sup
t→+∞

	b−β
a+α F (x, t) dx∑n
i=1 K̃i

(α+β
αβ t

2
i

)
(note t → +∞ means (t1, . . . , tn) → (+∞, . . . ,+∞)). Then, for each λ ∈
]λ1, λ2[ where

λ1 :=
1

2 lim sup
t→+∞

	b−β
a+α F (x,t) dx∑n
i=1 K̃i

(
α+β
αβ

t2i

) ,
λ2 :=

2m
n2(b−a)

lim inf
ξ→+∞

	b
a supt∈Q(ξ) F (x,t) dx

ξ2

,

for every non-negative function G : [a, b]×Rn → R, measurable in [a, b], C1

in Rn and satisfying the condition

(2.1) G∞ := lim
ξ→+∞

	b
a supt∈Q(ξ)G(x, t) dx

ξ2
< +∞,

and for every µ ∈ [0, µG,λ[ where

µG,λ :=
2m

n2(b− a)G∞

(
1− λn

2(b− a)

2m
lim inf
ξ→+∞

	b
a supt∈Q(ξ) F (x, t) dx

ξ2

)
,

system (1.1) has an unbounded sequence of weak solutions in (W 1,2
0 ([a, b]))n.

Proof. To apply Theorem 1.2, let X = (W 1,2
0 ([a, b]))n be equipped with

the norm

‖(u1, . . . , un)‖ =
n∑
i=1

‖ui‖∗

where ‖ui‖∗ = (
	b
a(|u

′
i(x)|2) dx)1/2 for 1 ≤ i ≤ n. Arguing as in [3], fix

λ ∈ ]λ1, λ2[ and let G be a function satisfying (2.1). Since λ < λ2, one
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has

µG,λ :=
2m

n2(b− a)G∞

(
1− λn

2(b− a)

2m
lim inf
ξ→+∞

	b
a supt∈Q(ξ) F (x, t) dx

ξ2

)
> 0.

Fix µ ∈ ]0, µG,λ[ and put

ν1 := λ1 and ν2 :=
λ2

1 + n2(b−a)
2m

µ

λ
λ2G∞

.

If G∞ = 0, then clearly ν1 = λ1, ν2 = λ2 and λ ∈ ]ν1, ν2[. If G∞ 6= 0, since
µ < µG,λ, we obtain

λ

λ2
+
n2(b− a)

2m
µG∞ < 1,

and so
λ2

1 + n2(b−a)
2m

µ

λ
λ2G∞

> λ,

that is, λ < ν2. Hence, taking into account that λ > λ1 = ν1, one has
λ ∈ ]ν1, ν2[.

Now, set

H(x, ξ) = F (x, ξ) +
µ

λ
G(x, ξ)

for x ∈ [a, b] and ξ = (ξ1, . . . , ξn) ∈ Rn. We define Φ, Ψ : X → R for
u = (u1, . . . , un) ∈ X as follows:

Φ(u) =
1

2

n∑
i=1

K̃i(‖ui‖2∗), Ψ(u) =

b�

a

H(x, u1(x), . . . , un(x)) dx.

Let us prove that Φ and Ψ satisfy the required conditions. It is well known
that Ψ is a differentiable functional whose differential at u ∈ X is

Ψ ′(u)(v) =

b�

a

n∑
i=1

Hui(x, u1(x), . . . , un(x))vi(x) dx

for every v = (v1, . . . , vn) ∈ X; moreover, Ψ is sequentially weakly upper
semicontinuous.

Furthermore, Ψ ′ : X → X∗ is a compact operator. Indeed, it is enough to
show that Ψ ′ is strongly continuous on X. For this, for fixed (u1, . . . , un) ∈ X
let (u1k, . . . , unk)→ (u1, . . . , un) weakly in X as k →∞. Then (u1k, . . . , unk)
converges uniformly to (u1, . . . , un) on [a, b] as k → ∞ (see [30]). Since
H(x, ·, . . . , ·) is C1 in Rn for every x ∈ [a, b], the derivatives of H are contin-
uous in Rn for every x ∈ [a, b], so for 1 ≤ i ≤ n, Hui(x, u1k, . . . , unk) →
Hui(x, u1, . . . , un) strongly as k → ∞, which yields Ψ ′(u1k, . . . , unk) →
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Ψ ′(u1, . . . , un) strongly as k →∞. Thus we proved that Ψ ′ is strongly contin-
uous on X, which implies that Ψ ′ is a compact operator by Proposition 26.2
of [30].

