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On some types of slant curves
in contact pseudo-Hermitian 3-manifolds

by Cihan Özgür and Şaban Güvenç (Balıkesir)

Abstract. We study slant curves in contact Riemannian 3-manifolds with pseudo-
Hermitian proper mean curvature vector field and pseudo-Hermitian harmonic mean cur-
vature vector field for the Tanaka–Webster connection in the tangent and normal bundles,
respectively. We also study slant curves of pseudo-Hermitian AW (k)-type.

1. Introduction. A Riemannian submanifold with vanishing Laplacian
∆H of the mean curvature vector is called a biharmonic submanifold (see
B.-Y. Chen [Chen]). In [Dim], Dimitrić proved that the only biharmonic
curves in a Euclidean space are straight lines. In [BG], curves satisfying
∆⊥H = λH in a Euclidean space were classified, where ∆⊥ denotes the
Laplacian of the curve in the normal bundle and λ is a real valued function.
In [ABG], a classification of curves satisfying ∆H = λH and ∆⊥H = λH
in a real space form was given by J. Arroyo, M. Barros and O. J. Garay.
In [KA], B. Kılıç and K. Arslan studied connected submanifolds satisfying
∆⊥H = 0 in a Euclidean space.

A curve in a contact 3-manifold is said to be slant if its tangent vector
field has a constant angle with the Reeb vector field. In particular, if the
contact angle is equal to π/2, then the curve is called a Legendre curve. Slant
curves appear naturally in differential geometry of Sasakian manifolds. In
[CL], J. T. Cho and J. E. Lee studied contact pseudo-Hermitian geometry
in a 3-dimensional Sasakian space form whose holomorphic sectional curva-
ture with respect to the Tanaka–Webster connection ∇̂ is 2c. They proved
that if a non-geodesic curve for ∇̂ in a 3-dimensional contact Riemannian
manifold is a slant curve, then the ratio of κ̂ and τ̂ is a constant, where
κ̂ and τ̂ denote the curvature and torsion of the curve with respect to the
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connection ∇̂. Furthermore, in [Lee], J. E. Lee studied Legendre curves in
contact pseudo-Hermitian 3-manifolds. She considered Legendre curves with
pseudo-Hermitian parallel mean curvature vector field, pseudo-Hermitian
proper mean curvature vector field and pseudo-Hermitian proper mean cur-
vature vector field in the normal bundle.

In [AO], K. Arslan and the first author studied curves of AW (k)-type. In
[OT], the first author and M. M. Tripathi considered AW (k)-type Legendre
curves in α-Sasakian manifolds. J. E. Lee [Lee] defined and studied Le-
gendre curves of pseudo-Hermitian AW (k)-type in a 3-dimensional Sasakian
manifold.

In the present paper, we study slant curves with pseudo-Hermitian par-
allel mean curvature vector field, pseudo-Hermitian proper mean curvature
vector field and pseudo-Hermitian proper mean curvature vector field in the
normal bundle. We also study slant curves of pseudo-Hermitian AW (k)-type
in contact pseudo-Hermitian 3-manifolds. Since a Legendre curve is a special
type of a slant curve, our results generalize the results of [Lee].

2. Preliminaries. A (2n+ 1)-dimensional manifold M is called a con-
tact manifold if there exists a global 1-form η such that η ∧ (dη)n 6= 0
everywhere on M . Given a contact form η, there exists a unique vector field
ξ, the characteristic vector field, which satisfies η(ξ) = 1 and dη(X, ξ) = 0
for any vector field X on M . There exists an associated Riemannian metric
g and a (1, 1)-type tensor field ϕ satisfying

(2.1) ϕ2X = −X + η(X)ξ, η(X) = g(X, ξ), dη(X,Y ) = g(X,ϕY ),

for all X,Y ∈ χ(M). From (2.1), it follows that

(2.2) ϕξ = 0, η ◦ ϕ = 0, g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ).

A Riemannian manifold equipped with the structure tensors (ϕ, ξ, η, g)
satisfying (2.1) is called a contact Riemannian manifold. It is denoted by
M = {M,ϕ, ξ, η, g}. Using the Lie differentiation operator in the character-
istic direction ξ, the operator h is defined by h = 1

2Lξϕ . From the definition,
h is symmetric and satisfies the equations below (see [Blair]), where ∇ de-
notes the Levi-Civita connection:

(2.3) hξ = 0, hϕ = −ϕh, ∇Xξ = −ϕX − ϕhX.

