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A proof of the valuation property and preparation theorem

by KrzyszTOF JAN Nowak (Krakow)

Abstract. The purpose of this article is to present a short model-theoretic proof
of the valuation property for a polynomially bounded o-minimal theory 7'. The valuation
property was conjectured by van den Dries, and proved for the polynomially bounded case
by van den Dries—Speissegger and for the power bounded case by Tyne. Our proof uses
the transfer principle for the theory Tconyv (i.e. T with an extra unary symbol denoting
a proper convex subring), which—together with quantifier elimination—is due to van
den Dries—Lewenberg. The main tools applied here are saturation, the Marker—Steinhorn
theorem on parameter reduction and heir-coheir amalgams.

The significance of the valuation property lies to a great extent in its geometric con-
tent: it is equivalent to the preparation theorem which says, roughly speaking, that every
definable function of several variables depends piecewise on any fixed variable in a cer-
tain simple fashion. The latter originates in the work of Parusinski for subanalytic func-
tions, and of Lion—Rolin for logarithmic-exponential functions. Van den Dries—Speissegger
have proved the preparation theorem in the o-minimal setting (for functions definable
in a polynomially bounded structure or logarithmic-exponential over such a structure).
Also, the valuation property makes it possible to establish quantifier elimination for poly-
nomially bounded expansions of the real field R with exponential function and loga-
rithm.

1. Preliminaries. Throughout this article we deal with a polynomially
bounded o-minimal theory 7T in a first-order language £ with field of expo-
nents K (which is a subfield of the field R of reals). The word “definable” in
a structure R always means “definable with parameters from R”; “definable
with no parameters” is called “0-definable”. It is well known that one can
always extend £ and T by definitions to:

£ .= £ augmented by a new function symbol fo(T) for each L-formula
©(T,y) such that T+ VZ Jy p(7,y),

T := T extended by the new defining axioms (7, f,(T)).
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Every model R of T expands uniquely to a model RY of T4, Since the
theory T has definable cell decomposition, T4 has quantifier elimination,
and since T" has definable Skolem functions (which follows from cell decom-
position as well), T9 has universal axiomatization. Consequently, 7' has a
prime model P which has a unique elementary embedding into every model
R of T'; the image of P in R consists of the interpretations of all constant
symbols of the language £9F.

If R is an elementary substructure of a model S of T: R < S, then R4f
is a substructure of S in the language £4: R ¢ SI. For a subset A C S,
R(A) denotes the definable closure of A over R in S, i.e. the substructure of
S generated by RUA in the language £U; of course R(A) is an elementary
substructure of S. The operation of definable closure satisfies the ordinary
axioms for the span operation (in particular the Steinitz exchange property),
whence one can define rank, rk R, or relative rank, rk(S/R), in an ordinary
fashion.

Consider two ordered fields R C S. We say that R is Dedekind complete
or tame in S if one of the three equivalent conditions is satisfied:

(i) the trace on R of every interval in S is an interval in R;
(ii) the cut made in R by every element s € S is rational;
(iii) for each R-bounded element s € S, there is a unique element r € R
such that s —r is an R-infinitesimal; we call r := st(s) the standard
part of the element s.

MARKER—STEINHORN THEOREM ON PARAMETER REDUCTION. Consi-
der o-minimal structures R < S with R Dedekind complete in S. Then the
trace X N'R™ of every definable set X C S™ in 8™ is definable in R". In
other words, the trace X N'R™ can be defined by means of parameters from

R only.

In this section we shall make use of the following well-known

COROLLARY (cf. [8, 1]). Under the previous assumptions, if f : S™ — S
s a definable function, then the sets

E_ o ={ZceR": f(T) <R}, Fioo:={T€eR": f(xT)>R}
are definable, and the function
SUf(7) : R\ (Fooo U Byog) — R

s definable.

Consider now the theory Teony of pairs (R, V), where V' is a convex
subring of a model R of T', in the language £ with an extra unary relation
symbol to denote V' (cf. [2]). Every maximal elementary substructure R’
of R contained in V is Dedekind complete and cofinal in R, and isomorphic
to the residue field V of V; furthermore, V is the convex hull of R’ in R. Van
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den Dries—Lewenberg [2] proved a relative version of quantifier elimination
for Teony:

If T has quantifier elimination and universal axiomatization, then Teony
has quantifier elimination.

