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On para-Nordenian structures

by ARIF A. SALIMOV (Erzurum and Baku) and FirLiz Acca (Trabzon)

Abstract. The aim of this paper is to investigate para-Nordenian properties of the
Sasakian metrics in the cotangent bundle.

1. Introduction. Let (M",g) be an n-dimensional Riemannian mani-
fold, T* M™ its cotangent bundle and 7 the natural projection T*M™ — M™.
A system of local coordinates (U, z%), i =1,...,n on M™ induces on T*M"
a system of local coordinates (7~ *(U), 2%, 2" = p;), 7:=n+i (7= 1,...,2n),
where 2! = p; are the components of the covector p in each cotangent space
T*M", z € U, with respect to the natural coframe {dz’},i=1,...,n.

We denote by S%(M™) (resp. S%5(T*M™)) the module over F(M™) (resp.
F(T*M™)) of C* tensor fields of type (r, s), where F'(M™) (resp. F(T*M™))
is the ring of real-valued C*° functions on M™ (resp. T*M™").

Let X = X* 6?& and w = w;dz’ be the local expressions in U C M"
of a vector and a covector (1-form) field X € I3(M™) and w € IV(M™),
respectively. Then the complete and horizontal lifts “ X, 7 X € S(T*M™)
of X € 3}(M™) and the vertical lift Vw € I§(T*M") of w € IY(M™) are
given, respectively, by

.0 0
C _ 7 o vh
(1.1) X=X Ei:phalX el
.0 -0
Hy _ i E: h xj
0
V., — )
(1.3) w= i 5

with respect to the natural frame {%, %}, where Fi’; are the components

of the Levi-Civita connection V, on M™ (see [11] for more details).
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For each € M™ the scalar product g~! = (¢¥/) is defined on the cotan-
gent space 71 (x) = T (M") by
9 (w.0) = gwb;

for all w,f € IY(M™).

A Sasakian metric °g is defined on T*M™ by the following three equa-
tions

(1.4) %9("w,V0) =Yg (w,0) = g7 (w.0) o,
(1.5) %g(Yw, 1Y) =0,
(1.6) ("X, 1Y) =V(g(X,Y)) = g(X,Y) o

for any X,Y € S}(M"™) and w,0 € SY(M™). Since any tensor field of type
(0,2) on T*M™ is completely determined by its action on vector fields of
type X and Yw (see [T} p. 280]), it follows that g is completely determined
by (L0)-(L9)

From and we notice that the complete lift “X of X € I3 (M™)
is expressed by

(1.7) X ="x -V(p(vVx)),
where p(VX) = p;(V, X% dx".
Using 7, we have
(1.8) 9(“X,Y) = V(g(X,Y) + (g7 (p(VX), p(VY))),

where g~ (p(VX), p(VY)) = g" (Vi X") (peV;Y*).

Since the tensor field °g € IY(T*M™) is also completely determined
by its action on vector fields of type X and €Y (see [T, p. 237]), we
have an alternative characterization of “g: a Sasakian metric “g on T*M™ is
completely determined by the condition (|1.8).

Sasakian metrics on the tangent bundle were introduced in [9] by the
Japanese geometer S. Sasaki. Sasakian metrics (diagonal lifts of metrics) on
tangent bundles were also studied in [3], [11]. In the more general case of
tensor bundles of type (1,q), (0,q) and (p,q), Sasakian metrics and their
geodesics were considered in [I], [6], [7]. Sasakian metrics on the frame bun-
dle were first considered by K. P. Mok [5] (see [2] for more details). This
paper is concerned with para-Nordenian properties of the Sasakian metric
on the cotangent bundle.

2. Levi-Civita connection of °g. On U C M™, we put

o ..
X(l):@7 9():d$, l:1,...,n.
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Then from 1' and 1) we see that X (i) and VQ(i) have local expressions

2.1 e ; _
( ) €)= 7, a R’
, 0

2.2 oy =00 = —
(22) €@) 5

We call the set {é)} = {€u), €0} = {"X @), Vo)) the frame adapted to
the Levi-Civita connection V. The indices o, 3,... = 1,...,2n indicate the
indices with respect to the adapted frame.

From equations ( . . 2.1)) and (2.2)), we see that /X and Vw have
the components
(2.3) X =Xy,  x=(1x")= < 0 >

with respect to the adapted frame {€.)}, where X © and w; are the local
components of X € S§(M™) and w € S(M™), respectively.

Let °V be the Levi-Civita connection determined by the Sasakian met-
ric 5. The components of SV are given by [7]

SF :F.]h’b SFthzs.l}B@:SFjﬁi:O,
I = gpm By, O =T

with respect to the adapted frame {€(,)}, where Rijkh are the local compo-
nents of the curvature tensor R of V,.