For a (2n + 1)-dimensional contact manifold M = {M,ϕ, ξ, η, g}, the
almost complex structure J on M × R is defined by

(2.4) J

(
X, f

d

dt

)
=

(
ϕX − fξ, η(X)

d

dt

)
,

where X is a vector field tangent to M , t is the coordinate function of R
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and f is a C∞ function on M ×R. The contact Riemannian manifold M is
called a Sasakian manifold if J is integrable.

On a Sasakian manifold, the covariant derivative ∇ϕ is given by

(2.5) (∇Xϕ)Y = g(X,Y )ξ − η(Y )X, X, Y ∈ χ(M).

Let γ be a non-geodesic curve in a 3-dimensional Riemannian manifold
M and {T,N,B} its Frenet frame field. Then the Frenet frame field satisfies
the following Frenet–Serret equations:

(2.6)

∇TT = κN,

∇TN = −κT + τB,

∇TB = −τN,
where κ = ‖∇TT‖ is the geodesic curvature of γ and τ its geodesic torsion.

Let {M,ϕ, ξ, η, g} be a 3-dimensional contact Riemannian manifold.
Then the tangent space TpM of M at a point p ∈M decomposes as

TpM = Dp ⊕ Rξp, Dp = {v ∈ TpM | η(v) = 0}.
Here D : p → Dp defines a two-dimensional distribution orthogonal to ξ,
which is called the contact distribution. The restriction of ϕ to D, J = ϕ|D,
defines an almost complex structure on D. The associated almost CR-struc-
ture of M is given by the holomorphic subbundle

H = {X − iJX | X ∈ D}
of the complexified tangent bundle TMC. Each fiber Hp is of complex di-
mension 1, H ∩H = {0}, and D ⊗ C = H ⊕H. Furthermore, denoting the
space of all smooth sections of H by χ(H), the integrability condition

[χ(H), χ(H)] ⊂ χ(H)

is satisfied, so the associated almost CR-structure is always integrable. For
H the Levi form L is defined by

L : D ×D → C∞(M,R), L(X,Y ) = −dη(X, JY ),

where C∞(M,R) denotes the algebra of smooth functions on M . The Levi
form is Hermitian and positive definite. We call the pair (η, L) a contact
pseudo-convex pseudo-Hermitian structure on M , and we call M a contact
strongly pseudo-convex pseudo-Hermitian (or almost CR-) manifold [Blair].

The Tanaka–Webster connection ([Tan], [Web]) ∇̂ (or the pseudo-Hermi-
tian connection) on a contact pseudo-convex pseudo-Hermitian manifold
M = {M,η, L} is defined by

∇̂XY = ∇XY + η(X)ϕY + (∇Xη)(Y )ξ − η(Y )∇Xξ

for all X,Y ∈ χ(M). Using (2.3), ∇̂ can be rewritten as

(2.7) ∇̂XY = ∇XY + η(X)ϕY + η(Y )(ϕX + ϕhX)− g(ϕX + ϕhX, Y )ξ.
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The Tanaka–Webster connection ∇̂ has the torsion

(2.8) T̂ (X,Y ) = 2g(X,ϕY )ξ + η(Y )ϕhX − η(X)ϕhY.

In particular, since h = 0 for Sasakian manifolds (see [Blair]), equations
(2.7) and (2.8) reduce to

∇̂XY = ∇XY + η(X)ϕY + η(Y )ϕX − g(ϕX, Y )ξ,

T̂ (X,Y ) = 2g(X,ϕY )ξ.

Proposition 2.1 ([Tann]). The Tanaka–Webster connection on a 3-di-
mensional contact Riemannian manifold M = {M,ϕ, ξ, η, g} is the unique
linear connection satisfying the following four conditions:

(i) ∇̂η = 0, ∇̂ξ = 0;

(ii) ∇̂g = 0, ∇̂ϕ = 0;

(iii) T̂ (X,Y ) = −η([X,Y ])ξ, X,Y ∈ D;

(iv) T̂ (ξ, ϕY ) = −ϕT̂ (ξ, Y ), Y ∈ D.