Hence Teony is a complete theory and we have at our disposal the transfer
principle: in order to prove a theorem expressible in the first-order language
Leconv for all models of Teoyy, it suffices to prove it for one particular model.

The convex subring V is a valuation ring in R with maximal ideal
m = my and valuation group I' = Iy; let v denote the induced valua-
tion of the field R. We now give a simple proof for the following proposition
on stabilization of valuation due to van den Dries [1|. Our proof makes use
of the transfer principle and piecewise uniform asymptotics only.

PROPOSITION 1 (on stabilization of valuation). If f : R — R is a de-
finable function, then there exists uw € V such that for all x € V, x > u, we

hcwe
=7 u or equivalen —( ) S [/ m

Proof. The function f is of the form

f(.’L‘) = g(xvrl)"'vrm)v

where g is a 0-definable function and 7 € R™ are parameters. So we shall
prove the statement for all parameters 7 from the model under consideration,
g being fixed. Since the assertion is expressible in the first-order language of
the theory Teony, We may assume that R = P(a), where |P| < a and V = P
is the convex hull of P in R. Then every parameter r; equals h;(a) for a
0-definable function h; : P — P. Putting

k(‘rvy) = g(‘rv hl(y)a B hm(y))7

we are thus reduced to considering 0O-definable functions f(x) = k(z,a),
k:PxP—7P.

In this case, in view of piecewise uniform asymptotics for polynomially
bounded o-minimal theories, there exist an exponent © € K, a v € P and a
0-definable function ¢(x) such that for every z € P, x > u, we have

k(z,
(z.y) —1 asy— oo, yeP.
c(z)yr
Hence for every x,e € P, x > u, € > 0, we have
k(z,y)

@)y —1‘ <e whenyeP,y>0.
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It follows by overspill that
k(z,a)
c(x)at

—1’<€ for every x € V, z > w.

Consequently, v(f(z)) = v(k(z,a)) = pv(a) for all z € V, > u, as desired.

Let f,g: R — R be definable functions, and 7 : V — V the canonical
mapping onto the residue field V of V. We say that f and g are asymptotic
onV, f > 9 if either f(z) =g(z) =0forx € V, 2 >0, or

MEV forz eV, x>0, and W<M> —1 asz— o0,z eV
9(x) 9(x)

COROLLARY. There exist A € K and ¢ € R such that f(x) > ca?.
Consequently, for any ¢ = 1/v with v € V, v > 0, there exist u,w € R,
uw €V, w >V, such that | f(z)/(cx?) — 1| < & for all x € [u,w)].

Proof. Indeed, the maximal elementary substructure R’ ~ V of R con-
tained in V is Dedekind complete in R. Taking u € R’ as in Proposition 1, it
follows from the Corollary to the Marker—Steinhorn theorem that the func-

tion
st(%) R — R

is R/-definable. Then it is asymptotic to ¢’z* for some A € K and ¢’ € R’
st ﬂ —1 asz—oo,zeR.
f(u)dz?
Putting ¢ := f(u)c completes the proof.
Consider now a model (R, V) of the theory Tt o,y whose valuation v has

rank d < oo. This means that the value group I' = Iy has d + 1 isolated
subgroups of the form

h=0)chhchoelhc---Ccl'=Iolhd--®Iy,

where the subgroups I are archimedian such that I 1+ < I 2+ <o I j‘ .
We have, of course, a one-to-one correspondence between these isolated sub-
groups and the prime ideals p; in V', as well as the convex subrings V; such

that V C V; C R:
pi={reR:v(x)>I;}, Vi={zeR:v(x)>-Tin}="V,,
po=mOp; D Dpg_1DOpa=(0), Vo=VCcWVc--CVg1CTVy=R.

