On infinitesimal automorphisms of foliated manifolds

by JAN KUREK (Lublin) and WŁODZIMIERZ M. MIKULSKI (Kraków)

Abstract. Let $F : \mathcal{F}ol \to \mathcal{F}\mathcal{M}$ be a product preserving bundle functor on the category $\mathcal{F}ol$ of foliated manifolds (M, \mathcal{F}) without singularities and leaf respecting maps. We describe all natural operators C transforming infinitesimal automorphisms $X \in \mathcal{X}(M, \mathcal{F})$ of foliated manifolds (M, \mathcal{F}) into vector fields $C(X) \in \mathcal{X}(F(M, \mathcal{F}))$ on $F(M, \mathcal{F})$.

Introduction. The class of product preserving bundle functors on the category $\mathcal{F}ol$ of foliated manifolds without singularities and their leaf respecting maps is a wide class of bundle functors. For example, the normal bundle functor $N: \mathcal{F}ol \to \mathcal{F}\mathcal{M}$ sending foliated manifolds (M, \mathcal{F}) to their normal bundles $N(M, \mathcal{F})$ and leaf respecting maps $f: (M_1, \mathcal{F}_1) \to (M_2, \mathcal{F}_2)$ to the induced maps $N(f): N(M_1, \mathcal{F}_1) \to N(M_2, \mathcal{F}_2)$ is product preserving. More generally, for any Weil algebra A the bundle functor $\widetilde{A} : \mathcal{F}ol \to \mathcal{FM}$ of transverse A-points sending foliated manifolds (M, \mathcal{F}) to their bundles $\widetilde{A}(M,\mathcal{F})$ of transverse A-points in the sense of [5] and leaf respecting maps f: $(M_1, \mathcal{F}_1) \to (M_2, \mathcal{F}_2)$ to the induced maps $\widetilde{A}(f) : \widetilde{A}(M_1, \mathcal{F}_1) \to \breve{A}(M_2, \mathcal{F}_2)$ is product preserving. Also, the usual Weil bundle functor $T^{A}: \mathcal{M}f \to \mathcal{FM}$ on manifolds can be considered as the product preserving bundle functor $T^A: \mathcal{F}ol \to \mathcal{F}\mathcal{M}$ satisfying $T^A(M, \mathcal{F}) = T^A M$ for any foliated manifold (M, \mathcal{F}) . In particular, the tangent bundle functor on manifolds can be considered as the product preserving bundle functor $T: \mathcal{F}ol \to \mathcal{F}\mathcal{M}$ satisfying $T(M,\mathcal{F}) = TM$ for any foliated manifold (M,\mathcal{F}) . In [3], the second author described all product preserving bundle functors on the category $\mathcal{F}ol$ in terms of Weil algebra homomorphisms. He deduced

THEOREM A ([3]). There is a bijection between the isomorphism classes of product preserving bundle functors on $\mathcal{F}ol$ and the isomorphism classes of Weil algebra homomorphisms.

²⁰⁰⁰ Mathematics Subject Classification: 58A05, 58A20.

Key words and phrases: foliated manifolds, (product preserving) bundle functors, natural operators, vector fields, infinitesimal automorphisms of foliated manifolds.

THEOREM B ([3]). Given two product preserving bundle functors on \mathcal{F} ol there is a bijection between natural transformations of them and morphisms of the corresponding Weil algebra homomorphisms.

Let (M, \mathcal{F}) be a foliated manifold (a $\mathcal{F}ol$ -object). A vector field X on M is called an *infinitesimal automorphism* of (M, \mathcal{F}) if its flow $\operatorname{Exp}(tX)$ is formed by local $\mathcal{F}ol$ -isomorphisms. We denote by $\mathcal{X}(M, \mathcal{F})$ the Lie algebra of infinitesimal automorphisms of (M, \mathcal{F}) .

Let $F : \mathcal{F}ol \to \mathcal{F}\mathcal{M}$ be a product preserving bundle functor. Let μ : $A \to B$ be the Weil algebra homomorphism corresponding to $F : \mathcal{F}ol \to \mathcal{F}ol$ \mathcal{FM} (Theorem A). In this paper we study the problem how an infinitesimal automorphism $X \in \mathcal{X}(M, \mathcal{F})$ can induce canonically a vector field $C(X) \in \mathcal{X}(F(M,\mathcal{F}))$ on $F(M,\mathcal{F})$. This problem is reflected in the concept of natural operators $C: \mathcal{X}(M, \mathcal{F}) \to \mathcal{X}(F(M, \mathcal{F}))$ in the sense of [2]. (X is an infinitesimal automorphism of \mathcal{F} if its flow preserves \mathcal{F} , or equivalently, [X, Y] is tangent to \mathcal{F} for any vector field Y tangent to \mathcal{F} .) In the present note we explicitly describe all natural operators C in question. More precisely, we have the flow operator transforming any infinitesimal automorphism $X \in \mathcal{X}(M, \mathcal{F})$ into a vector field $\mathcal{F}X \in \mathcal{X}(F(M, \mathcal{F}))$ with the flow $\operatorname{Exp}(t\mathcal{F}X) := F(\operatorname{Exp}(tX))$. Given $a \in A$ one can define canonically an affinor $af(a) : TF(M, \mathcal{F}) \to TF(M, \mathcal{F})$ on $F(M, \mathcal{F})$ (see Section 5). Any derivation $D \in \mathcal{D}er(\mu) = \mathcal{L}ie(\operatorname{Aut}(\mu))$ of μ yields the corresponding one-parameter group $D_t: \mu \to \mu$ of automorphisms of μ . Then (see Theorem B) we have the corresponding flow $D_t: F(M, \mathcal{F}) \to F(M, \mathcal{F})$ which defines $op(D) \in \mathcal{X}(F(M, \mathcal{F}))$. Our main result can be stated as follows.

THEOREM C. Let $F : \mathcal{Fol} \to \mathcal{FM}$ be a product preserving bundle functor. Let $\mu : A \to B$ be the Weil algebra homomorphism corresponding to F. Let $p \geq 1$ and $q \geq 1$ be integers. Let $\mathcal{Fol}_{p,q}$ be the subcategory of foliated (p+q)-dimensional manifolds with p-dimensional leaves and their leaf respecting local diffeomorphisms. Any $\mathcal{Fol}_{p,q}$ -natural operator C transforming infinitesimal automorphisms $X \in \mathcal{X}(M, \mathcal{F})$ of $\mathcal{Fol}_{p,q}$ -objects into vector fields $C(X) \in \mathcal{X}(F(M, \mathcal{F}))$ on $F(M, \mathcal{F})$ is of the form

$$C(X) = \operatorname{af}(a) \circ \mathcal{F}X + \operatorname{op}(D)$$

for some unique $a \in A$ and $D \in \mathcal{D}er(\mu)$.

