On some types of slant curves in contact pseudo-Hermitian 3-manifolds

by Cihan Özgür and Şaban Güvenç (Balıkesir)

Abstract

We study slant curves in contact Riemannian 3-manifolds with pseudoHermitian proper mean curvature vector field and pseudo-Hermitian harmonic mean curvature vector field for the Tanaka-Webster connection in the tangent and normal bundles, respectively. We also study slant curves of pseudo-Hermitian $A W(k)$-type.

1. Introduction. A Riemannian submanifold with vanishing Laplacian ΔH of the mean curvature vector is called a biharmonic submanifold (see B.-Y. Chen Chen]). In Dim, Dimitric proved that the only biharmonic curves in a Euclidean space are straight lines. In [BG], curves satisfying $\Delta^{\perp} H=\lambda H$ in a Euclidean space were classified, where Δ^{\perp} denotes the Laplacian of the curve in the normal bundle and λ is a real valued function. In ABG, a classification of curves satisfying $\Delta H=\lambda H$ and $\Delta^{\perp} H=\lambda H$ in a real space form was given by J. Arroyo, M. Barros and O. J. Garay. In [KA, B. Kılıç and K. Arslan studied connected submanifolds satisfying $\Delta^{\perp} H=0$ in a Euclidean space.

A curve in a contact 3-manifold is said to be slant if its tangent vector field has a constant angle with the Reeb vector field. In particular, if the contact angle is equal to $\pi / 2$, then the curve is called a Legendre curve. Slant curves appear naturally in differential geometry of Sasakian manifolds. In CL, J. T. Cho and J. E. Lee studied contact pseudo-Hermitian geometry in a 3-dimensional Sasakian space form whose holomorphic sectional curvature with respect to the Tanaka-Webster connection $\hat{\nabla}$ is $2 c$. They proved that if a non-geodesic curve for $\hat{\nabla}$ in a 3-dimensional contact Riemannian manifold is a slant curve, then the ratio of $\widehat{\kappa}$ and $\widehat{\tau}$ is a constant, where $\widehat{\kappa}$ and $\widehat{\tau}$ denote the curvature and torsion of the curve with respect to the

[^0]connection $\hat{\nabla}$. Furthermore, in Lee, J. E. Lee studied Legendre curves in contact pseudo-Hermitian 3-manifolds. She considered Legendre curves with pseudo-Hermitian parallel mean curvature vector field, pseudo-Hermitian proper mean curvature vector field and pseudo-Hermitian proper mean curvature vector field in the normal bundle.

In [AO], K. Arslan and the first author studied curves of $A W(k)$-type. In [OT], the first author and M. M. Tripathi considered $A W(k)$-type Legendre curves in α-Sasakian manifolds. J. E. Lee Lee defined and studied Legendre curves of pseudo-Hermitian $A W(k)$-type in a 3-dimensional Sasakian manifold.

In the present paper, we study slant curves with pseudo-Hermitian parallel mean curvature vector field, pseudo-Hermitian proper mean curvature vector field and pseudo-Hermitian proper mean curvature vector field in the normal bundle. We also study slant curves of pseudo-Hermitian $A W(k)$-type in contact pseudo-Hermitian 3-manifolds. Since a Legendre curve is a special type of a slant curve, our results generalize the results of [Lee.
2. Preliminaries. A $(2 n+1)$-dimensional manifold M is called a contact manifold if there exists a global 1-form η such that $\eta \wedge(d \eta)^{n} \neq 0$ everywhere on M. Given a contact form η, there exists a unique vector field ξ, the characteristic vector field, which satisfies $\eta(\xi)=1$ and $d \eta(X, \xi)=0$ for any vector field X on M. There exists an associated Riemannian metric g and a (1, 1)-type tensor field φ satisfying

$$
\begin{equation*}
\varphi^{2} X=-X+\eta(X) \xi, \quad \eta(X)=g(X, \xi), \quad d \eta(X, Y)=g(X, \varphi Y) \tag{2.1}
\end{equation*}
$$

for all $X, Y \in \chi(M)$. From (2.1), it follows that

$$
\begin{equation*}
\varphi \xi=0, \quad \eta \circ \varphi=0, \quad g(\varphi X, \varphi Y)=g(X, Y)-\eta(X) \eta(Y) \tag{2.2}
\end{equation*}
$$

A Riemannian manifold equipped with the structure tensors (φ, ξ, η, g) satisfying (2.1) is called a contact Riemannian manifold. It is denoted by $M=\{M, \varphi, \xi, \eta, g\}$. Using the Lie differentiation operator in the characteristic direction ξ, the operator h is defined by $h=\frac{1}{2} L_{\xi} \varphi$. From the definition, h is symmetric and satisfies the equations below (see [Blair]), where ∇ denotes the Levi-Civita connection:

$$
\begin{equation*}
h \xi=0, \quad h \varphi=-\varphi h, \quad \nabla_{X} \xi=-\varphi X-\varphi h X \tag{2.3}
\end{equation*}
$$

For a $(2 n+1)$-dimensional contact manifold $M=\{M, \varphi, \xi, \eta, g\}$, the almost complex structure J on $M \times \mathbb{R}$ is defined by

$$
\begin{equation*}
J\left(X, f \frac{d}{d t}\right)=\left(\varphi X-f \xi, \eta(X) \frac{d}{d t}\right) \tag{2.4}
\end{equation*}
$$

where X is a vector field tangent to M, t is the coordinate function of \mathbb{R}
and f is a C^{∞} function on $M \times \mathbb{R}$. The contact Riemannian manifold M is called a Sasakian manifold if J is integrable.

