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Non-uniruledness and the 
an
ellation problem (II)by Robert Dryło (Kraków)Abstra
t. We study the following 
an
ellation problem over an algebrai
ally 
losed�eld K of 
hara
teristi
 zero. Let X, Y be a�ne varieties su
h that X ×Km ∼= Y ×Km forsome m. Assume that X is non-uniruled at in�nity. Does it follow that X ∼= Y ? We provea result implying the a�rmative answer in 
ase X is either unirational or an algebrai
 linebundle. However, the general answer is negative and we give as a 
ounterexample somea�ne surfa
es.1. Introdu
tion. Let K be an algebrai
ally 
losed �eld of 
hara
teristi
zero. The 
an
ellation problem asks whether two a�ne varieties X, Y areisomorphi
 if there exists an isomorphism X × Km ∼= Y × Km for some m.To study this problem the following terminology will be useful. A variety Xhas the 
an
ellation property if every variety Y with a given isomorphism
X × Km ∼= Y × Km is isomorphi
 to X. Furthermore, a variety X has thestrong 
an
ellation property if every isomorphism f : X×Km → Y ×Km satis-�es the 
ondition: for ea
h x ∈ X there exists y ∈ Y su
h that f({x}×Km) =
{y} × Km (then f 
learly indu
es an isomorphism between X and Y ).It is well known and easy to prove that a�ne 
urves have the 
an
ella-tion property (in fa
t, a mu
h more general algebrai
 result was proved byAbhyankar, Eakin and Heinzer in [1℄). However, surfa
es need not have thisproperty, whi
h was showed by Danielewski in [3℄ (see also [6℄ and [13℄).Zariski's 
an
ellation problem asks whether Kn has the 
an
ellation prop-erty. The a�rmative answer for K2 is due to Fujita [7℄ and Miyanishi�Sugie [17℄. This problem remains open for all n ≥ 3.Iitaka and Fujita proved in [10℄ that every variety of non-negative log-arithmi
 Kodaira dimension has the strong 
an
ellation property. Further-more, it was shown in [4℄ that also every non-K-uniruled a�ne variety, andevery unirational a�ne variety non-uniruled at in�nity of dimension greaterthan one, have this property. The aim of the present paper is to extend thelast result. First we �x some terminology.2000 Mathemati
s Subje
t Classi�
ation: Primary 14R10.Key words and phrases: uniruled variety, 
an
ellation problem, algebrai
 line bundle.[41℄ 
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42 R. DryªoBy a variety we will always mean an algebrai
 variety.A variety X of positive dimension n is 
alled uniruled (resp. K-uniruled)if there exists a variety Y of dimension n − 1 and a dominant rational map
Y ×P1

99K X (resp. a dominant morphism Y ×K → X). A 
losed subset of avariety is 
alled uniruled (resp. K-uniruled) if all its irredu
ible 
omponentsare uniruled (resp. K-uniruled).We say that an a�ne variety X is non-uniruled at in�nity if for some
ompa
ti�
ation X of X the set X \ X is non-uniruled. (Note that by a
ompa
ti�
ation of a variety X we mean any proje
tive variety 
ontaining
X as an open subset. It is well known that for any 
ompa
ti�
ation X of ana�ne variety X the set X \ X is of pure 
odimension one in X.)Re
all that a variety X is 
alled unirational if there exists a dominantrational map Pn