We remark that Theorem C is a generalization of the well known result by I. Kolář ([1]) on natural operators lifting vector fields from manifolds to product preserving bundles over manifolds.

All manifolds are assumed to be finite-dimensional. All manifolds and maps are assumed to be smooth, i.e. of class \mathcal{C}^{∞} . All foliations are assumed to be without singularities.

1. Product preserving bundle functors on foliated manifolds. For the reader's convenience we cite (without proofs) some facts from [3]. We start from the following definitions (see e.g. [2]).

Let $F : \mathcal{F}ol \to \mathcal{F}\mathcal{M}$ be a covariant functor. Let $B_{\mathcal{F}\mathcal{M}} : \mathcal{F}\mathcal{M} \to \mathcal{M}f$ be the base functor and $B_{\mathcal{F}ol} : \mathcal{F}ol \to \mathcal{M}f$ be the forgetful functor.

A bundle functor on $\mathcal{F}ol$ is a functor F as above satisfying:

- (i) (Base preservation) $B_{\mathcal{F}\mathcal{M}} \circ F = B_{\mathcal{F}ol}$. Hence the induced projections form a functor transformation $\pi : F \to B_{\mathcal{F}ol}$.
- (ii) (Localization) For every inclusion $i_{(U,\mathcal{F}|U)} : (U,\mathcal{F}|U) \to (M,\mathcal{F})$ of an open subset, $F(U,\mathcal{F}|U)$ is the restriction $\pi^{-1}(U)$ of $\pi : F(M,\mathcal{F}) \to M$ over U and $Fi_{(U,\mathcal{F}|U)}$ is the inclusion $\pi^{-1}(U) \to F(M,\mathcal{F})$.

Given two bundle functors F_1, F_2 on $\mathcal{F}ol$, by a natural transformation $\nu : F_1 \to F_2$ we shall mean a system of base preserving fibered maps $\nu : F_1(M, \mathcal{F}) \to F_2(M, \mathcal{F})$ for every foliated manifold (M, \mathcal{F}) satisfying $F_2 f \circ \nu = \nu \circ F_1 f$ for every $\mathcal{F}ol$ -morphism f.

A bundle functor F on $\mathcal{F}ol$ is product preserving if for any product projections $(M_1, \mathcal{F}_1) \stackrel{\text{pr}_1}{\leftarrow} (M_1, \mathcal{F}_1) \times (M_2, \mathcal{F}_2) \stackrel{\text{pr}_2}{\longrightarrow} (M_2, \mathcal{F}_2)$ (in the category $\mathcal{F}ol$), $F(M_1, \mathcal{F}_1) \stackrel{\text{Fpr}_1}{\leftarrow} F((M_1, \mathcal{F}_1) \times (M_2, \mathcal{F}_2)) \stackrel{\text{Fpr}_2}{\longrightarrow} F(M_2, \mathcal{F}_2)$ are product projections in the category \mathcal{FM} . In other words, $F((M_1, \mathcal{F}_1) \times (M_2, \mathcal{F}_2)) =$ $F(M_1, \mathcal{F}_1) \times F(M_2, \mathcal{F}_2)$ modulo $(F \operatorname{pr}_1, F \operatorname{pr}_2)$.

Some examples of product preserving bundle functors on $\mathcal{F}ol$ have been mentioned above. Now, we present the most general example of such a functor.

Let A be an associative algebra over the field \mathbb{R} with unit 1. The algebra A is called a *Weil algebra* if it is commutative, of finite dimension over \mathbb{R} , and if it admits a unique maximal ideal <u>A</u> of codimension 1 such that $\underline{A}^{h+1} = 0$ for some non-negative integer h.

Let $\mu : A \to B$ be a homomorphism of Weil algebras. We are going to construct a product preserving bundle functor $T^{\mu} : \mathcal{F}ol \to \mathcal{FM}$.

EXAMPLE 1 ([3]). For a foliated manifold (M, \mathcal{F}) and $x \in M$ we denote the algebra of germs at x of smooth maps $M \to \mathbb{R}$ by $C_x^{\infty}(M)$, and the algebra of germs at x of smooth maps $M \to \mathbb{R}$ constant on leaves by $C_x^{\infty}(M, \mathcal{F})$. Let $T_x^{\mu}(M, \mathcal{F})$ be the set of pairs (φ, ψ) of algebra homomorphisms $\varphi : C_x^{\infty}(M, \mathcal{F}) \to A$ and $\psi : C_x^{\infty}(M) \to B$ such that

(*)
$$\psi(uv) = \mu(\varphi(u))\psi(v)$$

for any $u \in C_x^{\infty}(M, \mathcal{F})$ and any $v \in C_x^{\infty}(M)$. Let us define $T^{\mu}(M, \mathcal{F}) = \bigcup_{x \in M} T_x^{\mu}(M, \mathcal{F})$. Then the obvious projection $\pi : T^{\mu}(M, \mathcal{F}) \to M$ is a smooth bundle. More precisely, for an adapted chart $(x^1, \ldots, x^q, y^1, \ldots, y^p)$ on (M, \mathcal{F}) , where \mathcal{F} is *p*-dimensional and M is p + q-dimensional, we have a set of induced coordinates $(\tilde{x}^1, \ldots, \tilde{x}^q, \tilde{y}^1, \ldots, \tilde{y}^p) : T^{\mu}(M, \mathcal{F}) | U \to A^q \times B^p$