Moreover, it is well known that Φ is sequentially weakly lower semicon-
tinuous as well as continuously differentiable, and its differential at u ∈ X is

Φ′(u)(v) =

n∑
i=1

Ki

( b�
a

|u′i(x)|2 dx
) b�
a

u′i(x)v′i(x) dx

for every v ∈ X.

Put Iλ := Φ − λΨ . Clearly, the weak solutions of (1.1) are exactly the
solutions of the equation I ′

λ
(u1, . . . , un) = 0. Moreover, since mi ≤ Ki(s) for

all s ∈ [0,+∞[ and 1 ≤ i ≤ n, from the definition of Φ we have

(2.2) Φ(u) ≥ 1

2

n∑
i=1

mi‖ui‖2∗ ≥
m

2

n∑
i=1

‖ui‖2∗ for all u ∈ X.

Now, let us verify that
γ < +∞.

Let {ξk} be a real sequence such that ξk →∞ as k →∞ and

lim
k→∞

	b
a supt∈Q(ξk)

H(x, t) dx

ξ2k
= lim inf

ξ→∞

	b
a supt∈Q(ξ)H(x, t) dx

ξ2
.

Put rk =
2mξ2k
n2(b−a) for all k ∈ N. Since

max
x∈[a,b]

|ui(x)| ≤ (b− a)1/2

2
‖ui‖∗ for all ui ∈W 1,2

0 ([a, b]) and 1 ≤ i ≤ n,

we have

(2.3) sup
x∈[a,b]

n∑
i=1

|ui(x)|2 ≤ b− a
4

n∑
i=1

‖ui‖2∗

for each u = (u1, . . . , un) ∈ X. So, from (2.2) and (2.3) we have

Φ−1(]−∞, rk]) =
{
u ∈ X;

m

2

n∑
i=1

‖ui‖2∗ ≤ rk
}

⊆
{
u ∈ X;

n∑
i=1

|ui(x)|2 ≤ rk(b− a)

2m
for each x ∈ [a, b]

}

⊆
{
u ∈ X;

n∑
i=1

|ui(x)| ≤ ξk for each x ∈ [a, b]
}
.

Hence, taking into account that Φ(0, . . . , 0) = Ψ(0, . . . , 0) = 0, for every k
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large enough, one has

ϕ(rk) = inf
u∈Φ−1(]−∞,rk[)

supv∈Φ−1(]−∞,rk]) Ψ(v)− Ψ(u)

rk − Φ(u)

≤
supv∈Φ−1(]−∞,rk]) Ψ(v)

rk
≤

	b
a supt∈Q(ξk)

H(x, t) dx

2mξ2k
n2(b−a)

=

	b
a supt∈Q(ξk)

[
F (x, t) + µ

λ
G(x, t)

]
dx

2mξ2k
n2(b−a)

≤
	b
a supt∈Q(ξk)

F (x, t) dx

2mξ2k
n2(b−a)

+
µ

λ

	b
a supt∈Q(ξk)

G(x, t) dx

2mξ2k
n2(b−a)

Moreover, from Assumption (A2) and (2.1) one has

lim
k→∞

	b
a supt∈Q(ξk)

F (x, t) dx

2mξ2k
n2(b−a)

+ lim
k→∞

µ

λ

	b
a supt∈Q(ξk)

G(x, t) dx

2mξ2k
n2(b−a)

< +∞,

which implies

lim
k→∞

	b
a supt∈Q(ξk)

H(x, t) dx

ξ2k
< +∞.

Therefore,

(2.4) γ ≤ lim inf
k→∞

ϕ(rk) ≤
n2(b− a)

2m
lim
k→∞

	b
a supt∈Q(ξk)

H(x, t) dx

ξ2k
< +∞.

Since 	b
a supt∈Q(ξk)

H(x, t) dx

2mξ2k
n2(b−a)

≤
	b
a supt∈Q(ξk)

F (x, t) dx

2mξ2k
n2(b−a)

+
µ

λ

	b
a supt∈Q(ξk)

G(x, t) dx

2mξ2k
n2(b−a)

,

taking (2.1) into account, one has

(2.5)

lim inf
ξ→+∞

	b
a supt∈Q(ξ)H(x, t) dx

ξ2
≤ lim inf

ξ→+∞

	b
a supt∈Q(ξ) F (x, t) dx

ξ2
+
µ

λ
G∞.

