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Non-uniruledness and the cancellation problem (II)

by ROBERT DRryrO (Krakow)

Abstract. We study the following cancellation problem over an algebraically closed
field K of characteristic zero. Let X, Y be affine varieties such that X x K" =2 Y x K™ for
some m. Assume that X is non-uniruled at infinity. Does it follow that X = Y'? We prove
a result implying the affirmative answer in case X is either unirational or an algebraic line
bundle. However, the general answer is negative and we give as a counterexample some
affine surfaces.

1. Introduction. Let K be an algebraically closed field of characteristic
zero. The cancellation problem asks whether two affine varieties X,Y are
isomorphic if there exists an isomorphism X x K™ 2Y x K™ for some m.
To study this problem the following terminology will be useful. A variety X
has the cancellation property if every variety Y with a given isomorphism
X x K™ 2Y x K" is isomorphic to X. Furthermore, a variety X has the
strong cancellation property if every isomorphism f: X x K" — Y x K" satis-
fies the condition: for each z € X there exists y € Y such that f({z} xK™) =
{y} x K™ (then f clearly induces an isomorphism between X and Y').

It is well known and easy to prove that affine curves have the cancella-
tion property (in fact, a much more general algebraic result was proved by
Abhyankar, Eakin and Heinzer in [1]). However, surfaces need not have this
property, which was showed by Danielewski in [3] (see also [6] and [13]).

Zariski’s cancellation problem asks whether K" has the cancellation prop-
erty. The affirmative answer for K? is due to Fujita [7] and Miyanishi-
Sugie [17]. This problem remains open for all n > 3.

litaka and Fujita proved in [10] that every variety of non-negative log-
arithmic Kodaira dimension has the strong cancellation property. Further-
more, it was shown in [4] that also every non-K-uniruled affine variety, and
every unirational affine variety non-uniruled at infinity of dimension greater
than one, have this property. The aim of the present paper is to extend the
last result. First we fix some terminology.
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By a variety we will always mean an algebraic variety.

A variety X of positive dimension n is called uniruled (resp. K-uniruled)
if there exists a variety Y of dimension n — 1 and a dominant rational map
Y xP! --» X (resp. a dominant morphism Y x K — X). A closed subset of a
variety is called uniruled (resp. K-uniruled) if all its irreducible components
are uniruled (resp. K-uniruled).

We say that an affine variety X is non-uniruled at infinity if for some
compactification X of X the set X \ X is non-uniruled. (Note that by a
compactification of a variety X we mean any projective variety containing
X as an open subset. It is well known that for any compactification X of an
affine variety X the set X \ X is of pure codimension one in X.)

Recall that a variety X is called unirational if there exists a dominant
rational map P" --» X.

The main result of this paper is

THEOREM 1. Let X be an affine variety which is either non-K-uniruled
or non-uniruled at infinity, unirational and of dimension > 1. Then X has
the strong cancellation property, and any algebraic line bundle over X has
the cancellation property.

In this context it is natural to ask whether an affine variety non-uniruled
at infinity has the cancellation property. Clearly, the above theorem gives an
affirmative answer under some additional assumptions. Furthermore, it was
noticed in [4] that the answer is affirmative for every affine variety having
at least two components non-uniruled at infinity, since such a variety is
non-K-uniruled, which was showed by Jelonek in [12]. However, the general
answer turns out to be negative. Namely, using ideas of Danielewski [3| and
Fieseler [6] we construct affine surfaces non-uniruled at infinity without the
cancellation property. This example may seem quite surprising if we compare
it with Theorem 1 and the following result, which arose by considering the
stable equivalence problem (see [5]): if H is a non-uniruled hypersurface in
a smooth affine variety X and f: X x K™ — Y x K™ is an isomorphism
satisfying f(H xK™) = H'xK™, where H' is a hypersurface in the variety Y,
then for each x € X there exists y € Y such that f({z} x K™) = {y} x K™.

2. Proof of Theorem 1. In this section mx denotes the projection
X xK"™ > (z,t) —x € X.

LEMMA 2. Let f: Y x K™ — X be a dominant morphism of affine
varieties and assume that dim f({b} x K™) > 0 for some b € Y. Then X is
K-uniruled. Furthermore, if Y is unirational then X is uniruled at infinity.