Let now X,Y € S}(T*M™) and X = X%, , Y = YPé5 . The covariant
derivative ° VX along Y has components
(2.6) SVy X =Y, X + 5T X Y7
with respect to the adapted frame {€(4)}

Using (23)—(2:6), we have

THEOREM 2.1. Let M™ be a Riemannian manifold with metric g and
SV be the Levi-Civita connection of the cotangent bundle T*M™ equipped
with the Sasakian metric 5g. Then °V satisfies

(i) 5Vv, V0 =0,

(ii) SVv, Y = 3 H(p(g~' o R(,Y))), )
(iii) “Vux V0 ="Y(Vx0) + 5 #(p(g~" o R( ,X)0)),
(iv) “Vux Y = H(VxY) + 3 V(pR(X,Y))
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for all X,Y € S§(M™) and w,0 € IY(M™), where & = gL ow € IH(M™),
R(,X)o € SHM™), g7t o R(, X))o € S3(M™).

3. Para-Nordenian structures on (T*M",%g). An almost paracom-
plez manifold is an almost product manifold (M™, ¢), ? = I, such that the
two eigenbundles T M"and T~ M™ associated to the two eigenvalues +1
and —1 of ¢, respectively, have the same rank. Note that the dimension of
an almost paracomplex manifold is necessarily even. Considering the para-
complex structure ¢, we obtain the set {I, ¢} on M"™, which is an isomorphic
representation of the algebra of order 2, called the algebra of paracomplex
(or double) numbers and denoted by R(j), 5% = 1.

A tensor field w € 932(M2") is said to be pure with respect to the para-
complex structure ¢ if

w((le,XQ, e ,Xq) = w(Xl,(pXQ, e ,Xq) R w(Xl,XQ,. . .,(qu)

for any X1, Xo, ..., X, € S§(M?").
We define the operator ¢, associated with ¢ and applied to the pure
tensor field w by (see [10])

(Gp) (Y X Xy) = (V) (@(Xr, - X)) — V(w(oXn, X, X,)
—i—w((LXlgp)Y, XQ, o ,Xq) —+ -+ w(Xl,XQ, ceey (qu(p)Y),

where Lx denotes the Lie derivative with respect to X. We note that ¢,w €
S0, (M)
g+1 :

If p,w = 0, then w is said to be almost paraholomorphic with respect to

the paracomplex algebra R(j) (see [4], [§]).

A Riemannian manifold (M?",g) with an almost paracomplex struc-
ture ¢ is said to be almost para-Nordenian if the Riemannian metric g is
pure with respect to ¢. It is well known that the almost para-Nordenian
manifold is para-Kéhler (V,p = 0) if and only if ¢ is paraholomorphic
(609 = 0) (see [5]).

Let (T*M™,%g) be the cotangent bundle with the Sasakian metric °g.
We define a tensor field F' of type (1,1) on T*M™ by

(3.1) v

{FHX::Ki
w

for any X € S3(M") and w € SY(M"), where X = go X € IY(M™),
O =g lowe I (Mm"). Then we obtain

F?2=1.
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Indeed, by virtue of (3.1]) we have
F2HX) = F(FHX) = F(VX) = HX = Hx,
F2Vw)=F(FYw) =Ff2) =Yoo ="w

for any X € S§(M™) and w € SY(M™), which implies F? = L.

THEOREM 3.1. The triple (T*M",%g, F) is an almost para-Nordenian
manifold.

Proof. We put
AR V) =S (FX ?) _Sy(x, FY)
for any X, Y € S S(T*M™). From and (| , we have

AX Byy = S¢(FpHX Hy) — g(HX,FHY)
S (VX-} Hy) _ Sg(HX, V?) — 0,
AMTX, Vw) = Sg(F X, Yw) = Sg(TX, FYw) = %9V X, Yw) - %("X, @)

=g (9o X,w) —g(X,g7 ow) =0,
AVw, Yy = —AFY,Yw) = 0,
A(Vw, V0> _ Sg(F wa Ve) o Sg(Vw’ FVQ) _ g—l(H(;)7 V@) o Sg(Vw, Hé) — 07
i.e. 9¢ is pure with respect to F. Thus Theorem is proved. =

We now consider the covariant derivative of F. Taking into account (i)—
(iv) of Theorem [2.1] and (3.1), we obtain