99K X.The main result of this paper isTheorem 1. Let X be an a�ne variety whi
h is either non-K-uniruledor non-uniruled at in�nity , unirational and of dimension > 1. Then X hasthe strong 
an
ellation property , and any algebrai
 line bundle over X hasthe 
an
ellation property.In this 
ontext it is natural to ask whether an a�ne variety non-uniruledat in�nity has the 
an
ellation property. Clearly, the above theorem gives ana�rmative answer under some additional assumptions. Furthermore, it wasnoti
ed in [4℄ that the answer is a�rmative for every a�ne variety havingat least two 
omponents non-uniruled at in�nity, sin
e su
h a variety isnon-K-uniruled, whi
h was showed by Jelonek in [12℄. However, the generalanswer turns out to be negative. Namely, using ideas of Danielewski [3℄ andFieseler [6℄ we 
onstru
t a�ne surfa
es non-uniruled at in�nity without the
an
ellation property. This example may seem quite surprising if we 
ompareit with Theorem 1 and the following result, whi
h arose by 
onsidering thestable equivalen
e problem (see [5℄): if H is a non-uniruled hypersurfa
e ina smooth a�ne variety X and f : X × Km → Y × Km is an isomorphismsatisfying f(H×Km) = H ′×Km, where H ′ is a hypersurfa
e in the variety Y ,then for ea
h x ∈ X there exists y ∈ Y su
h that f({x}×Km) = {y}×Km.2. Proof of Theorem 1. In this se
tion πX denotes the proje
tion
X × Km ∋ (x, t) 7→ x ∈ X.Lemma 2. Let f : Y × Km → X be a dominant morphism of a�nevarieties and assume that dim f({b} × Km) > 0 for some b ∈ Y . Then X is
K-uniruled. Furthermore, if Y is unirational then X is uniruled at in�nity.Proof. Let L be a line in Km su
h that dim f({b} × L) > 0 and g :
(Y ×Km−1)×K → Y ×Km an isomorphism satisfying g({b′}×K) = {b}×L



Non-uniruledness and the 
an
ellation problem 43for some b′ ∈ Y ×Km−1. Then taking the 
omposition f ◦ g we may assumethat m = 1. Now we use indu
tion on r := dim Y . Let n := dimX.If r = n − 1 then X is K-uniruled by de�nition. Furthermore, if Y isunirational with a dominant rational map g : Pr
99K Y then we have a dom-inant morphism f ◦ (g × idK) : U × K → X, where U is the domain of g.So it follows from [11, Th. 4℄ (see also [4, Lem.1℄) that X is uniruled atin�nity, sin
e Pr × P1 is a smooth 
ompa
ti�
ation of U × K su
h that theset (Pr × P1) \ (U × K) is uniruled.Assume now that r ≥ n. Observe that the set of all y ∈ Y for whi
h

dim f({y} × K) = 0 is 
losed in Y , sin
e if X is 
ontained in KN and
f = (f1, . . . , fN ) then the set in question equals ⋂i=1,...,N

⋂
s,t∈K

{y ∈ Y :
fi(y, s) − fi(y, t) = 0}. Hen
e after removing some 
losed subset from Y wemay assume that dim f({y}×K) > 0 for all y ∈ Y . Furthermore, if Y is unira-tional, we may also assume that there is an open subset U of Pr together witha �nite morphism from U to Y . Now 
hoose x ∈ X su
h that dim f−1(x) =
r + 1 − n and a hypersurfa
e H in Y satisfying 0 ≤ dim(H ∩ πY (f−1(x)))
< dim f−1(x), whi
h 
an be unirational in 
ase Y is unirational. Then
res f : H ×K → Y is a dominant morphism, sin
e its �ber over x has dimen-sion r − n. So the lemma follows from the indu
tion hypothesis.Lemma 3. Let pi : Ei → X be an algebrai
 line bundle over a variety X,
i = 1, 2. Then E1 and E2 are isomorphi
 as algebrai
 line bundles over Xprovided there exists an isomorphism f : E1 ×Km → E2 ×Km for whi
h thefollowing diagram is 
ommutative:

E1 × Km

πE1

��

f
// E2 × Km

πE2

��

E1

p1

$$IIIIIIIIII
E2

p2

zzuuuuuuuuuu

XProof. Assume that Ei is given on an open 
over {Uα} of X by transitionfun
tions gi
α,β : Uα∩Uβ → K∗, i = 1, 2. Observe that one 
an identify Ei×Kmwith the dire
t sum of Ei and the trivial bundle X × Km. Hen
e

Gi
α,β =

(
gi
α,β 0

0 Im

)

are transition fun
tions for Ei ×Km on Uα ∩Uβ, where Im is the identity inGL(Km). Therefore f indu
es a family of morphisms fα : Uα×Km+1 → Km+1su
h that fα(u, ·) is an automorphism of Km+1 for ea
h u ∈ Uα and
fα(u, ·)G1

α,β(u) = G2
α,β(u)fβ(u, ·) for all u ∈ Uα ∩ Uβ.