Proof. Let L be a line in K™ such that dim f({b} x L) > 0 and g¢ :
(Y x K™ 1) x K — Y x K™ an isomorphism satisfying g({b'} x K) = {b} x L
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for some b’ € Y x K™~!. Then taking the composition f o g we may assume
that m = 1. Now we use induction on 7 :=dimY. Let n := dim X.

If r = n — 1 then X is K-uniruled by definition. Furthermore, if Y is
unirational with a dominant rational map g: P" --» Y then we have a dom-
inant morphism f o (¢ x idg): U x K — X, where U is the domain of g.
So it follows from [11, Th. 4] (see also [4, Lem.1]) that X is uniruled at
infinity, since P" x P! is a smooth compactification of U x K such that the
set (P" x P1)\ (U x K) is uniruled.

Assume now that » > n. Observe that the set of all y € Y for which
dim f({y} x K) = 0 is closed in Y, since if X is contained in K" and
f = (f1,..., fn) then the set in question equals ();_; N (Nsexiy €Y :
fi(y,s) — fi(y,t) = 0}. Hence after removing some closed subset from Y we
may assume that dim f({y} xK) > 0 for all y € Y. Furthermore, if Y is unira-
tional, we may also assume that there is an open subset U of P" together with
a finite morphism from U to Y. Now choose z € X such that dim f~!(z) =
7+ 1 —n and a hypersurface H in Y satisfying 0 < dim(H N7y (f~1(x)))
< dim f~(x), which can be unirational in case Y is unirational. Then
res f: HxK — Y is a dominant morphism, since its fiber over x has dimen-
sion r — n. So the lemma follows from the induction hypothesis. u

LEMMA 3. Let p;: E; — X be an algebraic line bundle over a variety X,
1 =1,2. Then E1 and Ey are isomorphic as algebraic line bundles over X
provided there exists an isomorphism f: E1 x K™ — FEo x K™ for which the
following diagram is commutative:

Fy x K™ FEy x K™
ml l%
E1 EQ

Proof. Assume that E; is given on an open cover {U,} of X by transition
functions 9o 5 UaNUg — K*, i = 1, 2. Observe that one can identify F; x K"
with the direct sum of E; and the trivial bundle X x K™. Hence

Gap = o O
0 I

are transition functions for E; x K™ on U, N Upg, where I,,, is the identity in
GL(K™). Therefore f induces a family of morphisms f : Uy x K™+ — K™ +1
such that f,(u,-) is an automorphism of K™*! for each u € U,, and

fal(u, )G}I/B(u) = Giﬂ(u)fﬁ(u, ) for all u e Uy NUg.
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Denote by hq(u) the Jacobian of f,(u,-) for u € U,. Then
ha(u)géﬁ(u) = giﬁ(u)hﬁ(u) for all uw € U, N Usg,

which means that the family {h,} determines an isomorphism between Ej
and Ey.

We will also need a solution of the following problem: assuming that R is
aring and A is an R-algebra together with an R-isomorphism of polynomial
rings R[Th,...,Th+1] = A[Th, ..., T,], we ask if A is R-isomorphic to R[T7].
This problem was studied in several papers. Abhyankar, Eakin and Heinzer
gave in [1] an affirmative solution in case R is locally factorial. A little later
Asanuma showed in [2] that the answer is affirmative if R is normal, but
negative in general. In fact, he showed that the ring k[T", T""!], where
n > 1 and k is a field of positive characteristic, is a counterexample to this
problem. On the other hand, Hamann gave in [8] an affirmative solution for
any Q-algebra R. Now we formulate the geometric version of his result and
we show how it can be proved directly for smooth varieties.