The valuation group of V; is isomorphic to ;11 @ --- & I'y; the valuation
group of V=R is (0).
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OBSERVATION. There exists an elementary extension (R*,V*) of (R, V)
the value group I'™ of which is of the form

I"=Ro---®R.
N —
d times

Such an elementary extension can be obtained by a successive adjunction of
elements from an Ny-saturation of (R,V'). Here we sketch that procedure.
Every archimedian group [; may be regarded as a subgroup of the addi-
tive group R of real numbers; we may assume that 1 € I;. Take any number
0 € R\ I5; then § makes an irrational cut C in I5. One can lift C' to a unique
cut C:={z eR:z<0or (z>0,v(z)>C)}inR, and next adjoin to
R an element a which realizes the cut C. We get an elementary extension
(R{a), W) of (R, V); clearly, w(a) realizes the cut C in I'; as well. One must
show that the valuation w with value group Iy obtained in this fashion
is also of rank d. This is due to the control over definable functions in the
vicinity of the cuts made by the convex subrings V; in R, as described in the
Corollary to Proposition 1. Indeed, every definable function f : R — R is
asymptotic in each V; to a function cz?. Hence |f(z)/(cz™) —1| < 1/2 for all
x from an interval [u, w| with u € V;, w >V}, and this inequality extends to
the cuts made by the subrings V; in R. Therefore, for every R-definable func-
tion g, the element b = g(a) can realize none of those cuts, and consequently
w(b) = w(g(a)) can realize no cut in I" made by the isolated subgroups I;.
Otherwise the element w(b) would generate yet another isolated subgroup
of Iy. Further, if a = f(b), we would get |f(a)/(ca®) — 1| < 1/2, and thus

w(a) =v(c) + Aw(b) € I' + Kw(b),

whence w(b) € I'+ Kw(a). But this is impossible since the group I'+ Kw(a),
on a par with the group I', has exactly d + 1 isolated subgroups whenever
w(a) defines an irrational cut in I.

Repeating successively the above procedure for each subgroup I; and all
real numbers, we obtain an increasing chain of elementary extensions (of
cardinality < power of the continuum). By the Tarski-Vaught lemma, the
union of this chain is the desired elementary extension (R*,V*) of (R, V).

Applying the transfer principle and saturated models, we shall prove the
following

PROPOSITION 2. If a definable function f : R — R is constant on no
interval in R, then there exist s € R, A € K\ {0} and ¢ € R such that

f(x)—s > ca?.

Consequently, for any ¢ = 1/v with v € V, v > 0, there exist u,w € R,
w€V,w>V, such that |f(z) — s/(cx?) — 1| < & for all x € [u,w].



80 K. J. Nowak

Proof. In view of the Corollary to Proposition 1, our statement is equiv-
alent to the following first-order sentence:

dseRVYueV dry, 20 €V, 21,29 > u ‘M > 2;
fz2) —s

here the number 2 may be replaced by any real number > 1. Via the transfer
principle, it suffices to consider one model of the theory Tcony. Take a model
(R, V) with V = P = convex hull of the prime model P in R, where R is an
at-saturated model of the theory T with o = cofinality of P. For simplicity
we confine ourselves to the case a = Ng; the general case goes the same way,
but with transfinite induction instead of an ordinary induction argument.
We prove Proposition 2 for the above model by reductio ad absurdum.
Suppose the contrary, i.e. for any s € R the function f(z)—s ~e is asymp-

totic to a constant function ¢, i.e. A = 0; obviously, ¢ # 0.
We then assert that f(z) —s € ¢(1 +m) for all z € V, z > 0. For
otherwise, if R’ ~ V is a maximal elementary substructure of R contained

in V, the function
st (M) R R
c

would be asymptotic to 1 but # 1 ultimately in R'. So (f(z) —s)/c —1
would be asymptotic to dz* with d € R’, A € K, A < 0, and consequently

— s — ¢~ cd
flx)—s ¢ o~ cda”,

contrary to our hypothesis. Therefore st((f(z) — s)/c) = 1 ultimately in R,
and thus f(z) —s € ¢(1+m) for all z € V, x> 0, as asserted.
Take any ag € V; then there is some ¢y € R such that

f(z) — f(ao) ™ <o, f(z) — f(ao) € co(1 +m)

for all x € V, x > a1 with a; € V. The last condition is equivalent to
|(f(z) — f(ao) — co)/co| < ei for all k, where the 1/¢y, form a cofinal sequence
in V. Each of these inequalities extends (by overspill) to an interval [a1, bi]
with by, > V. Since R is a"-saturated, there is an element b; € R such that
1/er < b1 < by for all k € N. Clearly, V' < b and

f(z) = f(ap) € co(1 +m) for all x € [a1,b1].
Next we get f(x) — f(a1) € ¢o - m for = € [ay, b1], whence, as before,
fl@) = fla) yer€co-m and  f(z) — fla) € c1i(1+m)
for all = € [ag, by] with ag,bg € R, as € V, by > V.