On a Sasakian manifold, the covariant derivative $\nabla \varphi$ is given by

$$
\begin{equation*}
\left(\nabla_{X} \varphi\right) Y=g(X, Y) \xi-\eta(Y) X, \quad X, Y \in \chi(M) \tag{2.5}
\end{equation*}
$$

Let γ be a non-geodesic curve in a 3-dimensional Riemannian manifold M and $\{T, N, B\}$ its Frenet frame field. Then the Frenet frame field satisfies the following Frenet-Serret equations:

$$
\begin{align*}
\nabla_{T} T & =\kappa N \\
\nabla_{T} N & =-\kappa T+\tau B \tag{2.6}\\
\nabla_{T} B & =-\tau N
\end{align*}
$$

where $\kappa=\left\|\nabla_{T} T\right\|$ is the geodesic curvature of γ and τ its geodesic torsion.
Let $\{M, \varphi, \xi, \eta, g\}$ be a 3 -dimensional contact Riemannian manifold. Then the tangent space $T_{p} M$ of M at a point $p \in M$ decomposes as

$$
T_{p} M=D_{p} \oplus \mathbb{R} \xi_{p}, \quad D_{p}=\left\{v \in T_{p} M \mid \eta(v)=0\right\}
$$

Here $D: p \rightarrow D_{p}$ defines a two-dimensional distribution orthogonal to ξ, which is called the contact distribution. The restriction of φ to $D, J=\left.\varphi\right|_{D}$, defines an almost complex structure on D. The associated almost CR-structure of M is given by the holomorphic subbundle

$$
H=\{X-i J X \mid X \in D\}
$$

of the complexified tangent bundle $T M^{\mathbb{C}}$. Each fiber H_{p} is of complex dimension $1, H \cap \bar{H}=\{0\}$, and $D \otimes \mathbb{C}=H \oplus \bar{H}$. Furthermore, denoting the space of all smooth sections of H by $\chi(H)$, the integrability condition

$$
[\chi(H), \chi(H)] \subset \chi(H)
$$

is satisfied, so the associated almost CR-structure is always integrable. For H the Levi form L is defined by

$$
L: D \times D \rightarrow C^{\infty}(M, \mathbb{R}), \quad L(X, Y)=-d \eta(X, J Y)
$$

where $C^{\infty}(M, \mathbb{R})$ denotes the algebra of smooth functions on M. The Levi form is Hermitian and positive definite. We call the pair (η, L) a contact pseudo-convex pseudo-Hermitian structure on M, and we call M a contact strongly pseudo-convex pseudo-Hermitian (or almost CR-) manifold [Blair].

The Tanaka-Webster connection $([T \mathrm{Tan}$, Web] $) \widehat{\nabla}$ (or the pseudo-Hermitian connection) on a contact pseudo-convex pseudo-Hermitian manifold $M=\{M, \eta, L\}$ is defined by

$$
\hat{\nabla}_{X} Y=\nabla_{X} Y+\eta(X) \varphi Y+\left(\nabla_{X} \eta\right)(Y) \xi-\eta(Y) \nabla_{X} \xi
$$

for all $X, Y \in \chi(M)$. Using $2.3, \widehat{\nabla}$ can be rewritten as

$$
\begin{equation*}
\widehat{\nabla}_{X} Y=\nabla_{X} Y+\eta(X) \varphi Y+\eta(Y)(\varphi X+\varphi h X)-g(\varphi X+\varphi h X, Y) \xi \tag{2.7}
\end{equation*}
$$

The Tanaka-Webster connection $\hat{\nabla}$ has the torsion

$$
\begin{equation*}
\widehat{T}(X, Y)=2 g(X, \varphi Y) \xi+\eta(Y) \varphi h X-\eta(X) \varphi h Y . \tag{2.8}
\end{equation*}
$$

In particular, since $h=0$ for Sasakian manifolds (see Blair]), equations (2.7) and (2.8) reduce to

$$
\begin{aligned}
& \widehat{\nabla}_{X} Y=\nabla_{X} Y+\eta(X) \varphi Y+\eta(Y) \varphi X-g(\varphi X, Y) \xi \\
& \widehat{T}^{(}(X, Y)=2 g(X, \varphi Y) \xi
\end{aligned}
$$

Proposition 2.1 (Tann). The Tanaka-Webster connection on a 3-dimensional contact Riemannian manifold $M=\{M, \varphi, \xi, \eta, g\}$ is the unique linear connection satisfying the following four conditions:
(i) $\widehat{\nabla} \eta=0, \widehat{\nabla} \xi=0$;
(ii) $\widehat{\nabla} g=0, \widehat{\nabla} \varphi=0$;
(iii) $\widehat{T}(X, Y)=-\eta([X, Y]) \xi, X, Y \in D$;
(iv) $\widehat{T}(\xi, \varphi Y)=-\varphi \widehat{T}(\xi, Y), Y \in D$.
3. Slant curves in contact pseudo-Hermitian geometry. Let M be a contact Riemannian 3-manifold and assume that $\gamma: I \rightarrow M$ is a curve parametrized by arc-length in M. In [CL, J. T. Cho and J. E. Lee defined the Frenet frame field $\{T, N, B\}$ along γ for the pseudo-Hermitian connection $\hat{\nabla}$, which satisfies the following Frenet-Serret equations for $\widehat{\nabla}$:

$$
\begin{align*}
\widehat{\nabla}_{T} T & =\widehat{\kappa} N, \\
\widehat{\nabla}_{T} N & =-\widehat{\kappa} T+\widehat{\tau} B, \tag{3.1}\\
\widehat{\nabla}_{T} B & =-\widehat{\tau} N,
\end{align*}
$$

where $\widehat{\kappa}=\left\|\widehat{\nabla}_{T} T\right\|$ is the pseudo-Hermitian curvature of γ and $\widehat{\tau}$ its pseudoHermitian torsion. A pseudo-Hermitian helix is a curve whose pseudo-Hermitian curvature and pseudo-Hermitian torsion are non-zero constants. In particular, curves with constant non-zero pseudo-Hermitian curvature and zero pseudo-Hermitian torsion are called pseudo-Hermitian circles. PseudoHermitian geodesics are pseudo-Hermitian helices whose pseudo-Hermitian curvature and pseudo-Hermitian torsion are zero (CL.