Moreover, since G is non-negative, from Assumption (A1) we obtain

(2.6) lim sup
ξ→+∞

	b−β
a+αH(x, ξ, . . . , ξ) dx

ξ2
≥ lim sup

ξ→+∞

	b−β
a+α F (x, ξ, . . . , ξ) dx

ξ2
.

Therefore, from (2.5) and (2.6), we observe

λ ∈ ]ν1, ν2[ ⊆ ]λ1, λ2[.
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Assumption (A2) in conjunction with (2.4), implies

]λ1, λ2[ ⊆ ]0, 1/γ[.

For fixed λ, the inequality (2.4) ensures that condition (b) of Theorem 1.2
can be applied and either Iλ has a global minimum or there exists a se-
quence {uk = (u1k, . . . , unk)} of weak solutions of the system (1.1) such
that limk→∞ ‖(u1k, . . . , unk)‖ = +∞.

The next step is to show that for fixed λ the functional Iλ has no global
minimum. Let us verify that Iλ is unbounded from below. Since

1

λ
< 2 lim sup

t→+∞

	b−β
a+α F (x, t) dx∑n
i=1 K̃i

(α+β
αβ t

2
i

) ≤ 2 lim sup
t→+∞

	b−β
a+αH(x, t) dx∑n
i=1 K̃i

(α+β
αβ t

2
i

) ,
we can consider a real sequence {dk} and a positive constant τ such that
dk →∞ as k →∞ and

(2.7)
1

λ
< τ < 2

	b−β
a+αH(x, dk, . . . , dk) dx∑n

i=1 K̃i

(α+β
αβ d

2
k

)
for each k ∈ N large enough. Let {wk = (w1k, . . . , wnk)} be the sequence in
X defined by

(2.8) wik(x) =


dk
α

(x− a) if a ≤ x < a+ α,

dk if a+ α ≤ x ≤ b− β,

dk
β

(b− x) if b− β < x ≤ b,

for 1 ≤ i ≤ n. For any fixed k ∈ N, it is easy to see that wk ∈ X, in
particular,

‖wik‖2∗ =
α+ β

αβ
d2k for 1 ≤ i ≤ n,

and so

(2.9) Φ(wk) =
1

2

n∑
i=1

K̃i

(
α+ β

αβ
d2k

)
.

On the other hand, bearing in mind Assumption (A1), since G is non-
negative, from the definition of Ψ we infer

(2.10) Ψ(wk) ≥
b−β�

a+α

H(x, dk, . . . , dk) dx.

So, according to (2.7), (2.9) and (2.10),

Iλ(wk) ≤
1

2

n∑
i=1

K̃i

(
α+ β

αβ
d2k

)
− λ

b−β�

a+α

H(x, dk, . . . j, dk) dx

<
1

2
(1− λτ)

n∑
i=1

K̃i

(
α+ β

αβ
d2k

)
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for every k ∈ N large enough. Hence, Iλ is unbounded from below, and so
has no global minimum. Therefore, applying Theorem 1.2 we deduce that
there is a sequence {uk = (u1k, . . . , unk)} ⊂ X of critical points of Iλ such
that limk→∞ ‖(u1k, . . . , unk)‖ = +∞. Hence, the conclusion is achieved.

Remark 2.2. Under the conditions

lim inf
ξ→+∞

	b
a supt∈Q(ξ) F (x, t) dx

ξ2
= 0, lim sup

t→+∞

	b−β
a+α F (x, t) dx∑n
i=1 K̃i

(α+β
αβ t

2
i

) = +∞,

from Theorem 2.1 we see that for every λ > 0 and µ ∈
[
0, 2m

n2(b−a)G∞

[
the system (1.1) admits infinitely many weak solutions in (W 1,2

0 ([a, b]))n.
Moreover, if G∞ = 0, the result holds for every λ > 0 and µ > 0.

The following result is a special case of Theorem 2.1 with µ = 0.

Theorem 2.3. Assume that all the assumptions of Theorem 2.1 hold.
Then, for each λ in

Λ :=

 1

2 lim sup
t→+∞

	b−β
a+α F (x,t) dx∑n
i=1 K̃i

(
α+β
αβ

t2i

) ,
2m

n2(b−a)

lim inf
ξ→+∞

	b
a supt∈Q(ξ) F (x,t) dx

ξ2


system (1.1) has an unbounded sequence of weak solutions in (W 1,2

0 ([a, b]))n.

Now we present the following existence result in which instead of As-
sumption (A2) a more general condition is assumed.