44 R. DryªoDenote by hα(u) the Ja
obian of fα(u, ·) for u ∈ Uα. Then
hα(u)g1

α,β(u) = g2
α,β(u)hβ(u) for all u ∈ Uα ∩ Uβ,whi
h means that the family {hα} determines an isomorphism between E1and E2.We will also need a solution of the following problem: assuming that R isa ring and A is an R-algebra together with an R-isomorphism of polynomialrings R[T1, . . . , Tn+1] ∼= A[T1, . . . , Tn], we ask if A is R-isomorphi
 to R[T1].This problem was studied in several papers. Abhyankar, Eakin and Heinzergave in [1℄ an a�rmative solution in 
ase R is lo
ally fa
torial. A little laterAsanuma showed in [2℄ that the answer is a�rmative if R is normal, butnegative in general. In fa
t, he showed that the ring k[Tn, Tn+1], where

n > 1 and k is a �eld of positive 
hara
teristi
, is a 
ounterexample to thisproblem. On the other hand, Hamann gave in [8℄ an a�rmative solution forany Q-algebra R. Now we formulate the geometri
 version of his result andwe show how it 
an be proved dire
tly for smooth varieties.Lemma 4. Let q : Y → X be a morphism of a�ne varieties and f : X ×
Km+1 → Y × Km an isomorphism satisfying πX = q ◦ πY ◦ f . Then thereexists an isomorphism g : X × K → Y su
h that q ◦ g = πX .

X × Km+1

πX

##GGGGGGGGGGGGGGGGGGGGGG

f

∼=
// Y × Km

πY

��

Y

q

��

X × K
g

∼=
oo

πX

xxrrrrrrrrrrr

XProof. (As mentioned above, the proof is given under the assumptionthat X is smooth.) Observe that all �bers of q are isomorphi
 to K, sin
e
f 
arries π−1

X (x) ∼= Km+1 onto q−1(x) × Km, and a�ne 
urves have the
an
ellation property. Furthermore, if s0 : X ∋ x 7→ (x, 0) ∈ X × Km+1 isthe null se
tion then the map s : X ∋ x 7→ πY (f(s0(x))) ∈ Y is a se
tion of q,i.e. q ◦ s = idX . Now we 
laim that on Y one 
an introdu
e a stru
ture ofan algebrai
 line bundle over X with proje
tion q and zero se
tion s, whi
h
on
ludes the proof by Lemma 3.To see this observe that the indu
ed map q∗ : Pic(X) → Pic(Y ) is anisomorphism, sin
e the maps π∗

X : Pic(X) → Pic(X × Km+1) and π∗

Y :
Pic(Y ) → Pic(Y ×Km) are isomorphisms. So for a prime divisor Γ := s(X)on Y there exists a divisor D on X su
h that Γ and q∗(D) are linearly equiv-alent (re
all that on a smooth variety every divisor is lo
ally prin
ipal). Let
{Ui} be an open a�ne 
over of X su
h that D ∩ Ui is prin
ipal in Ui. Then
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q∗(D) ∩ q−1(Ui) is prin
ipal in q−1(Ui) and hen
e so is Γ ∩ q−1(Ui). Thisimplies that the ideal of the set Γ ∩ q−1(Ui) is prin
ipal in the 
oordinatering K[q−1(Ui)]; say it is generated by Fi ∈ K[q−1(Ui)]. Sin
e q−1(x) ∼= Kand Γ interse
ts q−1(x) transversally and at only one point, it follows thatthe restri
tion of Fi to q−1(x) is a 
oordinate for ea
h x ∈ Ui. Now 
onsiderthe map q−1(Ui) ∋ y 7→ (q(y), Fi(y)) ∈ Ui × K. It is obviously bije
tive andhen
e an isomorphism by Zariski's Main Theorem. Now using these mapswe introdu
e on Y the 
laimed stru
ture of a line bundle.We will need one more elementary fa
t: if X and Y are a�ne varietiesand an isomorphism f : X×Km → Y ×Km is given then X dominates Y (inparti
ular, if X is unirational then so is Y ). To see this, 
hoose a point y ∈ Yand a morphism p : X → Km su
h that the interse
tion of its graph with
f−1({y} × Km) has a 
omponent of dimension zero. Then the morphism
X ∋ x 7→ πY (f(x, p(x))) ∈ Y is dominant, sin
e its �ber over y has a
omponent of dimension zero.Proof of Theorem 1. The �rst statement is an immediate 
onsequen
e ofLemma 2. To prove the se
ond part take an algebrai
 line bundle over X,
p : E → X, and an isomorphism f : Y × Km → E × Km. By Lemma 2 the
omposition p◦πE ◦f 
ontra
ts subvarieties of the form {y}×Km to a point,for all y ∈ Y . This means that there exists a morphism q : Y → X makingthe diagram