such that $\tilde{x}^i(\varphi) = \varphi([x^i]_x) \in A$ and $\tilde{y}^j(\psi) = \psi([y^j]_x) \in B$ for any $(\varphi, \psi) \in T^{\mu}_x(M, \mathcal{F})$, $x \in M$. (Condition (*) implies that $(\varphi, \psi) \in T^{\mu}_x(M, \mathcal{F})$ is uniquely determined by its induced coordinates). Every $\mathcal{F}ol$ -map $f: (M_1, \mathcal{F}_1) \to (M_2, \mathcal{F}_2)$ induces a fibered map $T^{\mu}f: T^{\mu}(M_1, \mathcal{F}_1) \to T^{\mu}(M_2, \mathcal{F}_2)$ covering f such that $T^{\mu}f(\varphi, \psi) = (\overline{\varphi}, \overline{\psi})$ for any $(\varphi, \psi) \in T^{\mu}_x(M_1, \mathcal{F}_1)$, $x \in M_1$, where $\overline{\varphi}: C^{\infty}_{f(x)}(M_2, \mathcal{F}_2) \to A$ is defined by $\overline{\varphi}(u) = \varphi(u \circ f)$ and $\overline{\psi}: C^{\infty}_{f(x)}(M_2) \to B$ is defined by $\overline{\psi}(v) = \psi(v \circ f)$, $u \in C^{\infty}_{f(x)}(M_2, \mathcal{F}_2)$, $v \in C^{\infty}_{f(x)}(M)$. If in adapted coordinates a foliated map is of the form $f: \mathbb{R}^q \times \mathbb{R}^p \to \mathbb{R}^{\overline{q}} \times \mathbb{R}^{\overline{p}}$, then in the corresponding induced coordinates $T^{\mu}f: A^q \times B^p \to A^{\overline{q}} \times B^{\overline{p}}$, $T^{\mu}(a_i, b_j) = (T_A f_1(a_i), T_B f_2(\mu(a_i), b_j))$, where $T_A: \mathcal{M}f \to \mathcal{F}\mathcal{M}$ is the Weil functor [2]. The correspondence $T^{\mu}: \mathcal{F}ol \to \mathcal{F}\mathcal{M}$ is a product preserving bundle functor on $\mathcal{F}ol$ corresponding to the Weil algebra homomorphism μ .

REMARK 1. Let us observe that given a *p*-dimensional foliation \mathcal{F} on a p + q-dimensional manifold M the bundle $T^{\mu}(M, \mathcal{F})$ admits a canonical $p \dim_{\mathbb{R}} B$ -dimensional foliation $\mathcal{F}^{\mu} \pi$ -related to \mathcal{F} . In the induced coordinates the leaves of \mathcal{F}^{μ} are of the form $\{a\} \times B^p \subset A^q \times B^p$.

Let $F : \mathcal{F}ol \to \mathcal{F}\mathcal{M}$ be a product preserving bundle functor. We are going to construct a Weil algebra homomorphism $\mu^F : A^F \to B^F$.

EXAMPLE 2 ([3]). We put $A^F = F(\mathbb{R}, \mathcal{F}')$ and $B^F = F(\mathbb{R}, \mathcal{F}'')$, where \mathcal{F}' is the 0-dimensional foliation on \mathbb{R} and F'' is the foliation on \mathbb{R} with one leaf \mathbb{R} . The sum mappings are given by $+_{A^F} = F(+) : A^F \times A^F \to A^F$ and $+_{B^F} = F(+) : B^F \times B^F \to B^F$, where $+ : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is the sum map treated as the respective $\mathcal{F}ol$ -morphisms. Similarly, the multiplications of A^F and B^F are obtained by applying F to the multiplication of \mathbb{R} being respective $\mathcal{F}ol$ -morphisms. The zero maps and the unity maps are obtained by applying F to the zero map and the unity map of \mathbb{R} . The homomorphism $\mu^F : A^F \to B^F$ is $F(\mathrm{id}_{\mathbb{R}}) : F(\mathbb{R}, \mathcal{F}') \to F(\mathbb{R}, \mathcal{F}'')$, where $\mathrm{id}_{\mathbb{R}}$ is the identity map of \mathbb{R} treated as the appropriate $\mathcal{F}ol$ -morphism. *

For example, the Weil algebra homomorphism corresponding to the normal bundle functor $N : \mathcal{F}ol \to \mathcal{F}\mathcal{M}$ (see Introduction) is the unique algebra homomorphism $\kappa_{\mathbb{D}} : \mathbb{D} \to \mathbb{R}$, where $\mathbb{D} = \mathbb{R} \times \mathbb{R}$ is the Weil algebra of dual numbers ((a, b) + (c, d) = (a + c, b + d), (a, b)(c, d) = (ac, ad + bc) for $(a, b), (c, d) \in \mathbb{D}$). The Weil algebra homomorphism corresponding to the bundle functor $\widetilde{A} : \mathcal{F}ol \to \mathcal{F}\mathcal{M}$ of transverse A-points (mentioned in Introduction) is the unique algebra homomorphism $\kappa_A : A \to \mathbb{R}$. The Weil algebra homomorphism corresponding to the product preserving bundle functor $T^A : \mathcal{F}ol \to \mathcal{F}\mathcal{M}$ of A-near points (see Introduction) is the identity map $\mathrm{id}_A : A \to A$. The following classification proposition shows that any product preserving bundle functor on $\mathcal{F}ol$ is equivalent to some product preserving bundle functor as in Example 1.

PROPOSITION 1 ([3]). Let $F : \mathcal{F}ol \to \mathcal{F}\mathcal{M}$ be a product preserving bundle functor. Let $\mu^F : A^F \to B^F$ be the corresponding Weil algebra homomorphism. Then we have an explicitly constructed natural equivalence $\Theta^F : F \cong T^{\mu^F}$.

More precisely, the equivalence $\Theta^F : F(M, \mathcal{F}) \to T^{\mu^F}(M, \mathcal{F})$ is the following. Given a point $y \in F_x(M, \mathcal{F}), x \in M$, we define $\Theta^F(y) = (\varphi_y, \psi_y)$, where $\varphi_y : C_x^{\infty}(M, \mathcal{F}) \to A^F, \psi_y : C_x^{\infty}(M) \to B^F, \varphi_y([f]_x) = Ff(y),$ $\psi_y([g]_x) = Fg(y)$ for $[f]_x \in C_x^{\infty}(M, \mathcal{F})$ and $[g]_x \in C_x^{\infty}(M)$, where f and gare treated as the corresponding $\mathcal{F}ol$ -morphisms. Using the respective definitions, $\Theta^F(y) \in T_x^{\mu^F}(M, \mathcal{F})$. In [3], it is proved that $\Theta^F : F(M, \mathcal{F}) \to T^{\mu^F}(M, \mathcal{F})$ is a diffeomorphism.

REMARK 2. Let $F : \mathcal{F}ol \to \mathcal{F}\mathcal{M}$ be a product preserving bundle functor. By Proposition 1 we have the canonical diffeomorphism $\Theta^F : F(M, \mathcal{F}) \to T^{\mu^F}(M, \mathcal{F})$ for any foliated manifold (M, \mathcal{F}) . It is known that $T^{\mu^F}(M, \mathcal{F})$ admits the foliation \mathcal{F}^{μ^F} (see Remark 1). Then $F(M, \mathcal{F})$ admits the foliation $\mathcal{F}^F = (\Theta^F)^{-1} \mathcal{F}^{\mu^F}$. Hence F has values in the category $\mathcal{F}ol$. Therefore we can compose two product preserving bundle functors on $\mathcal{F}ol$. This composition is again a product preserving bundle functor on $\mathcal{F}ol$.