Let M be a contact metric 3 -manifold and $\gamma(s)$ a Frenet curve in M parametrized by arc-length. The contact angle $\alpha(s)$ is defined by $\cos [\alpha(s)]=$ $g(T(s), \xi)$. The curve γ is called a slant curve if its contact angle is constant. Slant curves with contact angle $\pi / 2$ are traditionally called Legendre curves.

In the present paper, we assume that all curves are non-geodesic Frenet curves, that is, $\widehat{\kappa} \neq 0$.

Proposition 3.1 ($(\overline{\mathrm{CL}})$. A curve γ for $\hat{\nabla}$ is a slant curve if and only if $\eta(N)=0$.

Proposition 3.2 ([СL). Let γ be a slant curve for $\hat{\nabla}$ in a 3-dimensional contact Riemannian manifold M. Then the ratio of $\widehat{\tau}$ and $\widehat{\kappa}$ is a constant.

Note that

$$
\begin{equation*}
\widehat{\tau} / \widehat{\kappa}=\cot \alpha_{0}, \tag{3.2}
\end{equation*}
$$

where α_{0} is the contact angle of γ.
In [CL, J. T. Cho and J. E. Lee proved the following proposition:
Proposition 3.3. If a curve in a 3 -dimensional contact Riemannian manifold is a Legendre curve for the Tanaka-Webster connection $\hat{\nabla}$, then $\widehat{\tau}=0$.

We have the following corollary:
Corollary 3.4. Let γ be a slant curve for the Tanaka-Webster connection $\hat{\nabla}$ with contact angle α_{0} in a 3 -dimensional contact Riemannian manifold M. Then γ is a Legendre curve if and only if $\widehat{\tau}=0$.
4. Pseudo-Hermitian mean curvature vector field. The pseudoHermitian mean curvature vector field \widehat{H} of a curve γ in a 3 -dimensional contact Riemannian manifold is defined by

$$
\begin{equation*}
\widehat{H}=\widehat{\nabla}_{T} T=\widehat{\kappa} N \tag{4.1}
\end{equation*}
$$

(see LLee]).
In a 3-dimensional contact Riemannian manifold M with the TanakaWebster connection $\hat{\nabla}$, a vector field X normal to the curve γ is called pseudo-Hermitian parallel Lee if $\widehat{\nabla} \frac{\perp}{T} X=0$.

Differentiating (4.1), we get

$$
\begin{equation*}
\widehat{\nabla}_{T}^{\perp} \widehat{H}=\widehat{\kappa}^{\prime} N+\widehat{\kappa} \widehat{\tau} B . \tag{4.2}
\end{equation*}
$$

Proposition 4.1. γ is a curve with pseudo-Hermitian parallel mean curvature vector field if and only if it is a pseudo-Hermitian circle.

Proof. Let γ be a curve with $\hat{\nabla} \frac{1}{T} \widehat{H}=0$. Using 4.2 , we get

$$
\begin{equation*}
\widehat{\kappa}^{\prime} N+\widehat{\kappa} \widehat{\tau} B=0 . \tag{4.3}
\end{equation*}
$$

So $\widehat{\kappa}$ is a non-zero constant and $\widehat{\tau}=0$. Hence γ is a pseudo-Hermitian circle.
Conversely, let γ be a pseudo-Hermitian circle. Then $\widehat{\kappa}$ is a non-zero constant and $\widehat{\tau}=0$. This implies $\widehat{\nabla} \frac{\perp}{T} \widehat{H}=\left(\widehat{\nabla}_{T} H\right)^{\perp}=\widehat{\kappa}^{\prime} N+\widehat{\kappa} \widehat{\tau} B=0$, as desired.

In view of Corollary 3.4, we get the following corollary:
Corollary 4.2. γ is a slant curve with pseudo-Hermitian parallel mean curvature vector field if and only if it is a pseudo-Hermitian Legendre circle.

For a curve γ in a 3 -dimensional contact Riemannian manifold M with the Tanaka-Webster connection $\hat{\nabla}$,

$$
\begin{equation*}
\widehat{\Delta} \widehat{H}=-\widehat{\nabla}_{T} \widehat{\nabla}_{T} \widehat{\nabla}_{T} T \tag{4.4}
\end{equation*}
$$

where \widehat{H} is the pseudo-Hermitian mean curvature vector field of γ Lee. The Laplacian of the pseudo-Hermitian mean curvature vector field in the normal bundle is defined by

$$
\begin{equation*}
\widehat{\Delta}^{\perp} \widehat{H}=-\widehat{\nabla}_{\frac{1}{T}}^{\perp} \widehat{\nabla} \frac{1}{T} \widehat{\nabla} \frac{\perp}{T} T, \tag{4.5}
\end{equation*}
$$

where $\hat{\nabla}^{\perp}$ denotes the the normal connection in the normal bundle Lee.
A curve γ in a 3 -dimensional contact Riemannian manifold M is called a curve with pseudo-Hermitian proper mean curvature vector field if $\widehat{\Delta} \widehat{H}$ $=\lambda \widehat{H}$, where λ is a non-zero C^{∞} function. In particular if $\widehat{\Delta} \widehat{H}=0$, then it is a curve with pseudo-Hermitian harmonic mean curvature vector field Lee].