Theorem 2.4. Assume that all the hypotheses of Theorem 2.1 hold ex-
cept for Assumption (A2). Suppose that

(A3) there exist sequences {ak} and {bk} with

n∑
i=1

K̃i

(
α+ β

αβ
a2k

)
<

4mb2k
n2(b− a)

for every k ∈ N

and limk→∞ bk = +∞ such that

lim
k→∞

	b
a supt∈Q(bk)

F (x, t) dx−
	b−β
a+α F (x, ak, . . . , ak) dx

2mb2k
n2(b−a) −

1
2

∑n
i=1 K̃i

(α+β
αβ a

2
k

)
< 2 lim sup

t→∞

	b−β
a+α F (x, t) dx∑n
i=1 K̃i

(α+β
αβ t

2
i

) .
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Then, for each λ in

Λ′ :=  1

2 lim sup
t→+∞

	b−β
a+α F (x,t) dx∑n
i=1 K̃i(

α+β
αβ

t2i )

,

2m
n2(b−a)

lim
k→∞

	b
a supt∈Q(bk)

F (x,t) dx−
	b−β
a+α F (x,ak,...,ak) dx

2mb2
k

n2(b−a)
− 1

2

∑n
i=1 K̃i(

α+β
αβ

a2k)


system (1.1) has an unbounded sequence of weak solutions in (W 1,2

0 ([a, b]))n.

Proof. Clearly, from (A3) we obtain (A2), by choosing ak = 0 for all

k ∈ N. Moreover, if we assume (A3) instead of (A2) and set rk =
2mb2k
n2(b−a) for

all k ∈ N, by the same reasoning as in the proof of Theorem 2.1 with µ = 0,
we obtain

ϕ(rk) = inf
u∈Φ−1(]−∞,rk[)

supv∈Φ−1(]−∞,rk] Ψ(v)− Ψ(u)

rk − Φ(u)

≤
supv∈Φ−1(]−∞,rk]) Ψ(v)−

	b
a F (x,w1k(x), . . . , wnk(x)) dx

rk − 1
2

∑n
i=1 K̃i(‖wik‖2∗)

≤
	b
a supt∈Q(bk)

F (x, t) dx−
	b−β
a+α F (x, ak, . . . , ak) dx

2mb2k
n2(b−a) −

1
2

∑n
i=1 K̃i

(α+β
αβ a

2
k

)
where wk = (w1k, . . . , wnk) with wik for 1 ≤ i ≤ n as given in (2.8) with ak
instead of dk. So, we have the desired conclusion.

Here we point out the following consequence of Theorem 2.3.

Corollary 2.5. Assume that there exist positive constants α and β
with β + α < b− a such that Assumption (A1) holds. Suppose that

(B1) lim inf
ξ→+∞

	b
a supt∈Q(ξ) F (x, t) dx

ξ2
<

2m

n2(b− a)
;

(B2) lim sup
t→+∞

	b−β
a+α F (x, t) dx∑n
i=1 K̃i

(α+β
αβ t

2
i

) > 1

2
.

Then the system

(2.11)

−Ki

( b�
a

|u′i(x)|2 dx
)
u′′i = Fui(x, u1, . . . , un),

ui(a) = ui(b) = 0,

for 1 ≤ i ≤ n, has an unbounded sequence of weak solutions in (W 1,2
0 ([a, b]))n.
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Remark 2.6. Theorem 1.1 in the Introduction is a consequence of Corol-
lary 2.5, obtained by setting F (x, t) = F (t) for all x ∈ [a, b] and t ∈ Rn for
1 ≤ i ≤ n, and choosing α = β = (b− a)/4.

In the same way as in the proof of Theorem 2.1 but using conclusion (c)
of Theorem 1.2 instead of (b), we will obtain the following result.

Theorem 2.7. Assume that all the hypotheses of Theorem 2.1 hold ex-
cept for Assumption (A2). Suppose that

(A4) lim inf
ξ→0+

	b
a supt∈Q(ξ) F (x, t) dx

ξ2
<

4m

n2(b− a)
lim sup
t→0+

	b−β
a+α F (x, t) dx∑n
i=1 K̃i

(α+β
αβ t

2
i

)
(note t→ 0+ means (t1, . . . , tn)→ (0+, . . . , 0+)).