3. Slant curves in contact pseudo-Hermitian geometry. Let M
be a contact Riemannian 3-manifold and assume that γ : I → M is a
curve parametrized by arc-length in M . In [CL], J. T. Cho and J. E. Lee
defined the Frenet frame field {T,N,B} along γ for the pseudo-Hermitian

connection ∇̂, which satisfies the following Frenet–Serret equations for ∇̂:

(3.1)

∇̂TT = κ̂N,

∇̂TN = −κ̂T + τ̂B,

∇̂TB = −τ̂N,

where κ̂ = ‖∇̂TT‖ is the pseudo-Hermitian curvature of γ and τ̂ its pseudo-
Hermitian torsion. A pseudo-Hermitian helix is a curve whose pseudo-Her-
mitian curvature and pseudo-Hermitian torsion are non-zero constants. In
particular, curves with constant non-zero pseudo-Hermitian curvature and
zero pseudo-Hermitian torsion are called pseudo-Hermitian circles. Pseudo-
Hermitian geodesics are pseudo-Hermitian helices whose pseudo-Hermitian
curvature and pseudo-Hermitian torsion are zero [CL].

Let M be a contact metric 3-manifold and γ(s) a Frenet curve in M
parametrized by arc-length. The contact angle α(s) is defined by cos[α(s)] =
g(T (s), ξ). The curve γ is called a slant curve if its contact angle is constant.
Slant curves with contact angle π/2 are traditionally called Legendre curves.

In the present paper, we assume that all curves are non-geodesic Frenet
curves, that is, κ̂ 6= 0.

Proposition 3.1 ([CL]). A curve γ for ∇̂ is a slant curve if and only
if η(N) = 0.
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Proposition 3.2 ([CL]). Let γ be a slant curve for ∇̂ in a 3-dimensional
contact Riemannian manifold M . Then the ratio of τ̂ and κ̂ is a constant.

Note that

(3.2) τ̂ /κ̂ = cotα0,

where α0 is the contact angle of γ.

In [CL], J. T. Cho and J. E. Lee proved the following proposition:

Proposition 3.3. If a curve in a 3-dimensional contact Riemannian
manifold is a Legendre curve for the Tanaka–Webster connection ∇̂, then
τ̂ = 0.

We have the following corollary:

Corollary 3.4. Let γ be a slant curve for the Tanaka–Webster con-
nection ∇̂ with contact angle α0 in a 3-dimensional contact Riemannian
manifold M . Then γ is a Legendre curve if and only if τ̂ = 0.

4. Pseudo-Hermitian mean curvature vector field. The pseudo-
Hermitian mean curvature vector field Ĥ of a curve γ in a 3-dimensional
contact Riemannian manifold is defined by

(4.1) Ĥ = ∇̂TT = κ̂N

(see [Lee]).

In a 3-dimensional contact Riemannian manifold M with the Tanaka–
Webster connection ∇̂, a vector field X normal to the curve γ is called
pseudo-Hermitian parallel [Lee] if ∇̂⊥

TX = 0.

Differentiating (4.1), we get

(4.2) ∇̂⊥
T Ĥ = κ̂′N + κ̂τ̂B.

Proposition 4.1. γ is a curve with pseudo-Hermitian parallel mean
curvature vector field if and only if it is a pseudo-Hermitian circle.

Proof. Let γ be a curve with ∇̂⊥
T Ĥ = 0. Using (4.2), we get

(4.3) κ̂′N + κ̂τ̂B = 0.

So κ̂ is a non-zero constant and τ̂ = 0. Hence γ is a pseudo-Hermitian circle.

Conversely, let γ be a pseudo-Hermitian circle. Then κ̂ is a non-zero
constant and τ̂ = 0. This implies ∇̂⊥

T Ĥ = (∇̂TH)⊥ = κ̂′N + κ̂τ̂B = 0, as
desired.

In view of Corollary 3.4, we get the following corollary:

Corollary 4.2. γ is a slant curve with pseudo-Hermitian parallel mean
curvature vector field if and only if it is a pseudo-Hermitian Legendre circle.
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For a curve γ in a 3-dimensional contact Riemannian manifold M with
the Tanaka–Webster connection ∇̂,

(4.4) ∆̂Ĥ = −∇̂T ∇̂T ∇̂TT,

where Ĥ is the pseudo-Hermitian mean curvature vector field of γ [Lee].
The Laplacian of the pseudo-Hermitian mean curvature vector field in the
normal bundle is defined by

(4.5) ∆̂⊥Ĥ = −∇̂⊥
T ∇̂⊥

T ∇̂⊥
T T,

where ∇̂⊥ denotes the the normal connection in the normal bundle [Lee].