A curve γ in a 3 -dimensional contact Riemannian manifold M is called a curve with pseudo-Hermitian proper mean curvature vector field in the normal bundle if $\widehat{\Delta}^{\perp} \widehat{H}=\lambda \widehat{H}$, where $\widehat{\Delta}^{\perp}$ is the Laplacian of the pseudoHermitian mean curvature vector field in the normal bundle, where λ is a non-zero C^{∞} function [Lee]. In particular if $\widehat{\Delta}^{\perp} \widehat{H}=0$, then it is a curve with pseudo-Hermitian harmonic mean curvature vector field in the normal bundle.

Lemma 4.3. Let γ be a curve in a 3-dimensional contact Riemannian manifold M. Then

$$
\begin{gather*}
\widehat{\nabla}_{T} \widehat{\nabla}_{T} \widehat{\nabla}_{T} T=-3 \widehat{\kappa} \widehat{\kappa}^{\prime} T+\left(\widehat{\kappa}^{\prime \prime}-\widehat{\kappa}^{3}-\widehat{\kappa} \widehat{\tau}^{2}\right) N+\left(2 \widehat{\kappa}^{\prime} \widehat{\tau}+\widehat{\kappa} \widehat{\tau}^{\prime}\right) B, \tag{4.6}\\
\widehat{\nabla}_{T}^{\perp} \widehat{\nabla} \frac{\perp}{T} \widehat{\nabla}_{T}^{\perp} T=\left(\widehat{\kappa}^{\prime \prime}-\widehat{\kappa} \widehat{\tau}^{2}\right) N+\left(2 \widehat{\kappa}^{\prime} \widehat{\tau}+\widehat{\kappa} \widehat{\tau}^{\prime}\right) B, \tag{4.7}\\
\widehat{\Delta} \widehat{H}=-\widehat{\nabla}_{T} \widehat{\nabla}_{T} \widehat{\nabla}_{T} T, \\
\widehat{\Delta}^{\perp} \widehat{H}=-\widehat{\nabla}_{T}^{\perp} \widehat{\nabla}_{T}^{\perp} \widehat{\nabla}_{T} \frac{1}{T} T . \tag{4.8}
\end{gather*}
$$

Proof. From (3.1),

$$
\begin{equation*}
\hat{\nabla}_{T} T=\widehat{\kappa} N . \tag{4.9}
\end{equation*}
$$

Differentiating 4.9) with respect to $\hat{\nabla}$ and using 3.1, we find

$$
\begin{equation*}
\widehat{\nabla}_{T} \widehat{\nabla}_{T} T=-\widehat{\kappa}^{2} T+\widehat{\kappa}^{\prime} N+\widehat{\kappa} \widehat{\tau} B \tag{4.10}
\end{equation*}
$$

and

$$
\widehat{\nabla}_{T} \widehat{\nabla}_{T} \widehat{\nabla}_{T} T=-3 \widehat{\kappa} \widehat{\kappa}^{\prime} T+\left(\widehat{\kappa}^{\prime \prime}-\widehat{\kappa}^{3}-\widehat{\kappa} \widehat{\tau}^{2}\right) N+\left(2 \widehat{\kappa}^{\prime} \widehat{\tau}+\widehat{\kappa} \widehat{\tau}^{\prime}\right) B .
$$

From (3.1), we obtain

$$
\begin{equation*}
\widehat{\nabla} \frac{1}{T} T=\widehat{\kappa} N . \tag{4.11}
\end{equation*}
$$

If we apply $\hat{\nabla}^{\perp}$ to 4.11) and use 3.1, we get

$$
\begin{equation*}
\widehat{\nabla}_{T}^{\perp} \widehat{\nabla}_{T}^{\perp} T=\widehat{\kappa}^{\prime} N+\widehat{\kappa} \widehat{\tau} B \tag{4.12}
\end{equation*}
$$

Finally (3.1) and (4.12) give

$$
\widehat{\nabla}_{T}^{\perp} \widehat{\nabla}_{T}^{\perp} \widehat{\nabla}_{T}^{\perp} T=\left(\widehat{\kappa}^{\prime \prime}-\widehat{\kappa} \widehat{\tau}^{2}\right) N+\left(2 \widehat{\kappa}^{\prime} \widehat{\tau}+\widehat{\kappa} \widehat{\tau}^{\prime}\right) B
$$

By the use of (4.1, 4.4 and 4.5), we get 4.8).
Using Lemma 4.3, we have the following theorem:
Theorem 4.4. A curve γ has pseudo-Hermitian proper mean curvature vector field if and only if it is a pseudo-Hermitian circle satisfying $\lambda=\widehat{\kappa}^{2}$ or a pseudo-Hermitian helix satisfying $\lambda=\widehat{\kappa}^{2}+\widehat{\tau}^{2}$.

Proof. Assume that γ has pseudo-Hermitian proper mean curvature vector field. Then from 4.8, the condition $\widehat{\Delta} \widehat{H}=\lambda \widehat{H}$ gives

$$
3 \widehat{\kappa} \widehat{\kappa}^{\prime} T+\left(\widehat{\kappa}^{3}+\widehat{\kappa} \widehat{\tau}^{2}-\widehat{\kappa}^{\prime \prime}\right) N-\left(2 \widehat{\kappa}^{\prime} \widehat{\tau}+\widehat{\kappa} \widehat{\tau}^{\prime}\right) B=\lambda \widehat{\kappa} N
$$

Hence

$$
\begin{equation*}
3 \widehat{\kappa} \widehat{\kappa}^{\prime}=0, \quad \widehat{\kappa}^{3}+\widehat{\kappa} \widehat{\tau}^{2}-\widehat{\kappa}^{\prime \prime}=\lambda \widehat{\kappa}, \quad-\left(2 \widehat{\kappa}^{\prime} \widehat{\tau}+\widehat{\kappa} \widehat{\tau}^{\prime}\right)=0 \tag{4.13}
\end{equation*}
$$

Since γ is a non-geodesic curve, $\widehat{\kappa} \neq 0$. Then $\widehat{\kappa}$ is a non-zero constant and $\widehat{\tau}$ is a constant. From the second equation of 4.13), we find $\lambda=\widehat{\kappa}^{2}+\widehat{\tau}^{2}$. Hence γ is a pseudo-Hermitian circle satisfying $\lambda=\widehat{\kappa}^{2}$ or a pseudo-Hermitian helix satisfying $\lambda=\widehat{\kappa}^{2}+\widehat{\tau}^{2}$.