Then, for each λ ∈ ]λ3, λ4[ where

λ3 :=
1

2 lim sup
t→0+

	b−β
a+α F (x,t) dx∑n
i=1 K̃i(

α+β
αβ

t2i )

,

λ4 :=

2m
n2(b−a)

lim inf
ξ→0+

	b
a supt∈Q(ξ) F (x,t) dx

ξ2

,

for every non-negative function G : [a, b]×Rn → R, measurable in [a, b], C1

in Rn and satisfying the condition

(2.12) G0 := lim
ξ→0+

	b
a supt∈Q(ξ)G(x, t) dx

ξ2
< +∞,

and for every µ ∈ [0, µG,λ[ where

µG,λ :=
2m

n2(b−a)G0

(
1− λn

2(b−a)

2m
lim inf
ξ→0+

	b
a supt∈Q(ξ) F (x, t) dx

ξ2

)
,

the system (1.1) has a sequence of weak solutions which strongly converges

to 0 in (W 1,2
0 ([a, b]))n.

Proof. Fix λ ∈ ]λ3, λ4[ and let G be a function satisfying (2.12). Since
λ < λ2, one has

µG,λ :=
2m

n2(b− a)G0

(
1− λn

2(b− a)

2m
lim inf
ξ→0+

	b
a supt∈Q(ξ) F (x, t) dx

ξ2

)
> 0.

Fix µ ∈ ]0, µG,λ[ and put

ν1 := λ3 and ν2 :=
λ4

1 + n2(b−a)
2m

µ

λ
λ2G0

.
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If G0 = 0, then clearly ν1 = λ3, ν2 = λ4 and λ ∈ ]ν1, ν2[. If G0 6= 0, since
µ < µG,λ, we obtain

λ

λ2
+
n2(b− a)

2m
µG0 < 1,

and so
λ2

1 + n2(b−a)
2m

µ

λ
λ2G0

> λ,

that is, λ < ν2. Hence, bearing in mind that λ > λ3 = ν1, one has λ ∈ ]ν1, ν2[.
Now, set

H(x, ξ) = F (x, ξ) +
µ

λ
G(x, ξ)

for x ∈ [a, b] and ξ = (ξ1, . . . , ξn) ∈ Rn. Since
	b
a supt∈Q(ξk)

H(x, t) dx

2mξ2k
n2(b−a)

≤
	b
a supt∈Q(ξk)

F (x, t) dx

2mξ2k
n2(b−a)

+
µ

λ

	b
a supt∈Q(ξk)

G(x, t) dx

2mξ2k
n2(b−a)

,

taking into account (2.12) one has
(2.13)

lim inf
ξ→0+

	b
a supt∈Q(ξ)H(x, t) dx

ξ2
≤ lim inf

ξ→0+

	b
a supt∈Q(ξ) F (x, t) dx

ξ2
+
µ

λ
G0.

Moreover, since G is non-negative, from Assumption (A1) we obtain

(2.14) lim sup
ξ→0+

	b−β
a+αH(x, ξ, . . . , ξ) dx

ξ2
≥ lim sup

ξ→0+

	b−β
a+α F (x, ξ, . . . , ξ) dx

ξ2
.

Therefore, from (2.13) and (2.14),

λ ∈ ]ν1, ν2[ ⊆ ]λ3, λ4[.

We take Φ, Ψ and Iλ as in the proof of Theorem 2.1. We verify that
δ < +∞. For this, let {ξk} be a sequence of positive numbers such that
ξk → 0+ as k →∞ and

lim
k→∞

	b
a supt∈Q(ξk)

H(x, t) dx

ξ2k
< +∞.

Put rk =
2mξ2k
n2(b−a) for k ∈ N. Let us show that the functional Iλ does not

have a local minimum at zero. For this, let {dk} be a sequence of positive
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numbers such that dk → 0+ as k →∞ and pick τ > 0 such that

(2.15)
1

λ
< τ < 2

	b−β
a+αH(x, dk, . . . , dk) dx∑n

i=1 K̃i

(α+β
αβ d

2
k

)
for each k ∈ N large enough. Let {wk} = {(w1k, . . . , wnk)} be a sequence in
X with wik defined in (2.8). According to (2.9), (2.10) and (2.15), we have

Iλ(wk) = Φ(wk)− λΨ(wk)

≤ 1

2

n∑
i=1

K̃i

(
α+ β

αβ
d2k

)
− λ

b−β�

a+α

H(x, dk, . . . , dk) dx

<
1

2

n∑
i=1

K̃i

(
α+ β

αβ
d2k

)
(1− λτ) < 0

for every k ∈ N large enough. Since Iλ(0) = 0, this implies that the functional
Iλ does not have a local minimum at zero.