A curve γ in a 3-dimensional contact Riemannian manifold M is called
a curve with pseudo-Hermitian proper mean curvature vector field if ∆̂Ĥ

= λĤ, where λ is a non-zero C∞ function. In particular if ∆̂Ĥ = 0, then
it is a curve with pseudo-Hermitian harmonic mean curvature vector field
[Lee].

A curve γ in a 3-dimensional contact Riemannian manifold M is called
a curve with pseudo-Hermitian proper mean curvature vector field in the
normal bundle if ∆̂⊥Ĥ = λĤ , where ∆̂⊥ is the Laplacian of the pseudo-
Hermitian mean curvature vector field in the normal bundle, where λ is a
non-zero C∞ function [Lee]. In particular if ∆̂⊥Ĥ = 0, then it is a curve
with pseudo-Hermitian harmonic mean curvature vector field in the normal
bundle.

Lemma 4.3. Let γ be a curve in a 3-dimensional contact Riemannian
manifold M . Then

∇̂T ∇̂T ∇̂TT = −3κ̂κ̂′T + (κ̂′′ − κ̂3 − κ̂τ̂2)N + (2κ̂′τ̂ + κ̂τ̂ ′)B,(4.6)

∇̂⊥
T ∇̂⊥

T ∇̂⊥
T T = (κ̂′′ − κ̂τ̂2)N + (2κ̂′τ̂ + κ̂τ̂ ′)B,(4.7)

∆̂Ĥ = −∇̂T ∇̂T ∇̂TT,
∆̂⊥Ĥ = −∇̂⊥

T ∇̂⊥
T ∇̂⊥

T T.
(4.8)

Proof. From (3.1),

(4.9) ∇̂TT = κ̂N.

Differentiating (4.9) with respect to ∇̂ and using (3.1), we find

(4.10) ∇̂T ∇̂TT = −κ̂2T + κ̂′N + κ̂τ̂B

and

∇̂T ∇̂T ∇̂TT = −3κ̂κ̂′T + (κ̂′′ − κ̂3 − κ̂τ̂2)N + (2κ̂′τ̂ + κ̂τ̂ ′)B.

From (3.1), we obtain

(4.11) ∇̂⊥
T T = κ̂N.
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If we apply ∇̂⊥ to (4.11) and use (3.1), we get

(4.12) ∇̂⊥
T ∇̂⊥

T T = κ̂′N + κ̂τ̂B.

Finally (3.1) and (4.12) give

∇̂⊥
T ∇̂⊥

T ∇̂⊥
T T = (κ̂′′ − κ̂τ̂2)N + (2κ̂′τ̂ + κ̂τ̂ ′)B.

By the use of (4.1), (4.4) and (4.5), we get (4.8).

Using Lemma 4.3, we have the following theorem:

Theorem 4.4. A curve γ has pseudo-Hermitian proper mean curvature
vector field if and only if it is a pseudo-Hermitian circle satisfying λ = κ̂2

or a pseudo-Hermitian helix satisfying λ = κ̂2 + τ̂2.

Proof. Assume that γ has pseudo-Hermitian proper mean curvature vec-
tor field. Then from (4.8), the condition ∆̂Ĥ = λĤ gives

3κ̂κ̂′T + (κ̂3 + κ̂τ̂2 − κ̂′′)N − (2κ̂′τ̂ + κ̂τ̂ ′)B = λκ̂N.

Hence

(4.13) 3κ̂κ̂′ = 0, κ̂3 + κ̂τ̂2 − κ̂′′ = λκ̂, −(2κ̂′τ̂ + κ̂τ̂ ′) = 0.

Since γ is a non-geodesic curve, κ̂ 6= 0. Then κ̂ is a non-zero constant and τ̂
is a constant. From the second equation of (4.13), we find λ = κ̂2+ τ̂2. Hence
γ is a pseudo-Hermitian circle satisfying λ = κ̂2 or a pseudo-Hermitian helix
satisfying λ = κ̂2 + τ̂2.

The converse is trivial.

Corollary 4.5. A slant curve γ has pseudo-Hermitian proper mean
curvature vector field if and only if it is a pseudo-Hermitian Legendre circle
satisfying λ = κ̂2 or a pseudo-Hermitian slant helix satisfying λ = κ̂2 + τ̂2.