The converse is trivial.
Corollary 4.5. A slant curve γ has pseudo-Hermitian proper mean curvature vector field if and only if it is a pseudo-Hermitian Legendre circle satisfying $\lambda=\widehat{\kappa}^{2}$ or a pseudo-Hermitian slant helix satisfying $\lambda=\widehat{\kappa}^{2}+\widehat{\tau}^{2}$.

Proof. Let γ be a non-geodesic slant curve in a 3 -dimensional contact Riemannian manifold M. Then from Corollary 3.4, γ is a Legendre curve if and only if $\widehat{\tau}=0$. Substituting $\widehat{\tau}=0$ in 4.13 we obtain the result.

Corollary 4.6. There does not exist a slant curve with pseudo-Hermitian harmonic mean curvature vector field.

Proof. Assume that γ is a non-geodesic curve in a 3-dimensional contact Riemannian manifold M. From 4.8, if $\widehat{\Delta} \widehat{H}=0$, then

$$
3 \widehat{\kappa} \widehat{\kappa}^{\prime} T+\left(\widehat{\kappa}^{3}+\widehat{\kappa} \widehat{\tau}^{2}-\widehat{\kappa}^{\prime \prime}\right) N-\left(2 \widehat{\kappa}^{\prime} \widehat{\tau}+\widehat{\kappa} \widehat{\tau}^{\prime}\right) B=0
$$

which gives $\widehat{\kappa}^{2}+\widehat{\tau}^{2}=0$. Hence $\widehat{\kappa}=0$ and γ is a geodesic, a contradiction.
TheOrem 4.7. γ is a slant curve with pseudo-Hermitian proper mean curvature vector field in the normal bundle if and only if it is either a Legendre curve satisfying $\lambda=-\widehat{\kappa}^{\prime \prime} / \widehat{\kappa}, \widehat{\kappa}(s) \neq a s+b$ (where a and b are constants), or a pseudo-Hermitian slant helix satisfying $\lambda=\widehat{\tau}^{2}$.

Proof. Assume that γ is a non-geodesic slant curve with contact angle α_{0} and has pseudo-Hermitian proper mean curvature vector field in the normal bundle. Then by definition, $\widehat{\Delta}^{\perp} \widehat{H}=\lambda \widehat{H}$. Using 4.8), we get

$$
\begin{equation*}
\left(\widehat{\kappa} \widehat{\tau}^{2}-\widehat{\kappa}^{\prime \prime}\right) N-\left(2 \widehat{\kappa}^{\prime} \widehat{\tau}+\widehat{\kappa} \widehat{\tau}^{\prime}\right) B=\lambda \widehat{\kappa} N \tag{4.14}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\widehat{\kappa} \widehat{\tau}^{2}-\widehat{\kappa}^{\prime \prime}=\lambda \widehat{\kappa}, \quad-\left(2 \widehat{\kappa}^{\prime} \widehat{\tau}+\widehat{\kappa} \widehat{\tau}^{\prime}\right)=0 \tag{4.15}
\end{equation*}
$$

In view of 3.2 , using 4.15 we can write

$$
\begin{equation*}
\widehat{\kappa}^{3} \cot ^{2} \alpha_{0}-\widehat{\kappa}^{\prime \prime}=\lambda \widehat{\kappa}, \quad-3 \widehat{\kappa} \widehat{\kappa}^{\prime} \cot \alpha_{0}=0 \tag{4.16}
\end{equation*}
$$

Finally we solve 4.16 in two cases:
(i) If $\alpha_{0}=\pi / 2$, then γ is a Legendre curve and $\cot \alpha_{0}=0$. Hence $-\widehat{\kappa}^{\prime \prime}=\lambda \widehat{\kappa}$. Since $\lambda \neq 0$ and $\widehat{\kappa} \neq 0$, we have $\widehat{\kappa}^{\prime \prime} \neq 0$. In this case, γ is a Legendre curve satisfying $\lambda=-\widehat{\kappa}^{\prime \prime} / \widehat{\kappa}, \widehat{\kappa}(s) \neq a s+b$ where a and b are constants.
(ii) If $\alpha_{0} \neq \pi / 2$, then $\cot \alpha_{0} \neq 0$. Using the second equation of (4.16), we see that $\widehat{\kappa}$ is a constant. Then $\widehat{\kappa}^{\prime \prime}=0$, so the first equation of 4.16) turns into $\widehat{\kappa}^{3} \cot ^{2} \alpha_{0}=\lambda \widehat{\kappa}$. Hence $\lambda=\left(\widehat{\kappa} \cot \alpha_{0}\right)^{2}=\widehat{\tau}^{2}$. So γ is a pseudo-Hermitian slant helix satisfying $\lambda=\widehat{\tau}^{2}$.

Conversely, let γ be a Legendre curve satisfying $\lambda=-\widehat{\kappa}^{\prime \prime} / \widehat{\kappa}, \widehat{\kappa}(s) \neq a s+b$ where a and b are constants, or a pseudo-Hermitian slant helix satisfying $\lambda=\widehat{\tau}^{2}$. In both cases, 4.14 is satisfied. Hence γ is a curve with pseudoHermitian proper mean curvature vector field in the normal bundle.