Hence, part (c) of Theorem 1.2 ensures that there exists a sequence
{uk = (u1k, . . . , unk)} in X of critical points of Iλ such that ‖uk‖ → 0 as
k →∞, and the proof is complete.

Remark 2.8. Under the conditions

lim inf
ξ→0+

	b
a supt∈Q(ξ) F (x, t) dx

ξ2
= 0, lim sup

t→0+

	b−β
a+α F (x, t) dx∑n
i=1 K̃i

(α+β
αβ t

2
i

) = +∞,

Theorem 2.7 ensures that for every λ > 0 and µ ∈
[
0, 2m

n2(b−a)G0

[
the system

(1.1) admits infinitely many weak solutions in (W 1,2
0 ([a, b]))n. Moreover, if

G0 = 0, the result holds for every λ > 0 and µ > 0.

Now we present the following example to illustrate the above result:

Example 2.9. Let F : R2 → R be defined as

F (x, t1, t2) =


0 for all (x, t1, t2) ∈ [0, 1]× {0}2,
g(x)t21

(
1− sin(ln(|t1|))

)
+ h(x)t22

(
1− cos(ln(|t2|))

)
for all (x, t1, t2) ∈ [0, 1]× (R− {0})2,

where g, h : [0, 1) → R are non-negative continuous functions. We observe
that

lim inf
ξ→0+

	b
a sup|t1|+|t2|≤ξ F (x, t1, t2) dx

ξ2
= 0

and

lim sup
(t1,t2)→(0+,0+)

	3/4
1/4 F (x, t1, t2) dx

8(t21 + t22) + 32(t41 + t42)
= +∞.
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Hence, by Remark 2.8, for every (λ, µ) ∈ ]0,+∞[× [0,+∞[ the system

−
(

1 +

1�

0

|u′(x)|2 dx
)
u′′

= λg(x)u
(
2− 2 sin(ln(|u|))− cos(ln(|u|))

)
+ µGu(x, u, v),

−
(

1 +

1�

0

|v′(x)|2 dx
)
v′′

= λh(x)v
(
2− 2 cos(ln(|v|)) + sin(ln(|v|))

)
+ µGv(x, u, v),

u(0) = u(1) = v(0) = v(1) = 0,

where

G(x, t1, t2) =
e−t

+
1 (t+1 )γ + e−t

+
2 (t+2 )η

1 + x

with t+i = max{ti, 0} for i = 1, 2, and γ and η positive real numbers, for
all (x, t1, t2) ∈ [0, 1] × R2, has a sequence of weak solutions which strongly

converges to 0 in W 1,2
0 ([0, 1])×W 1,2

0 ([0, 1]).

The following existence result is a special case of Theorem 2.7 with µ = 0.

Theorem 2.10. Assume that all the assumptions of Theorem 2.7 hold.
Then, for each λ in

Λ′′ :=

 1

2 lim sup
t→0+

	b−β
a+α F (x,t) dx∑n
i=1 K̃i(

α+β
αβ

t2i )

,

2m
n2(b−a)

lim inf
ξ→0+

	b
a supt∈Q(ξ) F (x,t) dx

ξ2


the system (1.1) has a sequence of weak solutions which strongly converges

to 0 in (W 1,2
0 ([a, b]))n.

Remark 2.11. We easily observe that by assuming, in Theorem 2.4,

lim
k→∞

bk = 0

instead of limk→∞ bk = +∞ and replacing t → +∞ with t → 0+, by the
same argument, applying Theorem 2.7, for every λ ∈ Λ′ the system (1.1) has

a sequence of weak solutions which strongly converges to 0 in (W 1,2
0 ([a, b]))n.

We point out a remarkable particular case of Theorem 2.1.

Corollary 2.12. Let f : [a, b] × R → R be an L1-Carathéodory func-

tion, and denote F (x, t) =
	t
0 f(x, ξ) dξ for all (x, t) ∈ [a, b] × R. Assume

that there exist four positive constants α, β, p and q with β+α < b−a such
that
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(C1) F (x, t) ≥ 0 for each (x, t) ∈ ([a, a+ α] ∪ [b− β, b])× R;

(C2) lim inf
ξ→+∞

	b
a sup|t|≤ξ F (x, t) dx

ξ2
<

4p

b− a
lim sup
t→+∞

	b−β
a+α F (x, t) dx

pt2
(α+β
αβ

)
+ q

2 t
4 α+β
αβ

2 .

