
ANNALES

POLONICI MATHEMATICI

92.1 (2007)

Boundary values of functions in Cegrell’s class Eψ

by Pham Hoang Hiep (Hanoi)

Abstract. We study boundary values of functions in Cegrell’s class Eψ .

1. Introduction. Let Ω be a bounded hyperconvex domain in C
n.

Denote by PSH(Ω) the plurisubharmonic (psh) functions on Ω. The com-
plex Monge–Ampère operator (ddc)n is well defined over the class of locally
bounded psh functions, according to the fundamental work of Bedford and
Taylor in [BT1], [BT2]. Cegrell introduced a general class E of psh functions
on which the complex Monge–Ampère operator (ddc)n can be defined. He
obtained many important results of pluripotential theory in the class E , for
example, the comparison principle and solvability of the Dirichlet problem
(see [Ce1], [Ce2]). Recently, he introduced in [Ce3] a new class Eψ. The main
aim of this note is to study boundary values of functions in the class Eψ.
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2. Preliminaries. First we recall some elements of pluripotential theory
that will be used throughout the paper. All this can be found in [BT2], [Ce1],
[Ce2], [Kl], [Ko].

2.1. The following classes of psh functions were introduced by Cegrell
in [Ce1] and [Ce2]:

E0 = E0(Ω) =
{

ϕ ∈ PSH−(Ω) ∩ L∞(Ω) : lim
z→∂Ω

ϕ(z) = 0,
\
Ω

(ddcϕ)n <∞
}

,

Ep = Ep(Ω) =
{

ϕ∈PSH(Ω) : ∃E0(Ω)∋ϕjցϕ, sup
j≥1

\
Ω

(−ϕj)
p(ddcϕj)

n<∞
}

,
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F = F(Ω) =
{

ϕ ∈ PSH−(Ω) : ∃E0(Ω) ∋ ϕj ց ϕ, sup
j≥1

\
Ω

(ddcϕj)
n <∞

}

,

E = E(Ω) = {ϕ ∈ PSH−(Ω) : ∃ϕK ∈ F(Ω) such that

ϕK = ϕ on K, ∀K ⊂⊂ Ω}.

2.2. For each ψ ∈ PSH−(Ω), ψ 6≡ 0, Cegrell [Ce3] introduced a new class
of psh functions

Eψ = Eψ(Ω) =
{

ϕ ∈ PSH−(Ω) : ∃E0(Ω) ∋ ϕj ց ϕ,

sup
j≥1

\
Ω

−ψ(ddcϕj)
n <∞

}

.

By Proposition 3.1 in [Ce3] we have Eψ ⊂ E . It is known that if v ≤ u and
v ∈ Eψ then u ∈ Eψ. By Theorem 5.5 in [Ce2] we have u + v ∈ Eψ for all
u, v ∈ Eψ.

2.3. Let a ∈ Ω. According to Klimek (see [Kl]), the pluricomplex Green
function with poles at a is defined by

gΩ,a = ga(z) = sup{u ∈ PSH
−(Ω), u(z)− log |z − a| ≤ O(1) as z → a}.

Demailly [De] proved that (ddcmax(ga,−ε))
n is weak∗-convergent to a mea-

sure µΩ,a supported on ∂Ω as ε→ 0. He discovered the following interesting
formula:

u(a) =
1

(2π)n

\
∂Ω

u dµΩ,a +
1

(2π)n

\
Ω

ga dd
cu ∧ (ddcga)

n−1

for all u ∈ PSH(Ω) ∩ C(Ω).

2.4. Let u ∈ PSH−(Ω). We set u∗(ξ) = lim supz→ξ u(z) for all ξ ∈ Ω.
By the comparison principle for the classes F ∪ Ep we obtain u

∗|∂Ω ≡ 0 for
all u ∈ F ∪ Ep (see [Åh], [Ce1,2], [ÅCH], [H1,2]). By Theorem 5.8 in [Ce2]
we find a function u ∈ F1 such that lim infz→ξ u(z) = −∞ for all ξ ∈ ∂Ω.
Next we introduce a result needed for our paper:

2.5. Proposition. Let uj , vj ∈ F , u ∈ PSH
−(Ω) be such that uj ց u,

vj ց u. Then

lim
j→∞

\
Ω

−ϕ(ddcuj)
n = lim

j→∞

\
Ω

−ϕ(ddcvj)
n

for all ϕ ∈ PSH−(Ω).

Proof. For each k we set wj = max(uk, vj). Integration by parts gives\
Ω

−ϕ(ddcwj)
n ≤

\
Ω

−ϕ(ddcvj)
n
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for all j ≥ 1. Moreover since wj ց uk ∈ F as j →∞ we obtain\
Ω

−ϕ(ddcuk)
n ≤ lim

j→∞

\
Ω

−ϕ(ddcvj)
n.

Letting k →∞ we get

lim
j→∞

\
Ω

−ϕ(ddcuj)
n ≤ lim

j→∞

\
Ω

−ϕ(ddcvj)
n.

3. Boundary values of functions in the class Eψ. The main result
of the note is the following

3.1. Theorem. Let Ω be a bounded hyperconvex domain in C
n (n ≥ 2)

and u ∈ Eψ(Ω) for some ψ ∈ PSH
−(Ω), ψ 6≡ 0. Then

T
∂Ω

u∗ dµΩ,a = 0 for
all a ∈ Ω.

Proof. By the definition of the class Eψ we find E0 ∋ uj ց u such that

sup
j≥1

\
Ω

−ψ(ddcuj)
n <∞.