Remark 4.8. In Lee, Theorem 3.9], Lee studied the same problem for a constant λ and $\alpha_{0}=\pi / 2$. So our theorem is a generalization of her result.

Corollary 4.9. γ is a curve with pseudo-Hermitian harmonic mean curvature vector field in the normal bundle if and only if it is a Legendre curve satisfying $\widehat{\kappa}(s)=a s+b$, where a and b are constants.

Corollary 4.10. There does not exist a pseudo-Hermitian slant helix with pseudo-Hermitian harmonic mean curvature vector field in the normal bundle.
5. Slant curves of pseudo-Hermitian $A W(k)$-type. In AO, K. Arslan and the first author studied curves of $A W(k)$-type. Lee defined curves of pseudo-Hermitian $A W(k)$-type in [Lee]. In this section, we study nongeodesic slant curves of pseudo-Hermitian $A W(k)$-type in 3-dimensional contact Riemannian manifolds.

Definition 5.1 (Lee]). Let M be a 3-dimensional contact Riemannian manifold with the Tanaka-Webster connection $\widehat{\nabla}$. Curves of pseudo-

Hermitian $A W(1)$-type satisfy

$$
\left(\widehat{\nabla}_{T} \widehat{\nabla}_{T} \widehat{\nabla}_{T} T\right)^{\perp}=0,
$$

of pseudo-Hermitian $A W(2)$-type satisfy

$$
\left(\widehat{\nabla}_{T} \widehat{\nabla}_{T} \widehat{\nabla}_{T} T\right)^{\perp} \wedge\left(\widehat{\nabla}_{T} \widehat{\nabla}_{T} T\right)^{\perp}=0
$$

and of pseudo-Hermitian $A W(3)$-type satisfy

$$
\left(\widehat{\nabla}_{T} \widehat{\nabla}_{T} \widehat{\nabla}_{T} T\right)^{\perp} \wedge\left(\widehat{\nabla}_{T} T\right)^{\perp}=0
$$

where $\left(\widehat{\nabla}_{T} \widehat{\nabla}_{T} \widehat{\nabla}_{T} T\right)^{\perp},\left(\widehat{\nabla}_{T} \widehat{\nabla}_{T} T\right)^{\perp}$ and $\left(\widehat{\nabla}_{T} T\right)^{\perp}$ are the normal parts of (4.6), 4.10 and 4.1), respectively.

Let γ be a curve in a 3-dimensional contact Riemannian manifold M and $\{T, N, B\}$ its Frenet frame field. Using (4.9), 4.10) and 4.6), we find

$$
\begin{align*}
\left(\widehat{\nabla}_{T} T\right)^{\perp} & =\widehat{\kappa} N \\
\left(\widehat{\nabla}_{T} \widehat{\nabla}_{T} T\right)^{\perp} & =\widehat{\kappa}^{\prime} N+\widehat{\kappa} \widehat{\tau} B \tag{5.1}\\
\left(\widehat{\nabla}_{T} \widehat{\nabla}_{T} \widehat{\nabla}_{T} T\right)^{\perp} & =\left(\widehat{\kappa}^{\prime \prime}-\widehat{\kappa}^{3}-\widehat{\kappa} \widehat{\tau}^{2}\right) N+\left(2 \widehat{\kappa}^{\prime} \widehat{\tau}+\widehat{\kappa} \widehat{\tau}^{\prime}\right) B
\end{align*}
$$

Firstly, we give the following theorem:
ThEOREM 5.2. Let γ be a slant curve with contact angle α_{0}. Then γ is of pseudo-Hermitian $A W(1)$-type if and only if it is a Legendre curve with pseudo-Hermitian curvature $\widehat{\kappa}$, which satisfies the differential equation $\widehat{\kappa}^{\prime \prime}-\widehat{\kappa}^{3}=0$.

Proof. Assume that γ is of pseudo-Hermitian $A W(1)$-type. By definition $\left(\widehat{\nabla}_{T} \widehat{\nabla}_{T} \widehat{\nabla}_{T} T\right)^{\perp}=0$. Hence, we use the third equation of 5.1 with 3.2 to find

$$
\begin{equation*}
\widehat{\kappa}^{\prime \prime}-\widehat{\kappa}^{3}-\widehat{\kappa}^{3} \cot ^{2} \alpha_{0}=0, \quad 3 \widehat{\kappa} \widehat{\kappa}^{\prime} \cot \alpha_{0}=0 \tag{5.2}
\end{equation*}
$$

The second equation implies that $\widehat{\kappa}$ is a constant or $\alpha_{0}=\pi / 2$. If $\widehat{\kappa}$ is a constant, then $\widehat{\kappa}^{\prime \prime}=0$. So the first equation turns into $\left(-\widehat{\kappa}^{3}\right) \cdot\left(1+\cot ^{2} \alpha_{0}\right)$ $=0$. Thus $\widehat{\kappa}=0$, which is a contradiction. If $\alpha_{0}=\pi / 2$, then γ is a Legendre curve and $\cot \alpha_{0}=0$, so the first equation becomes $\widehat{\kappa}^{\prime \prime}-\widehat{\kappa}^{3}=0$. Hence γ is a Legendre curve with pseudo-Hermitian curvature $\widehat{\kappa}$, which satisfies the differential equation $\widehat{\kappa}^{\prime \prime}-\widehat{\kappa}^{3}=0$.

Conversely, let γ be a Legendre curve with pseudo-Hermitian curvature $\widehat{\kappa}$, which satisfies the differential equation $\widehat{\kappa}^{\prime \prime}-\widehat{\kappa}^{3}=0$. Since γ is a Legendre curve, $\alpha_{0}=\pi / 2$ and $\cot \alpha_{0}=0$. Then the equations of (5.2) are satisfied. Thus $\left(\widehat{\nabla}_{T} \widehat{\nabla}_{T} \widehat{\nabla}_{T} T\right)^{\perp}=0$, so by definition, γ is of pseudo-Hermitian $A W(1)$ type.