LEMMA 4. Let q: Y — X be a morphism of affine varieties and f: X X
K™l — Y x K™ an isomorphism satisfying tx = q o my o f. Then there
exists an isomorphism g: X x K — Y such that gog = 7x.

f

o

Y x K™

-
Y

q

X

Proof. (As mentioned above, the proof is given under the assumption
that X is smooth.) Observe that all fibers of ¢ are isomorphic to K, since
f carries 73! (z) = K™ onto ¢7!(z) x K™, and affine curves have the
cancellation property. Furthermore, if so: X > x + (z,0) € X x K™*! is
the null section then the map s: X 5 x +— 7y (f(so(x))) € Y is a section of g,
i.e. gos = idx. Now we claim that on Y one can introduce a structure of
an algebraic line bundle over X with projection ¢ and zero section s, which
concludes the proof by Lemma 3.

To see this observe that the induced map ¢*: Pic(X) — Pic(Y) is an
isomorphism, since the maps 7% : Pic(X) — Pic(X x K™) and 7} :
Pic(Y) — Pic(Y x K™) are isomorphisms. So for a prime divisor I" := s(X)
on Y there exists a divisor D on X such that I" and ¢*(D) are linearly equiv-
alent (recall that on a smooth variety every divisor is locally principal). Let
{U;} be an open affine cover of X such that D N U; is principal in U;. Then

X x KM+l

R|w

X

X

A
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q*(D) N ¢~ Y(U;) is principal in ¢! (U;) and hence so is I' N ¢~ !(U;). This
implies that the ideal of the set I" N ¢~ !(U;) is principal in the coordinate
ring K[g~1(U;)]; say it is generated by F; € K[g~}(U;)]. Since ¢ !(x) 2 K
and I intersects ¢ !(z) transversally and at only one point, it follows that
the restriction of F; to ¢~!(z) is a coordinate for each z € U;. Now consider
the map ¢~ (U;) 2 y — (q(y), F;(y)) € U; x K. It is obviously bijective and
hence an isomorphism by Zariski’s Main Theorem. Now using these maps
we introduce on Y the claimed structure of a line bundle. =

We will need one more elementary fact: if X and Y are affine varieties
and an isomorphism f: X x K" — Y x K™ is given then X dominates Y (in
particular, if X is unirational then so is V). To see this, choose a point y € Y’
and a morphism p: X — K" such that the intersection of its graph with
f~*({y} x K™) has a component of dimension zero. Then the morphism
X 2z — wy(f(z,p(x))) € Y is dominant, since its fiber over y has a
component of dimension zero.

Proof of Theorem 1. The first statement is an immediate consequence of
Lemma 2. To prove the second part take an algebraic line bundle over X,
p: B — X, and an isomorphism f: Y x K™ — E x K™. By Lemma 2 the
composition pomgo f contracts subvarieties of the form {y} x K™ to a point,
for all y € Y. This means that there exists a morphism ¢: ¥ — X making
the diagram

Y x K™ L ExKm™
lmﬂ
Ty E
lp
Y 1 X

commutative. If E is trivial over an open affine subset U of X then
resq: ¢ Y(U) — U is a trivial bundle by Lemma 4. Furthermore, as in the
proof of Lemma 4 we show that ¢ has a section s: X — Y. These imply that
on Y one can introduce a structure of an algebraic line bundle over X with
projection g and zero section s. Now Lemma 3 concludes the proof. =

REMARK 5. Theorem 1 remains true if we assume that Reg X is either
non-K-uniruled or unirational of dimension greater than 1 and has a non-
uniruled hypersurface at infinity. (Here and in what follows, we denote by
Reg X the set of all nonsingular points of a variety X. Furthermore, we say
that a variety X has a non-uniruled hypersurface at infinity if for some com-
pactification X of X the set X \ X has a non-uniruled irreducible component
of codimension one in X.) The above proof works also in this case, we only



46 R. Drylo

need to modify Lemma 1 slightly. Furthermore, the following obvious fact
will be needed: every isomorphism f: ¥ x K™ — X x K™ induces the isomor-
phism res f: RegY x K™ — Reg X x K. The details are left to the reader.

3. Final remarks. Now applying ideas of Danielewski—Fieseler we give
the announced example of affine surfaces non-uniruled at infinity without
the cancellation property.

