# Homogeneous quaternionic Kähler structures on Alekseevskian $\mathcal{W}$-spaces 

by Wafaa Batat (Oran), P. M. Gadea (Madrid) and Jaime Muñoz Masqué (Madrid)


#### Abstract

The homogeneous quaternionic Kähler structures on the Alekseevskian $\mathcal{W}$-spaces with their natural quaternionic structures, each of these spaces described as a solvable Lie group, and the type of such structures in Fino's classification, are found.


1. Introduction. Quaternion-Kähler manifolds have attracted much attention since the classical papers by Wolf [W], Ishihara [I] and others to the present day: see for instance [J] and [ V , among many papers.

A quaternion-Kähler manifold is said to be negative if it is complete and has negative scalar curvature. Homogeneous quaternion-Kähler spaces admitting a simply transitive completely solvable Lie group of isometries were classified by Alekseevsky [A (see also de Wit and van Proeyen WP) and Cortés [C0]. No other homogeneous negative quaternion-Kähler spaces are known. Alekseevsky conjectured in [A, p. 300] that the only homogeneous negative quaternion-Kähler manifolds are Alekseevskian spaces.

Homogeneous quaternionic Kähler structures, i.e., the $\operatorname{Sp}(n) \operatorname{Sp}(1)$ case of Tricerri and Vanhecke [TV homogeneous Riemannian structures, have been studied in BGO1, BGO2, CGO1, CGO2, CGS, F]. Fino gave in [F, Lem. 5.1] a representation-theoretical classification of such structures into five basic geometric types $\mathcal{Q} \mathcal{K}_{1}, \ldots, \mathcal{Q} \mathcal{K}_{5}$. (We denote the type $\mathcal{Q} \mathcal{K}_{i} \oplus \mathcal{Q} \mathcal{K}_{j}$ by $\mathcal{Q} \mathcal{K}_{i j}$, and so on.) A classification by real tensors was given in [CGS, Th. 1.1], and it was also proved that a connected, simply-connected and complete homogeneous quaternion-Kähler manifold of $\operatorname{dim} \geq 8$, admitting a nonvanishing structure in $\mathcal{Q} \mathcal{K}_{123}$ with nonzero projection to $\mathcal{Q} \mathcal{K}_{3}$, is isometric to the quaternionic hyperbolic space $\mathbb{H H}(n)$. Furthermore, a structure of type $\mathcal{Q K}_{134}$ on $\mathbb{H H}(n)$, corresponding to its description as a solvable Lie group,

2010 Mathematics Subject Classification: Primary 53C26; Secondary 53C30.
Key words and phrases: Alekseevskian spaces, quaternion-Kähler manifolds, homogeneous quaternionic Kähler structures.
has been given in CGS, Prop. 5.3]. Then, in CGO1, Th. 3.4] and CGO2, Th. 5] it has been shown that the quaternion-Kähler symmetric spaces of dimension 8 or 12 furnish proper realisations of the types $\mathcal{Q} \mathcal{K}_{134}, \mathcal{Q K}_{135}$, $\mathcal{Q} \mathcal{K}_{1345}, \mathcal{Q K}_{12345}$. Fino's classification has been extended to any signature of the metric in BGO1, Th. 4.4], and the structures on rank-three Alekseevskian spaces, $\mathcal{T}(p), p \geq 0$, endowed with their natural structure as solvable Lie groups, have been found in [BGO2, Th. 3.1].

Negative quaternion-Kähler spaces appear in $N=2$ supergravity. If gravity is considered as a dynamical field, the holonomy group of the manifold is a subgroup of $\operatorname{Sp}(n) \operatorname{Sp}(1)$ and $M$ is a negative quaternion-Kähler manifold (Bagger and Witten [BW]). Cecotti [Ce] proved that Alekseevskian spaces naturally appear in the context of the $c$-map and that nonsymmetric ones are related to Vinberg $T$-algebras as symmetric ones are related to Jordan algebras. De Wit and van Proeyen WP completed Alekseevsky's classification by using supergravity considerations. That Alekseevskian spaces do appear in three series, $\mathcal{T}$-, $\mathcal{W}$-, $\mathcal{V}$-spaces, was proved by Cortés Co , Th . II.28] with geometric arguments.