For Legendre curves, we can state the following corollary which was given in Lee.

Corollary 5.3 ([Lee]). Let γ be a Legendre curve with pseudo-Hermitian curvature $\widehat{\kappa}(s)= \pm \sqrt{2} /(s+c)$. Then γ is of pseudo-Hermitian $A W(1)$ type.

THEOREM 5.4. Let γ be a slant curve with contact angle α_{0}. Then γ is of pseudo-Hermitian $A W(2)$-type if and only if it has pseudo-Hermitian torsion of the form $\widehat{\tau}= \pm \cos \alpha_{0} / \sqrt{-s^{2}+a s+b}$, where a and b are arbitrary constants, $a^{2}+4 b>0$ and $s \in I_{a, b}:=\left(\left(a-\sqrt{a^{2}+4 b}\right) / 2,\left(a+\sqrt{a^{2}+4 b}\right) / 2\right)$.

Proof. Assume that γ is of pseudo-Hermitian $A W(2)$-type. By definition, $\left(\widehat{\nabla}_{T} \widehat{\nabla}_{T} \widehat{\nabla}_{T} T\right)^{\perp} \wedge\left(\widehat{\nabla}_{T} \widehat{\nabla}_{T} T\right)^{\perp}=0$, that is, $\left(\widehat{\nabla}_{T} \widehat{\nabla}_{T} \widehat{\nabla}_{T} T\right)^{\perp}$ and $\left(\widehat{\nabla}_{T} \widehat{\nabla}_{T} T\right)^{\perp}$ are linearly dependent. Using (5.1), we find

$$
\left|\begin{array}{cc}
\widehat{\kappa}^{\prime \prime}-\widehat{\kappa}^{3}-\widehat{\kappa} \widehat{\tau}^{2} & 2 \widehat{\kappa}^{\prime} \widehat{\tau}+\widehat{\kappa} \widehat{\tau}^{\prime} \tag{5.3}\\
\widehat{\kappa}^{\prime} & \widehat{\kappa} \widehat{\tau}
\end{array}\right|=0
$$

So we get

$$
\begin{equation*}
\widehat{\kappa} \widehat{\tau}\left(\widehat{\kappa}^{\prime \prime}-\widehat{\kappa}^{3}-\widehat{\kappa} \widehat{\tau}^{2}\right)=\widehat{\kappa}^{\prime}\left(2 \widehat{\kappa}^{\prime} \widehat{\tau}+\widehat{\kappa} \widehat{\tau}^{\prime}\right) \tag{5.4}
\end{equation*}
$$

Substituting (3.2) in (5.4), we get

$$
\begin{equation*}
\widehat{\kappa}^{2} \cot \alpha_{0}\left(\widehat{\kappa}^{\prime \prime}-\widehat{\kappa}^{3}-\widehat{\kappa}^{3} \cot ^{2} \alpha_{0}\right)=3 \widehat{\kappa}\left(\widehat{\kappa}^{\prime}\right)^{2} \cot \alpha_{0} \tag{5.5}
\end{equation*}
$$

From (5.5), $\cot \alpha_{0}=0$ or $\widehat{\kappa} \widehat{\kappa}^{\prime \prime}-3\left(\widehat{\kappa}^{\prime}\right)^{2}=\widehat{\kappa}^{4} \operatorname{cosec}^{2} \alpha_{0}$. If $\cot \alpha_{0}=0$, then γ is slant and Legendrian, hence $\widehat{\tau}=0$ identically and the condition (5.3) is also satisfied identically. On the other hand if $\cot \alpha_{0} \neq 0$, then $\widehat{\kappa} \widehat{\kappa}^{\prime \prime}-$ $3\left(\widehat{\kappa}^{\prime}\right)^{2}=\widehat{\kappa}^{4} \operatorname{cosec}^{2} \alpha_{0}$. The general solution of this differential equation is $\widehat{\kappa}=$ $\pm \sin \alpha_{0} / \sqrt{-s^{2}+a s+b}$, where a and b are arbitrary constants, $a^{2}+4 b>0$ and $s \in I_{a, b}$. So using 3.2 , we obtain $\widehat{\tau}= \pm \cos \alpha_{0} / \sqrt{-s^{2}+a s+b}$.

Conversely, suppose that the curve γ has pseudo-Hermitian torsion $\widehat{\tau}=$ $\pm \cos \alpha_{0} / \sqrt{-s^{2}+a s+b}$, where a and b are constants, $a^{2}+4 b>0$ and $s \in I_{a, b}$. It is easy to show that (5.3) is satisfied. Hence $\left(\widehat{\nabla}_{T} \widehat{\nabla}_{T} \widehat{\nabla}_{T} T\right)^{\perp} \wedge$ $\left(\widehat{\nabla}_{T} \widehat{\nabla}_{T} T\right)^{\perp}=0$, that is, γ is of pseudo-Hermitian $A W(2)$-type.

For Legendre curves, as a result of Theorem 5.4, we have the following corollary which was obtained in Lee:

Corollary 5.5 ([Lee]). Every Legendre curve in a 3-dimensional contact Riemannian manifold is of pseudo-Hermitian $A W(2)$-type.

In a 3 -dimensional contact Riemannian manifold, it is obvious that there are pseudo-Hermitian circles of pseudo-Hermitian $A W(2)$-type. A simplest example is a pseudo-Hermitian Legendre circle.