By induction we can construct three sequences (ay,), (by,), (¢y) of elements
of R such that a, € V, a,, > 1/e, are cofinal in V, b,, > V, the sequence
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(v(ep)) is strictly increasing, and

v(f(x) — flan)) =v(cy,) for all € [any1,bnyi]

Since R is a-saturated, we can find an element b € R such that a, < b < b,
for all n € N. Then v(f(b) — f(an)) = v(cy,) is a strictly increasing sequence,
and thus the valuation v(g(x)) of the function g(x) := f(b) — f(x) does not
stabilize. This contradiction with Proposition 1 completes the proof.

2. Valuation group of a simple extension

PROPOSITION 3. Let R be a finitely generated and polynomially bounded
structure, V. C R a convex subring of R, and v : R\ {0} — I' = I'y the
induced valuation. Then

(i) rkv < dimg I' <tk R.
(i) If (R, V) C (R{a), W), then dimg 'y < dimg I'+1; more precisely,
Iy = I' ® Kw(a) whenever w(a) € I

Proof. We proceed by induction on rk R and prove point (ii), which is
the induction step. By induction hypothesis, tkv =: d < rk’'R < oo. Then
I'=Iy=11®---® Iy, and we can find—as described in the observation
of Section 1—an elementary extension (R*, V*) of (R, V) such that

I"=Ro---®R.
~————
d times

Consider now an heir-coheir amalgam of elementary extensions

(R*(a), W)
(R{a), W) (R*, V)

(R, V)
Clearly, w*(a) ¢ I'* if w(a) & I'. Indeed, were w*(a) € I'*, then
dcF e R* w(a) =w*(c"), ie. ;i* € W*\ myy+,
and thus, by the heir-coheir property,
deeR  w(a)=w(c), ie. % e W\ my,

which is a contradiction.
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It suffices to establish (ii) for the elementary extension
(R*,V*) C (R*(a), WF).
Indeed, let b = f(a), where f : R — R is a definable function. Suppose
w*(b) € I'™ + Aw*(a) for a A € K, whence

It e R* w(b) =w*(c*ad), ie. fla) € W*\ myp.

c*a?
It follows from the heir-coheir property that
Jee R w(b) =w(cad), ie. ch\) e W\ my,
ca

and thus w(b) € I' + \w(a), as required.

Now we shall show that if w*(a) & I'*, then for every b € R*(a) we have

w*(b) € I'" + Kw*(a).

Since I'™* is the direct sum of a finite number of copies of R, and the ordered
set R of real numbers is Dedekind complete, there exists an element v =
v*(r) € I'*, r € R*, such that w*(a) — w*(r) realizes the cut made by an
isolated subgroup of I'* in I'*. For, if the cut made by w*(a) lies inside of
a I'7 ~ R, we take the real number § € I'* which is closest to w*(a). Hence
|w*(a) — 8| < ()", and either we are done or we repeat the reasoning for
a I' with j <.

Therefore the element a/r realizes the cut made by a convex subring of
R* in R*. Clearly, b = f(a/r) for some definable function f: R* — R*. It
follows from the Corollary to Proposition 1 that

w*(b) = w*(f(a/r)) = w*(c(a/r)*)
=w"(c) — Aw*(r) + \w*(a) € I + Kw*(a),
concluding the proof.

COROLLARY. Consider a polynomially bounded, o-minimal theory T and
a simple extension (R,V) C (R{a), W) of models of the theory Teony. Then
dimg Iy < dimg I'v + 1; more precisely, I'y = I'y & Kw(a) whenever
w(a) & I'y.

Proof. Indeed, if b € R(a), then b € R'(a) for a finitely generated sub-
structure R’ < R, rk R’ < oo; let V' := V N'R’ and Iy be its valuation
group. By Proposition 3, we get w(b) € I + Kw(a) C I'v + Kw(a), as
asserted.