The following proposition shows that any Weil algebra homomorphism is isomorphic to the Weil algebra homomorphism corresponding to some product preserving bundle functor on $\mathcal{F}ol$.

PROPOSITION 2 ([3]). Let $\mu : A \to B$ be a Weil algebra homomorphism. Let $F = T^{\mu}$. Then we have an explicitly constructed isomorphism $\mathcal{O}^{\mu} : \mu \cong \mu^{F}$ of Weil algebra homomorphisms.

We recall that a morphism $\mu_1 \to \mu_2$ of Weil algebra homomorphisms $\mu_1 : A_1 \to B_1$ and $\mu_2 : A_2 \to B_2$ is a pair η of Weil algebra homomorphisms $\eta_1 : A_1 \to A_2$ and $\eta_2 : B_1 \to B_2$ such that $\eta_2 \circ \mu_1 = \mu_2 \circ \eta_1$.

More precisely, $\mathcal{O}^{\mu} : \mu \to \mu^{F}$ is the pair of Weil algebra isomorphisms $\mathcal{O}_{1}^{\mu} : A \cong T^{\mu}(\mathbb{R}, \mathcal{F}') \to F(M, \mathcal{F}') = A^{F}$ and $\mathcal{O}_{2}^{\mu} : B \cong T^{\mu}(\mathbb{R}, \mathcal{F}') \to F(\mathbb{R}, \mathcal{F}'') = B^{F}$, where \cong is the induced coordinates \widetilde{x} and \widetilde{y} (see Example 1) respectively.

Let $F_1, F_2 : \mathcal{F}ol \to \mathcal{F}\mathcal{M}$ be product preserving bundle functors. Let $\mu^{F_1} : A^{F_1} \to B^{F_1}$ and $\mu^{F_2} : A^{F_2} \to B^{F_2}$ be the corresponding Weil algebra homomorphisms. Let $\nu : F_1 \to F_2$ be a natural transformation.

EXAMPLE 3 ([3]). Define a morphism $\eta^{\nu} = (\eta_1^{\nu}, \eta_2^{\nu}) : \mu^{F_1} \to \mu^{F_2}$ of Weil algebra homomorphisms by $\eta_1^{\nu} = \nu_{(\mathbb{R}, \mathcal{F}')} : A^{F_1} \to A^{F_2}$ and $\eta_2^{\nu} = \nu_{(\mathbb{R}, \mathcal{F}'')} :$

 $B^{F_1} \to B^{F_2}$. If ν is an isomorphism, then so is η^{ν} . We call η^{ν} the morphism of Weil algebra homomorphisms corresponding to ν .

Let $\mu_1 : A_1 \to B_1$ and $\mu_2 : A_2 \to B_2$ be Weil algebra homomorphisms. Let $\eta = (\eta_1, \eta_2) : \mu_1 \to \mu_2$ be a morphism of Weil algebra homomorphisms.

EXAMPLE 4 ([3]). Given a $\mathcal{F}ol$ -object (M, \mathcal{F}) define a base preserving fibered map $\nu^{\eta} : T^{\mu_1}(M, \mathcal{F}) \to T^{\mu_2}(M, \mathcal{F})$ by $\nu^{\eta}(\varphi, \psi) = (\eta_1 \circ \varphi, \eta_2 \circ \psi),$ $(\varphi, \psi) \in T_x^{\mu_1}(M, \mathcal{F}), x \in M$. The family $\nu^{\eta} : T^{\mu_1} \to T^{\mu_2}$ is a natural transformation. If η is an isomorphism, then so is ν^{η} . We call ν^{η} the natural transformation corresponding to ν .

Summing up we have the following object classification theorem corresponding to Theorem A.

THEOREM 1 ([3]). The correspondence $F \mapsto \mu^F$ induces a bijective correspondence between the equivalence classes of product preserving bundle functors on Fol and the equivalence classes of Weil algebra homomorphisms. The inverse correspondence is induced by the correspondence $\mu \mapsto T^{\mu}$.

Let F_1 and F_2 be two product preserving bundle functors on $\mathcal{F}ol$. Let $\mu^{F_1}: A^{F_1} \to B^{F_1}$ and $\mu^{F_2}: A^{F_2} \to B^{F_2}$ be the corresponding Weil algebra homomorphisms.

LEMMA 1 ([3]). Let $\eta = (\eta_1, \eta_2) : \mu^{F_1} \to \mu^{F_2}$ be a morphism of Weil algebra homomorphisms. Let $\nu^{[\eta]} : F_1 \to F_2$ be a natural transformation given by the composition $F_1 \xrightarrow{\Theta^{F_1}} T^{\mu^{F_1}} \xrightarrow{\nu^{\eta}} T^{\mu^{F_2}} \xrightarrow{(\Theta^{F_2})^{-1}} F_2$, where Θ^F is as in Proposition 1 and ν^{η} is described in Example 4. Then $\nu = \nu^{[\eta]}$ is the unique natural transformation $F_1 \to F_2$ such that $\eta^{\nu} = \eta$, where η^{ν} is as in Example 3.

Summing up we have the following morphism classification theorem corresponding to Theorem B.

THEOREM 2 ([3]). Let F_1 and F_2 be two product preserving bundle functors on Fol. The correspondence $\nu \mapsto \eta^{\nu}$ is a bijection between natural transformations $F_1 \to F_2$ and morphisms $\mu^{F_1} \to \mu^{F_2}$ of the corresponding Weil algebra homomorphisms. The inverse correspondence is $\eta \mapsto \nu^{[\eta]}$ (where $\nu^{[\eta]}$ is defined in Lemma 1).

Let F_1 and F_2 be product preserving bundle functors on $\mathcal{F}ol$. According to Remark 2, the composition $F_1 \circ F_2$ is again a product preserving bundle functor on $\mathcal{F}ol$. Let μ^{F_1} , μ^{F_2} and $\mu^{F_1 \circ F_2}$ be the corresponding Weil algebra homomorphisms. Using the tensor product we get the Weil algebra homomorphism $\mu^{F_1} \otimes \mu^{F_2}$.

Proposition 3 ([3]). $\mu^{F_1 \circ F_2} = \mu^{F_1} \otimes \mu^{F_2}$.

COROLLARY 1 ([3]). We have the isomorphism $F_1 \circ F_2 \cong F_2 \circ F_1$ corresponding to the exchange isomorphism of tensor products.