From Theorem5.4, we have the following corollary for pseudo-Hermitian slant helices:

Corollary 5.6. There does not exist a pseudo-Hermitian slant helix of pseudo-Hermitian $A W(2)$-type.

Finally, we have the following theorem for slant curves of pseudo-Hermitian $A W(3)$-type.

TheOrem 5.7. Let γ be a slant curve with contact angle α_{0}. Then γ is of pseudo-Hermitian $A W(3)$-type if and only if it has constant pseudoHermitian torsion.

Proof. Assume that γ is of pseudo-Hermitian $A W(3)$-type. By definition $\left(\widehat{\nabla}_{T} \widehat{\nabla}_{T} \widehat{\nabla}_{T} T\right)^{\perp} \wedge\left(\widehat{\nabla}_{T} T\right)^{\perp}=0$, which implies

$$
\left|\begin{array}{cc}
\widehat{\kappa}^{\prime \prime}-\widehat{\kappa}^{3}-\widehat{\kappa} \widehat{\tau}^{2} & 2 \widehat{\kappa}^{\prime} \widehat{\tau}+\widehat{\kappa} \widehat{\tau}^{\prime} \tag{5.6}\\
\widehat{\kappa} & 0
\end{array}\right|=0
$$

Using (3.2) in (5.6), since $\widehat{\kappa} \neq 0$, we obtain

$$
\begin{equation*}
3 \widehat{\kappa}^{\prime} \cot \alpha_{0}=0 \tag{5.7}
\end{equation*}
$$

so $\alpha_{0}=\pi / 2$ or $\widehat{\kappa}$ is a constant. If $\alpha_{0}=\pi / 2$, then γ is a Legendre curve, so $\widehat{\tau}=0$ identically. If $\alpha_{0} \neq \pi / 2$, then $\widehat{\kappa}$ is a constant. In this case, using (3.2), it is clear that $\widehat{\tau}$ is a constant.

Conversely, let γ have constant pseudo-Hermitian torsion $\widehat{\tau}$. If γ is a Legendre curve, then $\widehat{\tau}=0$. Hence (5.6) is satisfied. If γ is not a Legendre curve, then using 3.2 , we find that $\widehat{\kappa}$ is a constant. Since $\widehat{\kappa}^{\prime}=0$ and $\widehat{\tau}^{\prime}=0$, (5.6) is satisfied. In both cases, we obtain $\left(\widehat{\nabla}_{T} \widehat{\nabla}_{T} \widehat{\nabla}_{T} T\right)^{\perp} \wedge\left(\widehat{\nabla}_{T} T\right)^{\perp}=0$, which completes the proof.

Using Corollary 3.4. Theorem 5.7 and (3.2) we can state the following corollary:

Corollary 5.8. γ is a slant curve of pseudo-Hermitian $A W$ (3)-type if and only if it is a Legendre curve or a pseudo-Hermitian slant helix.

REMARK 5.9. Theorems 5.2, 5.4 and 5.7 are generalizations of Lemma $3.13(\mathrm{i}) \&(\mathrm{ii})$ in Lee.

References

[ABG] J. Arroyo, M. Barros and O. J. Garay, A characterisation of helices and Cornu spirals in real space forms, Bull. Austral. Math. Soc. 56 (1997), 37-49.
[AO] K. Arslan and C. Özgür, Curves and surfaces of $A W(k)$-type, in: Geometry and Topology of Submanifolds IX (Valenciennes/Lyon/Leuven, 1997), World Sci., River Edge, NJ, 1999, 21-26.
[BG] M. Barros and O. J. Garay, On submanifolds with harmonic mean curvature, Proc. Amer. Math. Soc. 123 (1995), 2545-2549.
[Blair] D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, 2nd ed., Progr. Math. 203, Birkhäuser Boston, Boston, MA, 2010.
[Chen] B.-Y. Chen, Some open problems and conjectures on submanifolds of finite type, Soochow J. Math. 17 (1991), 169-188.
[CL] J. T. Cho and J. E. Lee, Slant curves in contact pseudo-Hermitian 3-manifolds, Bull. Austral. Math. Soc. 78 (2008), 383-396.
[Dim] I. Dimitrić, Submanifolds of E^{m} with harmonic mean curvature vector, Bull. Inst. Math. Acad. Sinica 20 (1992), 53-65.
[KA] B. Kılıç and K. Arslan, Harmonic 1-type submanifolds of Euclidean spaces, Int. J. Math. Statist. 3 (2008), A08, 47-53.
[Lee] J. E. Lee, On Legendre curves in contact pseudo-Hermitian 3-manifolds, Bull. Austral. Math. Soc. 81 (2010), 156-164.
[OT] C. Özgür and M. M. Tripathi, On Legendre curves in α-Sasakian manifolds, Bull. Malays. Math. Sci. Soc. 31 (2008), 91-96.
[Tan] N. Tanaka, On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections, Japan. J. Math. (N.S.) 2 (1976), 131-190.
[Tann] S. Tanno, Variational problems on contact Riemannian manifolds, Trans. Amer. Math. Soc. 314 (1989), 349-379.
[Web] S. M. Webster, Pseudo-Hermitian structures on a real hypersurface, J. Differential Geom. 13 (1978), 25-41.

Cihan Özgür, Şaban Güvenç
Department of Mathematics
Balıkesir University
10145, Çağış, Balıkesir, Turkey
E-mail: cozgur@balikesir.edu.tr
sguvenc@balikesir.edu.tr

Received 14.3.2011
and in final form 12.10.2011

[^0]: 2010 Mathematics Subject Classification: Primary 53C40; Secondary 53B35, 53D10, 53A04.
 Key words and phrases: slant curve, pseudo-Hermitian proper mean curvature vector field, pseudo-Hermitian harmonic mean curvature vector field, curves of pseudo-Hermitian $A W(k)$-type.