Y × Km

πY

��

f
// E × Km

πE

��

E

p

��

Y
q

// X
ommutative. If E is trivial over an open a�ne subset U of X then
res q : q−1(U) → U is a trivial bundle by Lemma 4. Furthermore, as in theproof of Lemma 4 we show that q has a se
tion s : X → Y . These imply thaton Y one 
an introdu
e a stru
ture of an algebrai
 line bundle over X withproje
tion q and zero se
tion s. Now Lemma 3 
on
ludes the proof.Remark 5. Theorem 1 remains true if we assume that Reg X is eithernon-K-uniruled or unirational of dimension greater than 1 and has a non-uniruled hypersurfa
e at in�nity. (Here and in what follows, we denote by
Reg X the set of all nonsingular points of a variety X. Furthermore, we saythat a variety X has a non-uniruled hypersurfa
e at in�nity if for some 
om-pa
ti�
ation X of X the set X \X has a non-uniruled irredu
ible 
omponentof 
odimension one in X.) The above proof works also in this 
ase, we only



46 R. Dryªoneed to modify Lemma 1 slightly. Furthermore, the following obvious fa
twill be needed: every isomorphism f : Y ×Km → X×Km indu
es the isomor-phism res f : Reg Y ×Km → Reg X ×Km. The details are left to the reader.3. Final remarks. Now applying ideas of Danielewski�Fieseler we givethe announ
ed example of a�ne surfa
es non-uniruled at in�nity withoutthe 
an
ellation property.Example 6. Let X be a smooth non-rational a�ne 
urve. Assume that
f and g are regular fun
tions on X vanishing only at a point x0 ∈ X. Put
X1 = X2 = X and U1 = U2 = X \ {x0}. Let V be the surfa
e obtainedby gluing X1 × K and X2 × K via the isomorphism U1 × K ∋ (x, t) 7→
(x, t+1/f(x)) ∈ U2×K. Let W be the surfa
e obtained in the same manneras V by using g instead of f . Then V and W are a�ne surfa
es non-uniruledat in�nity, V ×K ∼= W ×K, but V is not isomorphi
 to W in 
ase ordx0

(f) 6=
ordx0

(g).To show that V is a�ne 
onsider the fun
tion
H(x, t) :=

{
f(x)t + 1, (x, t) ∈ X1 × K,
f(x)t, (x, t) ∈ X2 × K.It indu
es a morphism h : V → K su
h that the sets V \ h−1(0) ∼= X1 × K \

{(x, t) : f(x)t + 1 = 0} and V \ h−1(1) ∼= X2 × K \ {(x, t) : f(x)t = 1} area�ne. This implies that h is an a�ne morphism and 
onsequently V is ana�ne surfa
e.From [11, Th. 4℄ it follows that V is non-uniruled at in�nity.To show that V ×K ∼= W ×K denote by X̃ the 
urve X with a doubled
x0, i.e. X̃ is obtained by gluing X1 and X2 along U1 and U2 via the identity.Clearly, V and W with the natural proje
tions onto the prevariety X̃ areprin
ipal K+-bundles over X̃. Sin
e the �ber produ
t V ×