COROLLARY 2. Let $F : \mathcal{F}ol \to \mathcal{F}\mathcal{M}$ be a product preserving bundle functor. Let $T : \mathcal{F}ol \to \mathcal{F}\mathcal{M}$ be the tangent bundle functor. For any $\mathcal{F}ol$ object (M, \mathcal{F}) we have the $\mathcal{F}ol$ -natural isomorphism $\nu_{(M,\mathcal{F})} : F(T(M,\mathcal{F})) \to$ $T(F(M,\mathcal{F}))$ (see Corollary 1) satisfying the flow property

$$\pi^{T(F(M,\mathcal{F}))} \circ \nu_{(M,\mathcal{F})} = F \pi^{T(M,\mathcal{F})},$$

where $\pi^{T(F(M,\mathcal{F}))}$: $T(F(M,\mathcal{F})) \to F(M,\mathcal{F})$ and $\pi^{T(M,\mathcal{F})}$: $T(M,\mathcal{F}) \to (M,\mathcal{F})$ are the projections of the tangent bundles (with the respective foliations as in Remark 2).

2. The Lie algebra of $\operatorname{Aut}(\mu)$. Consider a Weil algebra homomorphism $\mu : A \to B$. We note that the group $\operatorname{Aut}(\mu)$ of all automorphisms of μ is a closed (and hence Lie) subgroup in $\operatorname{GL}(A) \times \operatorname{GL}(B)$.

We have the Lie algebra

$$\mathcal{D}er(\mu) = \{ D = (D_1, D_2) \in \mathcal{D}er(A) \times \mathcal{D}er(B) \mid D_2 \circ \mu = \mu \circ D_1 \}$$

of derivations of μ . It is a subalgebra in the product $\mathcal{D}er(A) \times \mathcal{D}er(B)$ of the Lie algebras $\mathcal{D}er(A)$ and $\mathcal{D}er(B)$ of derivations of A and B. A derivation of A is a linear map $D_1: A \to A$ such that $D_1(ab) = D_1(a)b + aD_1(b)$ for all $a, b \in A$. The bracket of the Lie algebra $\mathcal{D}er(A)$ is given standardly by $[D_1, D'_1] = D_1 \circ D'_1 - D'_1 \circ D_1$.

PROPOSITION 4 ([4]). $\mathcal{L}ie(\operatorname{Aut}(\mu)) = \mathcal{D}er(\mu)$.

Proof. By [2], $\mathcal{L}ie(\operatorname{Aut}(A)) = \mathcal{D}er(A)$. Clearly, $(D_1, D_2) \in \operatorname{Aut}(\mu)$ iff $D_1 \in \operatorname{Aut}(A), D_2 \in \operatorname{Aut}(B)$ and $\mu \circ D_1 = D_2 \circ \mu$.

3. Natural automorphisms of $F_{|\mathcal{F}ol_{p,q}} \to \mathcal{FM}$ into itself. In this section we prove the following result.

PROPOSITION 5. Let $F : \mathcal{F}ol \to \mathcal{F}\mathcal{M}$ be a product preserving bundle functor and $\mu : A \to B$ be its algebra homomorphism. Let $p \ge 1$ and $q \ge 1$ be integers. Every natural automorphism ν of $F_{|\mathcal{F}ol_{p,q}}$ can be extended uniquely to a natural automorphism of F. In particular, $\operatorname{Aut}(F_{|\mathcal{F}ol_{p,q}}) = \operatorname{Aut}(\mu)$.

Proof. Let $x^1, \ldots, x^q, y^1, \ldots, y^p$ be the adapted coordinates on the standard $\mathcal{F}ol_{p,q}$ -object $(M_0, \mathcal{F}_0) = (\mathbb{R}^q \times \mathbb{R}^p, \{\{a\} \times \mathbb{R}^p\}_{a \in \mathbb{R}^q}).$

Consider a natural automorphism ν of $F_{|\mathcal{F}ol_{p,q}}$ into itself. Since F is product preserving, $F(M_0, \mathcal{F}_0) = A^q \times B^p$. By the $\mathcal{F}ol_{p,q}$ -naturality, ν is uniquely determined by $\nu = \nu_{(M_0, \mathcal{F}_0)} : A^q \times B^p \to A^q \times B^p$. Write

$$\nu(a_1, \dots, a_q, a_{q+1}, \dots, a_{q+p}) = (\nu^1(a_1, \dots, a_{q+p}), \dots, \nu^{q+p}(a_1, \dots, a_{q+p}))$$

for $a_1, \dots, a_q \in A$ and $a_{q+1}, \dots, a_{q+p} \in B$.

By the invariance of ν with respect to the $\mathcal{F}ol_{p,q}$ -morphisms $(\tau_1 x^1, \ldots, \tau_q x^q, \tau_{q+1}y^1, \ldots, \tau_{q+p}y^p)$ for $\tau_1, \ldots, \tau_{q+p} \in \mathbb{R}_+$ we get the homogeneity conditions $\tau_j \nu^j(a_1, \ldots, a_{q+p}) = \nu^j(\tau_1 a_1, \ldots, \tau_{q+p} a_{q+p})$ for $j = 1, \ldots, q+p$ and any $a_1, \ldots, a_q \in A$, $a_{q+1}, \ldots, a_{q+p} \in B$ and any $\tau_1, \ldots, \tau_{q+p} \in \mathbb{R}_+$. This type of homogeneity implies that ν^j depends linearly only on a_j because of the homogeneous function theorem ([2]).

Using permutations of adapted coordinates we deduce that $\nu = \sigma \times \cdots \times \sigma \times \rho \times \cdots \times \rho : A^q \times B^p \to A^q \times B^p$ for $\sigma = \nu^1 : A \to A$ and $\rho = \nu^{q+1} : B \to B$. We prove that $(\sigma, \rho) \in \operatorname{Aut}(\mu)$.

STEP 1: ρ is an algebra isomorphism. We know that ρ is \mathbb{R} -linear. Using the invariance of ν with respect to the local $\mathcal{F}ol_{p,q}$ -morphism $(x^1, \ldots, x^q, y^1 + (y^1)^2, y^2, \ldots, y^p)$ we derive that $\rho(b + b^2) = \rho(b) + (\rho(b))^2$, i.e. $\rho(b^2) = (\rho(b))^2$ for any $b \in B$. Then $\rho((b_1 + b_2)^2) = (\rho(b_1 + b_2))^2$, i.e. $\rho(b_1b_2) = \rho(b_1)\rho(b_2)$ for any $b_1, b_2 \in B$. So, ρ is multiplicative. Using the invariance of ν with respect to the $\mathcal{F}ol_{p,q}$ -map $(x^1, \ldots, x^q, y^1 + 1, y^2, \ldots, y^p)$ we derive that $\rho(b+1) = \rho(b) + 1$, i.e. $\rho(1) = 1$. These facts show that ρ is an algebra homomorphism. Since η is an isomorphism, so is ρ .