REMARK. Proposition 3 immediately implies a stronger inequality (cf.
[1, Section 5]):

Iftk R < oo and V is the residue field of the convex subring V, then
rk V + dimg Iy <k R.
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From the above one can derive the following Wilkie inequality (loc. cit.)
through an argument of Wilkie (cf. [12]), based on saturated models and an
iteration procedure:

Suppose T is a polynomially bounded theory and (R,V) < (S,W) are
models of Teony with tk(S/R) < oo. Then

dimg (I /Ty) + tk(W/V) < tk(S/R).

3. Valuation property and preparation theorem

VALUATION PROPERTY. Consider a polynomially bounded, o-minimal
theory T and a simple extension

(R, V) € (R{a), W)

of models of the theory Teony with valuation groups Iy and Iy, respectively.
If I'v # L'y, then there is an r € R for which w(a —1) & I'y.

Proof. We may assume that k'R < oo, because w(b) ¢ Iy for some
b € R'{a), where R’ is a finitely generated substructure of R. Now, if for
some r € R’ the valuation w’(a — ) does not belong to the valuation group
Iy of the restriction v’ := v|R’, it follows from Proposition 3 that

w'(a—71) =7+ M'(b)

for some A\ € K, A # 0, and v € I'ys. Hence w(a —r) & I'y.
Consider, as in the proof of Proposition 3, an heir-coheir amalgam of
elementary extensions

(R*(a), W)

(R, V)

It suffices to establish the valuation property for the simple extension
(R*,V*) C (R*(a), W*). Indeed, w*(b) & ['y+, for otherwise

I e R wr(b) =0v"(r"),
and thus, by the heir-coheir property, we would get a contradiction
IreR wb)=uv(r)ely.

Further, if w*(a — r*) & I+, then w*(a — r*) € Iy~ + Aw*(b) for some
A€ K, \# 0, whence
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I, s e R w(a—r") =v"(s") + Aw*(b).
Therefore, again by the heir-coheir property, we get the required result
dr,se€R wla—r)=uv(s)+ Aw(b) & I'y.

We thus have to show that if w*(b) & Iy, then w*(a —r) & I'y- for
some 1 € R*. Since the valuation group [y~ is the direct sum of a finite
number of copies of R (which are Dedekind complete), we deduce—as in the
proof of Proposition 3—that for some v*(r) € I'y+, r € R*, the element
w*(b) — v*(r) realizes the cut made by an isolated subgroup of Iy« in I'y«.
Replacing b by b/r we may, of course, assume that b realizes the cut made by
a convex subring of R* in R*. Clearly, a = f(b) for some definable function
f:R* — R* which is constant on no interval in R*. Now it follows from
Proposition 2 that there exist s € R*, A € K, A # 0, and ¢ € R* such that

w*(a — 1) = w*(f(b) — ) = w*(cb) = w*(c) + \w*(b) & I},
which completes the proof.

The valuation property yields, via a routine compactness argument, the
preparation theorem for one variable:

COROLLARY. Let R be a polynomially bounded, o-minimal structure,
f iR — R be a definable function and € € Q, € > 0. Then there exist

AM,..., €K, ri,...,rp,¢1,...,c6 €ER
such that for all x € R we have
fl@)=lz=ril™-¢-u
forani=1,... k and some u € R with |u — 1| < ¢.

Proof. Indeed, by passing to the theory 7% in the extended language
LY we shall deal with models S which are elementary extensions of R,
R < &. Through compactness, we must show that for each a € S there exist
AeK,r,ce Rand u € S, |u— 1| < ¢, such that

fla)=la—7 ¢ u

Consider now, as the convex subrings of R, R(a) and S, respectively, the
convex hulls of the field of real numbers R in these fields. Then it follows
from the valuation property and the Corollary to Proposition 3 that there
exist A € K, r,c € R and u € S such that

wu) =0, fla)=la—r* c-u.

Since w(u) = 0, we see that u is of the form ug + R-infinitesimal, and thus
|u/up — 1| < e. Replacing ¢ and u with ugc and u/ug, respectively, we get
the desired result.
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The general version below can immediately be obtained through model-
theoretic compactness and definable choice:

PREPARATION THEOREM. Under the previous assumptions, consider a
definable function f : R™!' — R and an € € Q, € > 0. Then there exist
Al, ..., \r € K and definable functions

Plyee s Tk Clyve s Gt R =R, ug,..up: R = (1—g,14+e)CR
such that for allt € R™ and v € R we have
fEa)=r—r@® - @) -ult,z) forani=1,... k.
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