Let a ∈ Ω. From

sup
z∈Ω

|max(ga(z),−1)|

|ψ(z)|
<∞

and from Proposition 2.5 we get

A = sup
j≥1

\
Ω

−max(ga,−1)(dd
cmax(jga, u))

n <∞.

Let K be a compact subset in {u∗ < 0} ∩ ∂Ω. We only have to prove that\
K

dµΩ,a = 0.

Let s > 0 and U be a neighborhood of K such that u|U∩Ω < −s. We have\
Ω

−max(ga,−1)(dd
cmax(jga, u))

n

=
\

{jga≤u}

−max(ga,−1)(dd
cmax(jga, u))

n

≥
\

{jga≤u}

−max(u/j,−1)(ddcmax(jga, u))
n

= jn−1
\
Ω

−max(u,−j)(ddcmax(ga, u/j))
n
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≥ jn−1
\
Ω

−max(u,−j)(ddcmax(ga, u/j,−s/j))
n

≥ jn−1s
\
U

(ddcmax(ga, u/j,−s/j))
n = jn−1s

\
U

(ddcmax(ga,−s/j))
n

for j ≥ 1. Therefore \
U

(ddcmax(ga,−s/j))
n ≤

A

jn−1s

for j ≥ 1. Moreover, since (ddcmax(ga,−ε))
n is weak∗-convergent to a mea-

sure µΩ,a on C
n as ε→ 0 we obtain\

U

dµΩ,a ≤ lim inf
j→∞

\
U

(ddcmax(ga,−s/j))
n ≤ lim inf

j→∞

A

jn−1s
= 0.

Hence \
K

dµΩ,a = 0.

3.2. Corollary. Let Ω be a bounded B-regular domain in C
n and u ∈

Eψ(Ω) for some ψ ∈ PSH
−(Ω), ψ 6≡ 0. Then u∗|∂Ω ≡ 0.

Proof. We assume that u∗(ξ0) < 0 for some ξ0 ∈ ∂Ω. Let r > 0 be such
that

u∗(ξ) < u∗(ξ0)/2

for all ξ ∈ B(ξ0, r) ∩ ∂Ω. By Theorem 3.1 we have\
B(ξ0,r)

dµΩ,a = 0

for all a ∈ Ω. Let f ∈ C(∂Ω) be such that 0 ≤ f ≤ 1, f = 1 on B(ξ0, r/2)∩
∂Ω and f = 0 on ∂Ω\B(ξ0, r). We find a function h ∈ PSH(Ω)∩C(Ω) such
that (ddch)n = 0 and h|∂Ω = f . Let a ∈ Ω be such that h(a) > 0. By [De]
we have

h(a) =
1

(2π)n

\
∂Ω

f dµΩ,a +
1

(2π)n

\
Ω

ga dd
ch ∧ (ddcga)

n−1

≤
1

(2π)n

\
∂Ω

f dµΩ,a ≤
1

(2π)n

\
B(ξ0,r)

dµΩ,a.

Hence \
B(ξ0,r)

dµΩ,a ≥ (2π)
nh(a) > 0,

which contradicts
T
B(ξ0,r)

dµΩ,a = 0.
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3.3. Corollary. Let Ω = Ω1 × Ω2 where Ω1 ⊂ C
n1 , Ω2 ⊂ C

n2 are

bounded B-regular domains and u ∈ Eψ(Ω) for some ψ ∈ PSH
−(Ω), ψ 6≡ 0.

Then u∗|∂Ω1×∂Ω2 ≡ 0.

Proof. From gΩ,(a1,a2) = max(gΩ1,a1 , gΩ2,a2) and from Theorem 7 in
[Bł2] we get

µΩ,(a1,a2) = µΩ1,a1 × µΩ2,a2

for all (a1, a2) ∈ Ω1×Ω2. By this formula and a copy of the proof of Corollary
3.2 we infer that u∗|∂Ω1×∂Ω2 ≡ 0.

Let Ω1, Ω2 be bounded hyperconvex domains in C. We construct a func-
tion u ∈ Eψ(Ω1 × Ω2) for some ψ ∈ PSH

−(Ω1 × Ω2), ψ 6≡ 0 such that
u∗|∂Ω1×Ω2∪Ω1×∂Ω2 < 0:

3.4. Proposition. Let Ω = Ω1 × Ω2 where Ω1, Ω2 are bounded hy-
perconvex domains in C. Then max(gΩ1,a1 ,−1) + max(gΩ2,a2 ,−1) ∈ Eψ(Ω)
with ψ = max(gΩ1,a1 , gΩ2,a2) for all (a1, a2) ∈ Ω1 ×Ω2.

Proof. By Theorem 5.5 in [Ce2] we only have to prove that u =
max(gΩ1,a1 ,−1) ∈ Eψ(Ω). Set

uj = max(gΩ1,a1 , jgΩ2,a2 − 1).

Then E0(Ω) ∋ uj ց u. By Theorem 7 in [Bł2] we have\
Ω

−ψ(ddcuj)
2 =

\
Ω

−ψ ddc(gΩ1,a1 ,−1) ∧ dd
c(jgΩ2,a2 ,−1)

=
\

{gΩ1,a1=−1}×{gΩ2,a2=−1/j}

−jψddc(gΩ1,a1 ,−1) ∧ dd
c(gΩ2,a2 ,−1/j)

=
\

{gΩ1,a1=−1}×{gΩ2,a2=−1/j}

ddc(gΩ1,a1 ,−1) ∧ dd
c(gΩ2,a2 ,−1/j)

=
\
Ω1

ddc(gΩ1,a1 ,−1)
\
Ω1

ddc(gΩ2,a2 ,−1/j) = (2π)
2.

Hence u ∈ Eψ(Ω).
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