STEP 2: σ is an algebra homomorphism. The proof is quite similar to Step 1. (Now, we use the $\mathcal{F}ol_{p,q}$ -map $(x^1 + (x^1)^2, x^1, \ldots, x^q, y^1, \ldots, y^p)$.)

STEP 3: $\rho \circ \mu = \mu \circ \sigma$. We use the invariance of ν with respect to the $\mathcal{F}ol_{p,q}$ -map $\varphi = (x^1, \ldots, x^q, y^1 + x^1, y^2, \ldots, y^p)$. Then

$$\begin{aligned} (\sigma(a), 0, \dots, 0, \mu(\sigma(a)), 0, \dots, 0) &= F\varphi \circ \nu(a, 0, \dots, 0, 0, \dots, 0) \\ &= \nu \circ F\varphi(a, 0, \dots, 0, 0, \dots, 0) \\ &= (\sigma(a), 0, \dots, 0, \varrho(\mu(a)), 0, \dots, 0). \end{aligned}$$

Hence $\rho(\mu(a)) = \mu(\sigma(a))$ for $a \in A$.

We have proved that $\eta = (\sigma, \varrho) \in \operatorname{Aut}(\mu)$. By Theorem 2 we have the natural transformation $\nu^{[\eta]} : F \to F$ corresponding to η . Clearly, ν is the restriction of $\nu^{[\eta]}$. If $\tilde{\nu} : F \to F$ is another such transformation, then $\tilde{\nu} = \nu^{[\eta]}$ because $\tilde{\nu}$ coincides with ν on $A^p \times B^q$.

4. Canonical vector fields on product preserving bundles over foliated manifolds. Let $F : \mathcal{F}ol \to \mathcal{FM}$ be a product preserving bundle functor and let $\mu : A \to B$ be its corresponding Weil algebra homomorphism. Let $p \geq 1$ and $q \geq 1$ be integers.

A $\mathcal{F}ol_{p,q}$ -canonical vector field on $F_{|\mathcal{F}ol_{p,q}}$ is a family of vector fields $V = V_{F(M,\mathcal{F})}$ on $F(M,\mathcal{F})$ for any $\mathcal{F}ol_{p,q}$ -object (M,\mathcal{F}) such that for any $\mathcal{F}ol_{p,q}$ -objects (M_1,\mathcal{F}_1) and (M_2,\mathcal{F}_2) and any $\mathcal{F}ol_{p,q}$ -map $\varphi : (M_1,\mathcal{F}_1) \to (M_2,\mathcal{F}_2)$ the vector fields V on $F(M_1,\mathcal{F}_1)$ and V on $F(M_2,\mathcal{F}_2)$ are $F\varphi$ -related.

We have the following example of canonical vector fields on $F_{|\mathcal{F}ol_{p,q}}$.

EXAMPLE 5 (The operators $\operatorname{op}(D)$). Let $D \in \mathcal{D}er(\mu) = \mathcal{L}ie(\operatorname{Aut}(\mu))$ be an element from the Lie algebra of the Lie group of all automorphisms of μ (see Proposition 2). Let D_t be the one-parameter subgroup in $\operatorname{Aut}(\mu)$ corresponding to D. By Theorem 2 we have the corresponding one-parameter subgroup D_t of natural equivalences of F. So, for every $\mathcal{F}ol_{p,q}$ -object (M, \mathcal{F}) we have the flow D_t on $F(M, \mathcal{F})$. This flow defines a vector field $\operatorname{op}(D)$ on $F(M, \mathcal{F})$. Clearly, $\operatorname{op}(D)$ is canonical.

For example, let $F = N : \mathcal{F}ol_{p,q} \to \mathcal{F}\mathcal{M}$ be the normal bundle functor. As we mentioned, the Weil algebra homomorphism μ corresponding to N is the unique algebra homomorphism $\kappa_{\mathbb{D}} : \mathbb{D} \to \mathbb{R}$, where $\mathbb{D} = \mathbb{R} \times \mathbb{R}$ is the algebra of dual numbers, (a, b) + (c, d) = (a + c, b + d), (a, b)(c, d) = (ac, ad + bc). Then (it is easy to see that) $\operatorname{Aut}(\kappa_{\mathbb{D}}) = \{(\operatorname{id}_{\mathbb{R}} \times \tau \operatorname{id}_{\mathbb{R}}, \operatorname{id}_{\mathbb{R}}) \mid \tau \in \mathbb{R} \setminus \{0\}\} \cong \mathbb{R} \setminus \{0\}$. Then $\mathcal{D}er(\kappa_D) \cong \mathbb{R}$. For $D = 1 \in \mathbb{R} = \mathcal{D}er(\kappa_{\mathbb{D}})$, the one-parameter group corresponding to D = 1 is $D_t = (\operatorname{id}_{\mathbb{R}} \times \exp(t) \operatorname{id}_{\mathbb{R}}, \operatorname{id}_{\mathbb{R}}) \in \operatorname{Aut}(\kappa_{\mathbb{D}})$. Then $\operatorname{op}(D) = L$ is the Liouville vector field on the vector bundle $N(M, \mathcal{F})$ for any foliated manifold (M, \mathcal{F}) (here $L(v) = [v + tv] \in T_v N_x(M, \mathcal{F}) \subset T_v N(M, \mathcal{F})$, $v \in N_x(M, \mathcal{F}), x \in M$).

PROPOSITION 6. Let $F : \mathcal{F}ol \to \mathcal{F}\mathcal{M}$ be a product preserving bundle functor and $\mu : A \to B$ be its Weil algebra homomorphism. Let $p \ge 1$ and $q \ge 1$ be integers. Every $\mathcal{F}ol_{p,q}$ -canonical vector field V on $F_{|\mathcal{F}ol_{p,q}}$ is of the form V = op(D) for some $D \in \mathcal{D}er(\mu)$.

Proof. For every $\mathcal{F}ol_{p,q}$ -object (M, \mathcal{F}) we have some vector field V on $F(M, \mathcal{F})$ invariant with respect to $\mathcal{F}ol_{p,q}$ -maps. The flow $\operatorname{Exp}(tV)$ of V is $\mathcal{F}ol_{p,q}$ -invariant. Using Theorem 1 we can easily show that there exists $v \in F(M, \mathcal{F})$ such that $F(M, \mathcal{F})$ is the orbit of U with respect to $\mathcal{F}ol_{p,q}$ -maps for any open neighborhood $U \subset F(M, \mathcal{F})$ of v. This implies that V is complete. Thus $\operatorname{Exp}(tV)$ corresponds to some one-parameter subgroup in $\operatorname{Aut}(F_{\mathcal{F}ol_{p,q}})$. By Proposition 4 and Theorem 2 it corresponds to some $D \in \mathcal{D}er(\mu)$. Then $V = \operatorname{op}(D)$.