Then, for each λ ∈ ]λ5, λ6[ where

λ5 :=
1

2 lim sup
t→+∞

	b−β
a+α F (x,t) dx

pt2 α+β
αβ

+ q
2
t4(α+β

αβ
)2

,

λ6 :=

2p
b−a

lim inf
ξ→+∞

	b
a sup|t|≤ξ F (x,t) dx

ξ2

,

for every L1-Carathéodory function g : [a, b] × R → R whose potential

G(x, t) =
	t
0 g(x, ξ) dξ for (x, t) ∈ [a, b]×R is a non-negative function satis-

fying the condition

(2.16) G∞ := lim
ξ→+∞

	b
a sup|t|≤ξ G(x, t) dx

ξ2
< +∞,

and for every µ ∈ [0, µG,λ[ where

µG,λ :=
2p

(b− a)G∞

(
1− λb− a

2p
lim inf
ξ→+∞

	b
a sup|t|≤ξ F (x, t) dx

ξ2

)
,

the problem

(2.17)

−
(
p+ q

b�

a

|u′(x)|2 dx
)
u′′ = λf(x, u) + µg(x, u),

u(a) = u(b) = 0,

has an unbounded sequence of weak solutions in W 1,2
0 ([a, b]).

Proof. Let n = 1. For fixed p, q > 0, set K1(t) = p + qt for all t ≥ 0.
Bearing in mind that m1 = p, all assumptions in Theorem 2.1 are satisfied,
which yields the conclusion.

Remark 2.13. We note that in Corollary 2.12, replacing ξ → +∞ and
t → +∞ with ξ → 0+ and t → 0+, respectively, by the same argument,
applying Theorem 2.7, for every λ ∈ ]λ5, λ6[, the problem (2.17) has a

sequence of weak solutions which strongly converges to 0 in W 1,2
0 ([a, b]).

We present two examples to illustrate these results:

Example 2.14. Let α and β be positive constants such that β+α < b−a.
Let f : [a, b]× R→ R be defined by
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f(x, t) =


g(x)t4

(
5 + 10 sin2(ln t) + 2 sin(2 ln t)

)
if (x, t) ∈ [a, b]× ]0,+∞[,

0 if (x, t) ∈ [a, b]× ]−∞, 0[,

where g : [a, b] → R is a non-negative continuous function. Consider the
problem

(2.18)

−
(

1 +

b�

a

|u′(x)|2 dx
)
u′′ = λf(x, u),

u(a) = u(b) = 0.

A direct calculation yields

F (x, t) =

{
g(x)t5(1 + 2 sin2(ln t)) if (x, t) ∈ [a, b]× ]0,+∞[,

0 if (x, t) ∈ [a, b]× ]−∞, 0[.

Put

ak =

{
k if k is even,

e−kπ if k is odd,
and bk = ekπ for every k ∈ N.

Then

lim
k→∞

	b
a sup|t|≤ak F (x, t) dx

a2k
=

{
0 if k is odd,

+∞ if k is even,

and

lim sup
k→∞

	b−β
a+α F (x, t) dx

b2k
α+β
αβ + 1

2b
4
k

(α+β
αβ

)2 = +∞.

So,

lim inf
ξ→+∞

	b
a sup|t|≤ξ F (x, t) dx

ξ2
= 0, lim sup

t→+∞

	b−β
a+α F (x, t) dx

t2 α+βαβ + 1
2 t

4
(α+β
αβ

)2 = +∞.

Hence, all assumptions of Corollary 2.12 with µ = 0 are satisfied. So, for
every λ ∈ ]0,+∞[ the problem (2.18) has an unbounded sequence of weak

solutions in W 1,2
0 ([a, b]).

Example 2.15. Let α and β be positive constants such that β+α < b−a.
Let f : [a, b]× R→ R be defined by

f(x, t) =


h(x)t

(
2− 2 sin(ln(|t|))− cos(ln(|t|))

)
if (x, t) ∈ [a, b]× (R− {0}),

0 if (x, t) ∈ [a, b]× {0},
where h : [a, b]→ R is a non-negative continuous function. A direct calcula-
tion shows

F (x, t) =

{
h(x)t2

(
1− sin(ln(|t|))

)
if (x, t) ∈ [a, b]× (R− {0}),

0 if (x, t) ∈ [a, b]× {0},
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and so

lim inf
ξ→0+

	b
a sup|t|≤ξ F (x, t) dx

ξ2
= 0, lim sup

t→0+

	b−β
a+α F (x, t) dx

t2 α+βαβ + 1
2 t

4
(α+β
αβ

)2 = +∞.