X̃
W is a prin
ipal

K+-bundle over both V and W , we have isomorphisms V ×K ∼= V ×X̃ W ∼=
W ×K (this follows from the fa
t that isomorphism 
lasses of prin
ipal K+-bundles over a variety Y are in one-to-one 
orresponden
e with elements ofthe group H1(Y,OY ), whi
h is trivial in 
ase Y is a�ne).Now suppose that an isomorphism ϕ : V → W is given. Sin
e X is non-rational we have the indu
ed automorphism ϕ̃ of X̃ for whi
h the diagram

V
ϕ

//

pr

��

W

pr

��

X̃
ϕ̃

// X̃is 
ommutative. Let xi denote the image of x0 under the 
anoni
al embed-ding of Xi into X̃, i = 1, 2. Observe that ea
h automorphism of X̃ 
arries the



Non-uniruledness and the 
an
ellation problem 47set {x1, x2} onto itself, sin
e every open subset of X̃ not 
ontaining {x1, x2}is separated.In 
ase ϕ̃(xi) = xi we have two indu
ed automorphisms ϕ̃i of Xi su
hthat ϕ̃i(x0) = x0, i = 1, 2, and two other automorphisms ϕi of Xi × Ksending (x, t) to (ϕ̃i(x), αi(x)t + βi(x)), where βi ∈ K[Xi] and αi is a unitin K[Xi], and making the diagram
U1 × K

(x,t) 7→(x,t+1/f(x))
//

ϕ1

��

U2 × K

ϕ2

��

U1 × K
(x,t) 7→(x,t+1/g(x))

// U2 × K
ommutative. This gives the equality
α1(x)t + β1(x) +

1

g(ϕ̃1(x))
= α2(x)

(
t +

1

f(x)

)
+ β2(x),when
e

1

g(ϕ̃1(x))
−

α2(x)

f(x)
= β2(x) − β1(x) ∈ K[X].Sin
e α2 is a unit we get

ordx0
(f) = ordx0

(g).Similarly, in 
ase ϕ̃(x1) = x2 two isomorphisms ϕ1 : X1 × K → X2 × Kand ϕ2 : X2 × K → X1 × K are indu
ed for whi
h the diagram
U1 × K

(x,t) 7→(x,t+1/f(x))
//

ϕ1

��

U2 × K

ϕ2

��

U2 × K
(x,t) 7→(x,t−1/g(x))

// U1 × Kis 
ommutative. It again follows that ordx0
(f) = ordx0

(g). So we have shownthat our example is 
orre
t.Finally, we want to ask the following question: given an a�ne variety
X with the strong 
an
ellation property, does it follow that X × K hasthe 
an
ellation property? Clearly, the answer is a�rmative if X satis�esthe assumptions of Theorem 1. This question was 
onsidered by Asanumain [2℄, who gave a negative answer in the 
ase of positive 
hara
teristi
. His
ounterexample is the already mentioned rational 
urve with the 
oordinatering k[Tn, Tn+1], where n > 1. On the other hand, in 
hara
teristi
 zero wehave the followingProposition 7. If X and Y are a�ne 
urves then the surfa
e X × Yhas the 
an
ellation property.Proof. The hardest 
ase X ∼= Y ∼= K is done, sin
e K2 has the 
an
el-lation property. If X is not isomorphi
 to K then Reg X is non-K-uniruled,



48 R. Dryªosin
e every smooth a�ne and K-uniruled 
urve is isomorphi
 to K, and everynon-
onstant morphism from K to an a�ne 
urve is �nite and hen
e sur-je
tive. So X × K has the 
an
ellation property by Remark 5. Similarly, ifneither X ∼= K nor Y ∼= K then the set Reg(X × Y ) = (Reg X)× (Reg Y ) isnon-K-uniruled and hen
e X×Y has the strong 
an
ellation property, againby Remark 5.
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