Our aim is to give the expression of the homogeneous quaternionic Kähler structures carried by the rank-four Alekseevskian spaces $\mathcal{W}(p, q)$, each of them described as a solvable Lie group, and then their type in Fino's classification. To this end, we make calculations which are crucially based on the explicit description of the spaces $\mathcal{W}(p, q)$ as completely solvable Lie groups with a left-invariant quaternionic Kähler structure, given by Cortés in Co .

After some preliminaries in $\S 2$, we obtain Theorem 3.1, giving the homogeneous quaternionic Kähler structure corresponding to the description of each space $\mathcal{W}(p, q)$ as a solvable Lie group. Theorem 4.1 gives the type of such structure, proving that it has nonzero components in each basic Fino type.
2. Preliminaries. Ambrose and Singer AS proved that a connected, simply-connected and complete Riemannian manifold $(M, g)$ is Riemannian homogeneous if and only if it admits a homogeneous Riemannian structure, i.e., a $(1,2)$ tensor field $S$ satisfying $\widetilde{\nabla} g=0, \widetilde{\nabla} R=0, \widetilde{\nabla} S=0$, where $\widetilde{\nabla}=\nabla-S, \nabla$ denotes the Levi-Civita connection and $R$ the curvature tensor of $\nabla$. We write as usual $S_{X Y Z}=g\left(S_{X} Y, Z\right)$. From $\nabla g=0$ it follows that the condition $\widetilde{\nabla} g=0$ is equivalent to $S_{X Z Y}=-S_{X Y Z}$.

Let $\left(M, g, v^{3}\right)$ be an almost quaternion-Hermitian manifold. Let $J_{1}, J_{2}, J_{3}$ be a standard local basis of $v^{3}$ and let $\omega_{a}(X, Y)=g\left(J_{a} X, Y\right), a=1,2,3$. The differential 4 -form $\Omega=\sum_{a=1}^{3} \omega_{a} \wedge \omega_{a}$ is known to be globally defined. The manifold is said to be quaternion-Kähler if locally (cf. Ishihara (I))

$$
\begin{equation*}
\nabla_{X} J_{1}=\tau^{3}(X) J_{2}-\tau^{2}(X) J_{3}, \quad \text { etc. } \tag{2.1}
\end{equation*}
$$

for certain differential 1 -forms $\tau^{1}, \tau^{2}, \tau^{3}$ ('etc.' denoting the equations obtained by cyclically permuting $1,2,3$ ); or, equivalently, if $\nabla \Omega=0$.

We shall consider negative quaternion-Kähler manifolds of dimension $\geq 8$. A quaternion-Kähler manifold $\left(M, g, v^{3}\right)$ of dimension $\geq 8$ is said to be a homogeneous quaternion-Kähler manifold if (AC, p. 218], cf. CGS, Rem. 2.2]) it admits a transitive group of isometries. As a corollary to Kiričenko's Theorem [K], a connected, simply-connected and complete qua-ternion-Kähler manifold $\left(M, g, v^{3}\right)$ is homogeneous if and only if there exists a tensor field $S$ of type $(1,2)$ on $M$ satisfying

$$
\begin{equation*}
\widetilde{\nabla} g=0, \quad \widetilde{\nabla} R=0, \quad \widetilde{\nabla} S=0, \quad \widetilde{\nabla} \Omega=0 \tag{2.2}
\end{equation*}
$$

where $\widetilde{\nabla}=\nabla-S$. Such a tensor $S$ is called a homogeneous quaternionic Kähler structure on $M$. The equation $\widetilde{\nabla} \Omega=0$ is equivalent to conditions similar to (2.1).

Fino [F, Lem. 5.1] gave a representation-theoretical classification of homogeneous quaternionic Kähler structures into five basic geometric types, which we denote by $\mathcal{Q} \mathcal{K}_{1}, \ldots, \mathcal{Q} \mathcal{K}_{5}$.