5. Some canonical affinors on product preserving bundle functors. Let $F : \mathcal{F}ol \to \mathcal{FM}$ be a product preserving bundle functor and $\mu : A \to B$ be its Weil algebra homomorphism.

A Fol-natural affinor on F is a family of affinors (tensor fields of type (1,1)) $t = t_{F(M,\mathcal{F})}$ on $F(M,\mathcal{F})$ for any $\mathcal{F}ol$ -object (M,\mathcal{F}) such that for any $\mathcal{F}ol$ -map $\varphi : (M_1,\mathcal{F}_1) \to (M_2,\mathcal{F}_2)$ the tensor fields t on $F(M_1,\mathcal{F}_1)$ and t on $F(M_2,\mathcal{F}_2)$ are $F\varphi$ -related.

EXAMPLE 6. Let (M, F) be a $\mathcal{F}ol$ -object. By Corollary 2 we have the natural isomorphism $\nu_{(M,\mathcal{F})} : F(T(M,\mathcal{F})) \to T(F(M,\mathcal{F}))$ satisfying the flow property. The fiber multiplication $m : \mathbb{R} \times T(M,\mathcal{F}) \to T(M,\mathcal{F})$ can be treated as a $\mathcal{F}ol$ -map, where \mathbb{R} is foliated by points and $T(M,\mathcal{F})$ is a

foliated manifold (see Remark 2). Applying the functor F we obtain Fm: $F\mathbb{R} \times F(T(M, \mathcal{F})) \to F(T(M, \mathcal{F}))$. Using the above flow isomorphism and observing that $F\mathbb{R} = A$ (see Example 2) from Fm we obtain $\widetilde{Fm} : A \times T(F(M, \mathcal{F})) \to T(F(M, \mathcal{F}))$. Thus given $a \in A$ we have

$$af(a) := Fm(a, \cdot) : T(F(M, \mathcal{F})) \to T(F(M, \mathcal{F})).$$

Using the flow property of $\nu_{(M,\mathcal{F})}$ we observe that $\mathrm{af}(a)$ is a $\mathcal{F}ol$ -natural affinor on F.

6. Natural operators lifting infinitesimal automorphisms of foliated manifolds to vector fields on product preserving bundles. Let $F : \mathcal{F}ol \to \mathcal{F}\mathcal{M}$ be a product preserving bundle functor and $\mu : A \to B$ be its Weil algebra homomorphism. Let $p \ge 1$ and $q \ge 1$ be integers.

A $\mathcal{F}ol_{p,q}$ -natural operator C transforming infinitesimal automorphisms X of $\mathcal{F}ol_{p,q}$ -objects (M, \mathcal{F}) into vector fields C(X) on $F(M, \mathcal{F})$ is a family of regular $\mathcal{F}ol_{p,q}$ -invariant operators

$$C_{(M,\mathcal{F})}: \mathcal{X}(M,\mathcal{F}) \to \mathcal{X}(F(M,\mathcal{F}))$$

from the space $\mathcal{X}(M, \mathcal{F})$ of all infinitesimal automorphisms of (M, \mathcal{F}) into the space $\mathcal{X}(F(M, \mathcal{F}))$ of all vector fields on $F(M, \mathcal{F})$ for any $\mathcal{F}ol_{p,q}$ -objects (M, \mathcal{F}) . The $\mathcal{F}ol_{p,q}$ -invariance means that for any $\mathcal{F}ol_{p,q}$ -map $\varphi : (M_1, \mathcal{F}_1) \to$ (M_2, \mathcal{F}_2) and any infinitesimal automorphisms $X_1 \in \mathcal{X}(M_1, \mathcal{F}_1)$ and $X_2 \in$ $\mathcal{X}(M_2, \mathcal{F}_2)$, if X_1 and X_2 are φ -related then $C(X_1)$ and $C(X_2)$ are $F\varphi$ related. The regularity means that C transforms smoothly parametrized families of infinitesimal automorphisms into smoothly parametrized families of vector fields.

EXAMPLE 7 (The flow operator). Let (M, \mathcal{F}) be a $\mathcal{F}ol_{p,q}$ -object. Let $X \in \mathcal{X}(M, \mathcal{F})$. Then the flow $\operatorname{Exp}(tX)$ of X is formed by $\mathcal{F}ol_{p,q}$ -maps. So we can apply a functor $F : \mathcal{F}ol \to \mathcal{F}\mathcal{M}$ to $\operatorname{Exp}(tX)$ and obtain the flow $F(\operatorname{Exp}(tX))$ on $F(M, \mathcal{F})$. Then we have the vector field $\mathcal{F}X$ on $F(M, \mathcal{F})$ corresponding to the flow $F(\operatorname{Exp}(tX))$. Clearly, the correspondence $\mathcal{F} : X \to \mathcal{F}X$ is a $\mathcal{F}ol_{p,q}$ -natural operator in question.

The main result of this note is the following classification theorem.

THEOREM 3. Let $F : \mathcal{F}ol \to \mathcal{F}\mathcal{M}$ be a product preserving bundle functor and $\mu : A \to B$ be its Weil algebra homomorphism. Let $p \ge 1$ and $q \ge 1$ be integers. Any $\mathcal{F}ol_{p,q}$ -natural operator C transforming infinitesimal automorphisms $X \in \mathcal{X}(M, \mathcal{F})$ into vector fields $C(X) \in \mathcal{X}(F(M, \mathcal{F}))$ is of the form

$$C(X) = \operatorname{af}(a) \circ \mathcal{F}X + \operatorname{op}(D)$$

for some unique $a \in A$ and $D \in \mathcal{D}er(\mu)$.

Proof. Let C be an operator in question. Let (M, \mathcal{F}) be a $\mathcal{F}ol_{p,q}$ -object. Let 0 be the zero infinitesimal automorphism on (M, \mathcal{F}) for any $\mathcal{F}ol_{p,q}$ -object. Then C(0) is a $\mathcal{F}ol_{p,q}$ -canonical vector field on $F_{|\mathcal{F}ol_{p,q}}$. Thus replacing C by C - C(0) and applying Proposition 6 we can assume that C(0) = 0.