EXAMPLE 6. Let X be a smooth non-rational affine curve. Assume that
f and g are regular functions on X vanishing only at a point xg € X. Put
X1 =Xy =Xand Uy = Uy = X\ {x0}. Let V be the surface obtained
by gluing X; x K and X3 x K via the isomorphism U; x K 3> (x,t)
(x,t+1/f(x)) € Uz x K. Let W be the surface obtained in the same manner
as V by using g instead of f. Then V and W are affine surfaces non-uniruled
at infinity, V' x K = W x K, but V is not isomorphic to W in case ord,, (f) #
ordz,(g).

To show that V is affine consider the function
t+1, ,t) € X1 x K|
o= {1 D
f(z)t, (z,t) € Xo x K.

It induces a morphism h: V — K such that the sets V' \ A71(0) & X; x K\
{(x,t) : f(x)t+1 =0} and V\ h 1(1) 2 Xo x K\ {(z,t) : f(z)t = 1} are
affine. This implies that h is an affine morphism and consequently V' is an
affine surface.

From [11, Th. 4] it follows that V is non-uniruled at infinity.

To show that V' x K = W x K denote by X the curve X with a doubled
70, i.e. X is obtained by gluing X; and X3 along U; and U via the identity.
Clearly, V and W with the natural projections onto the prevariety X are
principal K*-bundles over X. Since the fiber product V x 5 W is a principal
KT-bundle over both V' and W, we have isomorphisms V x K =V x W=
W x K (this follows from the fact that isomorphism classes of principal K-
bundles over a variety Y are in one-to-one correspondence with elements of
the group H'(Y,Oy), which is trivial in case Y is affine).

Now suppose that an isomorphism ¢: V' — W is given. Since X is non-
rational we have the induced automorphism ¢ of X for which the diagram

Vv w
prl lpr
~ 2] ~
X X

is commutative. Let x; denote the image of x¢ under the canonical embed-
ding of X; into X, ¢ = 1, 2. Observe that each automorphism of X carries the
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set {x1, z2} onto itself, since every open subset of X not containing {z1, z2}
is separated.

In case ¢(z;) = x; we have two induced automorphisms @; of X; such
that ©;(zo) = zo, ¢ = 1,2, and two other automorphisms ¢; of X; x K
sending (z,t) to (i(x), a;(x)t + Bi(x)), where 5; € K[X;] and «; is a unit
in K[X;], and making the diagram

Uy x K (zt)—(2t+1/f(2)) Uy x K
wl lw
Uy x K (@,t)—(z,t+1/g(x)) Us x K
commutative. This gives the equality
(@)t -+ 61(0) + s = o) (14 15 ) + )
whence 1 . oo ()

TE@) ) 2@ A €KX

Since a9 is a unit we get
Ordxo(f) - Ordwo (g)
Similarly, in case @(z1) = z2 two isomorphisms p1: X7 x K — X9 x K
and po: X9 Xx K — X7 x K are induced for which the diagram

Uy x K (z,t)—(z,t+1/f(x)) Uy x K

wll l@z
Uy x K (z,t)—(z,t—1/g(x)) Uy x K

is commutative. It again follows that ord,,(f) = ordg,(g). So we have shown
that our example is correct.

Finally, we want to ask the following question: given an affine variety
X with the strong cancellation property, does it follow that X x K has
the cancellation property? Clearly, the answer is affirmative if X satisfies
the assumptions of Theorem 1. This question was considered by Asanuma
in [2], who gave a negative answer in the case of positive characteristic. His
counterexample is the already mentioned rational curve with the coordinate
ring k[T™, T""!], where n > 1. On the other hand, in characteristic zero we
have the following

ProprosITION 7. If X and Y are affine curves then the surface X XY
has the cancellation property.

Proof. The hardest case X =2 Y = K is done, since K? has the cancel-
lation property. If X is not isomorphic to K then Reg X is non-K-uniruled,
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since every smooth affine and K-uniruled curve is isomorphic to K, and every
non-constant morphism from K to an affine curve is finite and hence sur-
jective. So X x K has the cancellation property by Remark 5. Similarly, if
neither X = K nor Y = K then the set Reg(X xY) = (Reg X) x (RegVY) is
non-K-uniruled and hence X x Y has the strong cancellation property, again
by Remark 5. m
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