Proof. Let γ be a non-geodesic slant curve in a 3-dimensional contact
Riemannian manifold M . Then from Corollary 3.4, γ is a Legendre curve if
and only if τ̂ = 0. Substituting τ̂ = 0 in (4.13) we obtain the result.

Corollary 4.6. There does not exist a slant curve with pseudo-Her-
mitian harmonic mean curvature vector field.

Proof. Assume that γ is a non-geodesic curve in a 3-dimensional contact
Riemannian manifold M . From (4.8), if ∆̂Ĥ = 0, then

3κ̂κ̂′T + (κ̂3 + κ̂τ̂2 − κ̂′′)N − (2κ̂′τ̂ + κ̂τ̂ ′)B = 0,

which gives κ̂2 + τ̂2 = 0. Hence κ̂ = 0 and γ is a geodesic, a contradiction.

Theorem 4.7. γ is a slant curve with pseudo-Hermitian proper mean
curvature vector field in the normal bundle if and only if it is either a Legen-
dre curve satisfying λ = −κ̂′′/κ̂, κ̂(s) 6= as+b (where a and b are constants),
or a pseudo-Hermitian slant helix satisfying λ = τ̂2.
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Proof. Assume that γ is a non-geodesic slant curve with contact angle α0

and has pseudo-Hermitian proper mean curvature vector field in the normal
bundle. Then by definition, ∆̂⊥Ĥ = λĤ. Using (4.8), we get

(4.14) (κ̂τ̂2 − κ̂′′)N − (2κ̂′τ̂ + κ̂τ̂ ′)B = λκ̂N,

which gives

(4.15) κ̂τ̂2 − κ̂′′ = λκ̂, −(2κ̂′τ̂ + κ̂τ̂ ′) = 0.

In view of (3.2), using (4.15) we can write

(4.16) κ̂3 cot2 α0 − κ̂′′ = λκ̂, −3κ̂κ̂′ cotα0 = 0.

Finally we solve (4.16) in two cases:

(i) If α0 = π/2, then γ is a Legendre curve and cotα0 = 0. Hence
−κ̂′′ = λκ̂. Since λ 6= 0 and κ̂ 6= 0, we have κ̂′′ 6= 0. In this case, γ is a
Legendre curve satisfying λ = −κ̂′′/κ̂, κ̂(s) 6= as + b where a and b are
constants.

(ii) If α0 6= π/2, then cotα0 6= 0. Using the second equation of (4.16), we
see that κ̂ is a constant. Then κ̂′′ = 0, so the first equation of (4.16) turns
into κ̂3 cot2 α0 = λκ̂. Hence λ = (κ̂ cotα0)

2 = τ̂2. So γ is a pseudo-Hermitian
slant helix satisfying λ = τ̂2.

Conversely, let γ be a Legendre curve satisfying λ = −κ̂′′/κ̂, κ̂(s) 6= as+b
where a and b are constants, or a pseudo-Hermitian slant helix satisfying
λ = τ̂2. In both cases, (4.14) is satisfied. Hence γ is a curve with pseudo-
Hermitian proper mean curvature vector field in the normal bundle.

Remark 4.8. In [Lee, Theorem 3.9], Lee studied the same problem for
a constant λ and α0 = π/2. So our theorem is a generalization of her result.

Corollary 4.9. γ is a curve with pseudo-Hermitian harmonic mean
curvature vector field in the normal bundle if and only if it is a Legendre
curve satisfying κ̂(s) = as+ b, where a and b are constants.

Corollary 4.10. There does not exist a pseudo-Hermitian slant helix
with pseudo-Hermitian harmonic mean curvature vector field in the normal
bundle.

5. Slant curves of pseudo-Hermitian AW (k)-type. In [AO], K. Ar-
slan and the first author studied curves of AW (k)-type. Lee defined curves
of pseudo-Hermitian AW (k)-type in [Lee]. In this section, we study non-
geodesic slant curves of pseudo-Hermitian AW (k)-type in 3-dimensional
contact Riemannian manifolds.