Hence, taking into account Remark 2.13 with µ = 0, we see that for all
λ ∈ ]0,+∞[ the problem (2.18) has a sequence of weak solutions which

strongly converges to 0 in W 1,2
0 ([a, b]).

Remark 2.16. We point out that the result of Example 2.15 holds with
f as given in [4, Example 3.1] for every λ ∈ ]0,+∞[. Indeed, by the same
reasoning as in [4, Example 3.1], one has

lim inf
ξ→0+

	1
0 sup|t|≤ξ F (x, t) dx

ξ2
= 0, lim sup

t→0+

	1−β
α F (x, t) dx

t2 α+βαβ + 1
2 t

4
(α+β
αβ

)2 = +∞.

Finally, we give the following consequence of the main result:

Corollary 2.17. Let g1 : [a, b]→ R be a non-negative continuous func-

tion, and denote G1(t) =
	t
0 g1(ξ) dξ for all t ∈ R. Assume that there exist

positive constants α, β, p and q with β + α < b− a such that

(D1) lim inf
ξ→+∞

G1(ξ)

ξ2
< +∞;

(D2) lim sup
t→+∞

G1(t)

pt2 α+βαβ + q
2 t

4
(α+β
αβ

)2 = +∞.

Then, for every αi ∈ L1([a, b]) for 1 ≤ i ≤ n, with minx∈[a,b]{αi(x); 1 ≤
i ≤ n} ≥ 0 and with α1 6= 0, and for any non-negative continuous functions
gi : R→ R for 2 ≤ i ≤ n satisfying

max
{

sup
ξ∈R

Gi(ξ); 2 ≤ i ≤ n
}
≤ 0

and

min

{
lim inf
ξ→+∞

Gi(ξ)

ξ2
; 2 ≤ i ≤ n

}
> −∞

where Gi(t) =
	t
0 gi(ξ) dξ for all t ∈ R and 2 ≤ i ≤ n, for each λ in0,

2p
b−a

(
	b
a α1(x) dx) lim inf

ξ→+∞
G1(ξ)
ξ2

 ,
the problem

(2.19)

−
(
p+ q

b�

a

|u′(x)|2 dx
)
u′′ = λ

n∑
i=1

αi(x)gi(u),

u(a) = u(b) = 0,

has an unbounded sequence of weak solutions in W 1,2
0 ([a, b]).
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Proof. Set f(x, t) =
∑n

i=1 αi(x)gi(t) for all (x, t) ∈ [a, b]×R. Assumption
(D2) along with the condition

min

{
lim inf
ξ→+∞

Gi(ξ)

ξ2
; 2 ≤ i ≤ n

}
> −∞

ensures

lim sup
t→+∞

	b−β
a+α F (x, t) dx

pt2 α+βαβ + q
2 t

4
(α+β
αβ

)2 = lim sup
t→+∞

∑n
i=1Gi(ξ)

	b−β
a+α αi(x) dx

pt2 α+βαβ + q
2 t

4
(α+β
αβ

)2 = +∞.

Moreover, Assumption (D1) together with the condition

max
{

sup
ξ∈R

Gi(ξ); 2 ≤ i ≤ n
}
≤ 0

implies

lim inf
ξ→+∞

	b
a sup|t|≤ξ F (x, t) dx

ξ2
≤
( b�
a

α1(x) dx
)

lim inf
ξ→+∞

G1(ξ)

ξ2
< +∞.

Hence, applying Corollary 2.12 with µ = 0 we obtain the result.

Remark 2.18. In Corollary 2.17, replacing t→ +∞ and ξ → +∞ with
t → 0+ and ξ → 0+, respectively, by the same reasoning we find that for
every λ in 0,

2p
b−a

(
	b
a α1(x) dx) lim inf

ξ→0+

G1(ξ)
ξ2


the problem (2.19) has a sequence of weak solutions which strongly converges

to 0 in W 1,2
0 ([a, b]).

Remark 2.19. Our statements mainly depend upon the choice of the
test function wk. With our choice of wk = (w1k, . . . , wnk) with wik given
in (2.8) we have the present structure of the results. Other candidates for
wk can be considered to have other versions of the statements.
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