(3.2)  (VuxF)("v)= SVHX( y) — F(5Vux"Y)
= SVHX Vy — F(SVHXHY)
=V(VxY)+ § (p(g™" o R(X)Y))
~F("(VxY)+ 3 "(pR(X,Y)))
=3 pg~" o (R(,X)Y — R(X,Y))),
(3.3) OV F)HY)=5Vv (FIY) - F(°Vv BY)
= Vv,V = JFH(p(g™ o R(,Y)®))
—3"(pR(,Y)®),
(34)  (VaxF)("0) = SVHX< Y0) — F(°Viux"9)
=V Hé—F(V(V 0)+ 5" (p(g~ ' o R(, X))
(V 0) + (pR(X 0)) =" (g7 o (Vx0))
V(pgo ( Yo R(,X)h))
= 1 V(pR(X,0) — pR( ,X)0),
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(3.5) (Vv F)(V0) = Vv (FY0) — F(°Vv,"0)
=V, 16 = 5" (p(g™" o R(,0)@)).

From ({3.2)—(3.5) we have

THEOREM 3.2. The cotangent bundle of a Riemannian manifold is para-
Kabhlerian (paraholomorphic Nordenian) with respect to the metric Sg and
almost paracomplex structure F' defined by if and only if the Rieman-
nian manifold is flat.

4. A necessary and sufficient condition for the complete lift of a
vector field to be paraholomorphic. A vector field X € S}(T*M"™) with
respect to which the almost para-Nordenian structure F' has a vanishing Lie
derivative (L ¢ F' = 0) is said to be almost paraholomorphic (see [4]).

It is well known that [11) p. 277]

{[CXa HY] = H[Xv Y] + V(p(LxV)Y),

[“X, Vo] = V(Lixw),
where (LxV)Y = VyVX + R(X,Y) and (LxV)(Y,Z) = Lx(VyX) —
Vy(LxZ) = Vixy)Z.

A vector field X € S{(M™) is called a Killing vector field (or infinitesimal
isometry) if Lxg = 0, and X is called an infinitesimal affine transformation

if LxVy = 0. A Killing vector field is necessarily an infinitesimal affine
transformation, i.e. we have LxV, = 0 as a consequence of Lxg = 0.

(4.1)

We now consider the Lie derivative of F' with respect to the complete
lift “X. Taking account of (3.1) and (4.1)), we obtain

(4.2) (Lex F)Y0 = Loy FY0 — F(LoxV0) = Lox ™0 — F(V(Lx9))
=Lox 10— (g7 o (Lx0))
= V[X,01+ Y(p(LxV)0) — "(g~" o (Lx9))
=MLx(97 0 0) =g~ " o (Lx0)) + V(p(Lx V)0),
(4.3)  (Lex )Y =Lex FPY — F(LoxY)
= Lex Y = F(T[X, Y]+ V(p(Lx V)y))
="(Lx(goY) —goLxY) =g op(LxV)y).
Let now X be a Killing vector field (Lxg = 0). Then by virtue of LxV = 0,
from and we have Loy F = 0, i.e. X is paraholomorphic with
respect to F. If we assume that Loy F' = 0 and compute the equation

at (2%,0), p; = 0, then we get Lx(goY) = goLxY. It follows that Lxg = 0.
Hence, we have
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THEOREM 4.1. An infinitesimal transformation X of the Riemannian
manifold (M™, g) is a Killing vector field if and only if its complete lift X
to the cotangent bundle T*M™ is an almost paraholomorphic vector field
with respect to the almost para-Nordenian structure (F, Sg).

REMARK. Let BV € $Y(T*M™) be a Riemannian extension of the con-
nection V, defined by (cf. [I1} p. 268])

AV(©X,97) = —p(VxY + VyX), XY €3H(M,).
The metric #V has components
(44) Rv — <2paF]aZ 65)

0% 0

with respect to the natural frame {9;,9;}. From (1.2, (1.3) and (4.4) we
easily see that
45 vx Tyy=0, V(w9 =0, FV(X,V0) ="(6(X)),
i.e. the metric RV is completely determined also by conditions (4.5). Using

. and ., we have

(RVoF)(HX fy)="fv(rix HY) (X, 1Y) = V(X ()

=Y (g(X,Y)) =g(" X, "Y),
(Vo F)(HX 0) =Ev(FHax,Ve) =Ev(VX, V) = (HX, Vo) =0,
("V o F)("w, 1Y) = BV (F Y, y) = BV ("0, TY) = 5g(Yw,Y) = 0,
("Vo F)(V 0) = V(F YW, V) = TV (7o, Y0) = V(0(2))

= V(g (w,@)) = g(vav‘g)v

i.e. iV o F = 9. Thus the almost para-Nordenian structure F' determined
by the condition (3.1)) has an expression of the form F = (V)= o
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