Definition 5.1 ([Lee]). Let M be a 3-dimensional contact Rieman-

nian manifold with the Tanaka–Webster connection ∇̂. Curves of pseudo-
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Hermitian AW (1)-type satisfy

(∇̂T ∇̂T ∇̂TT )⊥ = 0,

of pseudo-Hermitian AW (2)-type satisfy

(∇̂T ∇̂T ∇̂TT )⊥ ∧ (∇̂T ∇̂TT )⊥ = 0,

and of pseudo-Hermitian AW (3)-type satisfy

(∇̂T ∇̂T ∇̂TT )⊥ ∧ (∇̂TT )⊥ = 0,

where (∇̂T ∇̂T ∇̂TT )⊥, (∇̂T ∇̂TT )⊥ and (∇̂TT )⊥ are the normal parts of
(4.6), (4.10) and (4.1), respectively.

Let γ be a curve in a 3-dimensional contact Riemannian manifold M
and {T,N,B} its Frenet frame field. Using (4.9), (4.10) and (4.6), we find

(5.1)

(∇̂TT )⊥ = κ̂N,

(∇̂T ∇̂TT )⊥ = κ̂′N + κ̂τ̂B,

(∇̂T ∇̂T ∇̂TT )⊥ = (κ̂′′ − κ̂3 − κ̂τ̂2)N + (2κ̂′τ̂ + κ̂τ̂ ′)B.

Firstly, we give the following theorem:

Theorem 5.2. Let γ be a slant curve with contact angle α0. Then γ
is of pseudo-Hermitian AW (1)-type if and only if it is a Legendre curve
with pseudo-Hermitian curvature κ̂, which satisfies the differential equation
κ̂′′ − κ̂3 = 0.

Proof. Assume that γ is of pseudo-Hermitian AW (1)-type. By definition

(∇̂T ∇̂T ∇̂TT )⊥ = 0. Hence, we use the third equation of (5.1) with (3.2) to
find

(5.2) κ̂′′ − κ̂3 − κ̂3 cot2 α0 = 0, 3κ̂κ̂′ cotα0 = 0.

The second equation implies that κ̂ is a constant or α0 = π/2. If κ̂ is a
constant, then κ̂′′ = 0. So the first equation turns into (−κ̂3) · (1 + cot2 α0)
= 0. Thus κ̂ = 0, which is a contradiction. If α0 = π/2, then γ is a Legendre
curve and cotα0 = 0, so the first equation becomes κ̂′′ − κ̂3 = 0. Hence γ
is a Legendre curve with pseudo-Hermitian curvature κ̂, which satisfies the
differential equation κ̂′′ − κ̂3 = 0.

Conversely, let γ be a Legendre curve with pseudo-Hermitian curvature
κ̂, which satisfies the differential equation κ̂′′− κ̂3 = 0. Since γ is a Legendre
curve, α0 = π/2 and cotα0 = 0. Then the equations of (5.2) are satisfied.

Thus (∇̂T ∇̂T ∇̂TT )⊥ = 0, so by definition, γ is of pseudo-Hermitian AW (1)-
type.

For Legendre curves, we can state the following corollary which was given
in [Lee].
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Corollary 5.3 ([Lee]). Let γ be a Legendre curve with pseudo-Hermi-
tian curvature κ̂(s) = ±

√
2/(s+ c). Then γ is of pseudo-Hermitian AW (1)-

type.

Theorem 5.4. Let γ be a slant curve with contact angle α0. Then γ
is of pseudo-Hermitian AW (2)-type if and only if it has pseudo-Hermitian
torsion of the form τ̂ = ± cosα0/

√
−s2 + as+ b, where a and b are arbitrary

constants, a2 +4b > 0 and s ∈ Ia,b := ((a−
√
a2 + 4b)/2, (a+

√
a2 + 4b)/2).

Proof. Assume that γ is of pseudo-Hermitian AW (2)-type. By definition,

(∇̂T ∇̂T ∇̂TT )⊥ ∧ (∇̂T ∇̂TT )⊥ = 0, that is, (∇̂T ∇̂T ∇̂TT )⊥ and (∇̂T ∇̂TT )⊥

are linearly dependent. Using (5.1), we find

(5.3)

∣∣∣∣ κ̂′′ − κ̂3 − κ̂τ̂2 2κ̂′τ̂ + κ̂τ̂ ′

κ̂′ κ̂τ̂

∣∣∣∣ = 0.

So we get

(5.4) κ̂τ̂(κ̂′′ − κ̂3 − κ̂τ̂2) = κ̂′(2κ̂′τ̂ + κ̂τ̂ ′).