Since any automorphism X on (M, \mathcal{F}) with non-vanishing transversal vector field is $\partial/\partial x^1$ on $(M_0, \mathcal{F}_0) = (\mathbb{R}^q \times \mathbb{R}^p, \{\{a\} \times \mathbb{R}^p\}_{a \in \mathbb{R}^q})$ in some adapted coordinates, C is uniquely determined by $C(\varrho \partial/\partial x^1) : A^q \times B^p \to A^q \times B^p$, $\varrho \in \mathbb{R}$. Using the invariance with respect to the homotheties being $\mathcal{F}ol_{p,q}$ -morphisms $(M_0, \mathcal{F}_0) \to (M_0, \mathcal{F}_0)$ and the homogeneous function theorem ([2]) and C(0) = 0 we deduce that for any ϱ the map $C(\varrho \frac{\partial}{\partial x^1}) :$ $A^q \times B^p \to A^q \times B^p$ is constant and linearly dependent on ϱ . Then using the invariance with respect to $\mathcal{F}ol_{p,q}$ -maps $(x^1, tx^2, \ldots, tx^q, ty^1, \ldots, ty^p)$ for $t \neq 0$ we deduce that the map $C(\varrho \partial/\partial x^1) : A^q \times B^p \to A \times \{0\} \times \{0\}$ is constant and linearly dependent on ϱ . Hence the vector space of all natural operators C in question with C(0) = 0 is at most dim_{\mathbb{R}} A-dimensional. But all natural operators af $(a) \circ \mathcal{F}$ form a dim_{\mathbb{R}} A-dimensional vector space. Thus the proof is complete by a dimension argument.

REMARK 3. Let $\mathcal{FM}_{q,p}$ be the category of fibered manifolds with qdimensional bases and p-dimensional fibers and their local fibered diffeomorphisms. The category $\mathcal{FM}_{q,p}$ is in an obvious way a subcategory in $\mathcal{F}ol_{p,q}$. The categories $\mathcal{FM}_{q,p}$ and $\mathcal{F}ol_{p,q}$ have the same skeleton. Any projectable vector field X on an $\mathcal{FM}_{q,p}$ -object Y is in an obvious way an infinitesimal automorphism of the $\mathcal{F}ol_{p,q}$ -object Y. By [3], any product preserving bundle functor $F : \mathcal{FM} \to \mathcal{FM}$ can be uniquely extended to a product preserving bundle functor $F : \mathcal{Fol} \to \mathcal{FM}$. In [4], J. Tomáš classified all $\mathcal{FM}_{q,p}$ -natural operators C transforming projectable vector fields X on an $\mathcal{FM}_{q,p}$ -object Y into vector fields C(X) on FY for any product preserving bundle functor $F : \mathcal{FM} \to \mathcal{FM}$ and deduced the corresponding formula $C(X) = af(a) \circ \mathcal{FX} + op(D)$. Therefore it seems that Theorem 3 can also be deduced from the result of [4].

7. An application to the normal bundle. Let $N : \mathcal{F}ol_{p,q} \to \mathcal{F}\mathcal{M}$ be the normal bundle functor (see Introduction). Its corresponding Weil algebra homomorphism is the unique algebra homomorphism $\kappa_{\mathbb{D}} : \mathbb{D} \to \mathbb{R}$, where \mathbb{D} is the algebra of dual numbers (see the text after Example 2). It is easily seen (see [2]) that dim_{\mathbb{R}} $\mathbb{D} = 2$ and dim_{\mathbb{R}} $\mathcal{D}er(\kappa_{\mathbb{D}}) = 1$. Therefore (because of Theorem 3) the vector space of all $\mathcal{F}ol_{p,q}$ -natural operators transforming infinitesimal automorphisms $X \in \mathcal{X}(M, \mathcal{F})$ into vector fields $C(X) \in \mathcal{X}(N(M, \mathcal{F}))$ is of dimension 3. On the other hand, given $X \in \mathcal{X}(M, \mathcal{F})$ we have the following vector fields on the (vector) normal bundle $N(M, \mathcal{F})$:

1. The flow vector field $\mathcal{N}X$ of X on $N(M, \mathcal{F})$.

- 2. The vertical lifting X^V of X to $N(M, \mathcal{F})$ defined as follows. Given $v \in N_x(M, \mathcal{F}), x \in M$, we have $[X(x)] \in N_x(M, \mathcal{F}) = T_xM/T_x\mathcal{F}$. Then we put $X^V(v) := [X(x)] \in N_x(M, \mathcal{F}) = T_v(N_x(M, \mathcal{F})) \subset T_v(N(M, \mathcal{F}))$.
- 3. The Liouville vector field L on the vector bundle $N(M, \mathcal{F})$, $L(v) = [v + tv] \in T_v(N_x(M, F)), v \in N_x(M, \mathcal{F}), x \in M$.

Thus we have the corresponding natural operators: \mathcal{N} , $()^V$ and L. These operators are linearly independent. So (by a dimension argument) they form a basis in the vector space of all $\mathcal{F}ol_{p,q}$ -natural operators C transforming infinitesimal automorphisms $X \in \mathcal{X}(M, \mathcal{F})$ into vector fields $C(X) \in \mathcal{X}(N(M, \mathcal{F}))$. Then we have

COROLLARY 3. Any $\mathcal{F}ol_{p,q}$ -natural operator C transforming infinitesimal automorphisms $X \in \mathcal{X}(M, \mathcal{F})$ into vector fields C(X) on the normal bundle $N(M, \mathcal{F})$ is of the form

$$C(X) = a\mathcal{N}X + bX^V + cL$$

for some real numbers a, b, c.

References

- I. Kolář, On the natural operators on vector fields, Ann. Global Anal. Geom. 6 (1988), 109–117.
- [2] I. Kolář, P. W. Michor and J. Slovák, Natural Operations in Differential Geometry, Springer, 1993.
- [3] W. M. Mikulski, Product preserving bundles on foliated manifolds, Ann. Polon. Math. 84 (2004), 67–74.
- [4] J. Tomáš, Natural operators transforming projectable vector fields to product preserving bundles, Rend. Circ. Mat. Palermo (2) Suppl. 59 (1999), 181–187.
- [5] R. A. Wolak, On transverse structures of foliations, ibid. 9 (1985), 227-243.

Institute of MathematicsInstitute of MathematicsMaria Curie-Skłodowska UniversityJagiellonian UniversityPl. M. Curie-Skłodowskiej 1Reymonta 420-031 Lublin, Poland30-059 Kraków, PolandE-mail: kurek@golem.umcs.lublin.plE-mail: mikulski@im.uj.edu.pl

Received 25.8.2006 and in final form 4.3.2007 (1695)

12