Substituting (3.2) in (5.4), we get

(5.5) κ̂2 cotα0(κ̂
′′ − κ̂3 − κ̂3 cot2 α0) = 3κ̂(κ̂′)2 cotα0.

From (5.5), cotα0 = 0 or κ̂κ̂′′ − 3(κ̂′)2 = κ̂4 cosec2 α0. If cotα0 = 0, then
γ is slant and Legendrian, hence τ̂ = 0 identically and the condition (5.3)
is also satisfied identically. On the other hand if cotα0 6= 0, then κ̂κ̂′′ −
3(κ̂′)2 = κ̂4 cosec2 α0. The general solution of this differential equation is κ̂ =
± sinα0/

√
−s2 + as+ b, where a and b are arbitrary constants, a2 + 4b > 0

and s ∈ Ia,b. So using (3.2), we obtain τ̂ = ± cosα0/
√
−s2 + as+ b.

Conversely, suppose that the curve γ has pseudo-Hermitian torsion τ̂ =
± cosα0/

√
−s2 + as+ b, where a and b are constants, a2 + 4b > 0 and

s ∈ Ia,b. It is easy to show that (5.3) is satisfied. Hence (∇̂T ∇̂T ∇̂TT )⊥ ∧
(∇̂T ∇̂TT )⊥ = 0, that is, γ is of pseudo-Hermitian AW (2)-type.

For Legendre curves, as a result of Theorem 5.4, we have the following
corollary which was obtained in [Lee]:

Corollary 5.5 ([Lee]). Every Legendre curve in a 3-dimensional con-
tact Riemannian manifold is of pseudo-Hermitian AW (2)-type.

In a 3-dimensional contact Riemannian manifold, it is obvious that there
are pseudo-Hermitian circles of pseudo-Hermitian AW (2)-type. A simplest
example is a pseudo-Hermitian Legendre circle.

From Theorem 5.4, we have the following corollary for pseudo-Hermitian
slant helices:

Corollary 5.6. There does not exist a pseudo-Hermitian slant helix of
pseudo-Hermitian AW (2)-type.
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Finally, we have the following theorem for slant curves of pseudo-Her-
mitian AW (3)-type.

Theorem 5.7. Let γ be a slant curve with contact angle α0. Then γ
is of pseudo-Hermitian AW (3)-type if and only if it has constant pseudo-
Hermitian torsion.

Proof. Assume that γ is of pseudo-Hermitian AW (3)-type. By definition

(∇̂T ∇̂T ∇̂TT )⊥ ∧ (∇̂TT )⊥ = 0, which implies

(5.6)

∣∣∣∣ κ̂′′ − κ̂3 − κ̂τ̂2 2κ̂′τ̂ + κ̂τ̂ ′

κ̂ 0

∣∣∣∣ = 0.

Using (3.2) in (5.6), since κ̂ 6= 0, we obtain

(5.7) 3κ̂′ cotα0 = 0,

so α0 = π/2 or κ̂ is a constant. If α0 = π/2, then γ is a Legendre curve, so
τ̂ = 0 identically. If α0 6= π/2, then κ̂ is a constant. In this case, using (3.2),
it is clear that τ̂ is a constant.

Conversely, let γ have constant pseudo-Hermitian torsion τ̂ . If γ is a
Legendre curve, then τ̂ = 0. Hence (5.6) is satisfied. If γ is not a Legendre
curve, then using (3.2), we find that κ̂ is a constant. Since κ̂′ = 0 and τ̂ ′ = 0,

(5.6) is satisfied. In both cases, we obtain (∇̂T ∇̂T ∇̂TT )⊥ ∧ (∇̂TT )⊥ = 0,
which completes the proof.

Using Corollary 3.4, Theorem 5.7 and (3.2) we can state the following
corollary:

Corollary 5.8. γ is a slant curve of pseudo-Hermitian AW (3)-type if
and only if it is a Legendre curve or a pseudo-Hermitian slant helix.

Remark 5.9. Theorems 5.2, 5.4 and 5.7 are generalizations of Lem-
ma 3.13(i)&(ii) in [Lee].
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[CL] J. T. Cho and J. E. Lee, Slant curves in contact pseudo-Hermitian 3-manifolds,
Bull. Austral. Math. Soc. 78 (2008), 383–396.
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