Let $(V,\langle\rangle, q$,$) be a quaternion-Hermitian vector space, i.e., a 4 n$-dimensional real vector space endowed with an inner product $\langle$,$\rangle and a quater-$ nionic structure q generated by suitable operators $J_{1}, J_{2}, J_{3}$. Consider the space of tensors $\mathcal{T}(V)=\left\{S \in \otimes^{3} V^{*}: S_{X Y Z}=-S_{X Z Y}\right\}$ and its vector subspace
$\mathcal{Q K}(V)=\left\{S \in \otimes^{3} V^{*}: S_{X Y Z}=-S_{X Z Y}, \exists \theta^{a} \in V^{*}\right.$ such that $S$ satisfies

$$
\left.S_{X J_{1} Y J_{1} Z}-S_{X Y Z}=\theta^{3}(X) g\left(J_{2} Y, J_{1} Z\right)-\theta^{2}(X) g\left(J_{3} Y, J_{1} Z\right), \text { etc. }\right\}
$$

Any homogeneous Riemannian structure on $M$ belongs to $\mathcal{T}\left(T_{p} M\right)$ pointwise, but homogeneous quaternionic Kähler structures are pointwise in the space $\mathcal{Q K}\left(T_{p} M\right)$.

Consider the subspaces $\check{\mathcal{V}}$ and $\hat{\mathcal{V}}$ of $\mathcal{Q} \mathcal{K}(V)$ consisting of elements $\Theta$ and $\mathcal{T}$, respectively, such that $\Theta_{X Y Z}=\sum_{a=1}^{3} \alpha^{a}(X)\left\langle J_{a} Y, Z\right\rangle, \alpha^{a} \in V^{*}$, and $\mathcal{T}_{X J_{a} Y J_{a} Z}=\mathcal{T}_{X Y Z}, a=1,2,3$. Then one has $\mathcal{Q} \mathcal{K}(V)=\check{\mathcal{V}} \oplus \hat{\mathcal{V}}$, and each element $S \in \mathcal{Q} \mathcal{K}(V)$ decomposes as $S_{X Y Z}=\Theta_{X Y Z}+\mathcal{T}_{X Y Z}$, where

$$
\begin{equation*}
\Theta_{X Y Z}=\frac{1}{2} \sum_{a=1}^{3} \alpha^{a}(X)\left\langle J_{a} Y, Z\right\rangle \tag{2.3}
\end{equation*}
$$

The classification by real tensors is ([CGS, Th. 3.15]) as follows: If $n \geq 2$, the space $\mathcal{Q K}(V)$ decomposes into the direct sum of the following $\operatorname{Sp}(n) \operatorname{Sp}(1)$ invariant and irreducible subspaces:

$$
\begin{align*}
\mathcal{Q} \mathcal{K}_{1}= & \left\{\Theta \in \check{\mathcal{V}}: \Theta_{X Y Z}=\sum_{a=1}^{3} \alpha\left(J_{a} X\right)\left\langle J_{a} Y, Z\right\rangle, \alpha \in V^{*}\right\}, \\
\mathcal{Q} \mathcal{K}_{2}= & \left\{\Theta \in \check{\mathcal{V}}: \Theta_{X Y Z}=\sum_{a=1}^{3} \alpha^{a}(X)\left\langle J_{a} Y, Z\right\rangle,\right. \\
& \left.\sum_{a=1}^{3} \alpha^{a} \circ J_{a}=0, \alpha^{a} \in V^{*}\right\}, \\
\mathcal{Q} \mathcal{K}_{3}= & \left\{\mathcal{T} \in \hat{\mathcal{V}}: \mathcal{T}_{X Y Z}=\langle X, Y\rangle \beta(Z)-\langle X, Z\rangle \beta(Y)\right. \\
& \left.+\sum_{a=1}^{3}\left(\left\langle X, J_{a} Y\right\rangle \beta\left(J_{a} Z\right)-\left\langle X, J_{a} Z\right\rangle \beta\left(J_{a} Y\right)\right), \beta \in V^{*}\right\},  \tag{2.4}\\
\mathcal{Q} \mathcal{K}_{4}= & \left\{\mathcal{T} \in \hat{\mathcal{V}}: \mathcal{T}_{X Y Z}=\frac{1}{6}\left({\underset{S Y}{Y Z}}^{\left.\mathcal{T}_{X Y Z}+\underset{X J_{a} Y J_{a} Z}{\mathfrak{S}} \sum_{a} \mathcal{T}_{X J_{a} Y J_{a} Z}\right),}\right.\right. \\
& \left.c_{12}(\mathcal{T})=0\right\}, \\
\mathcal{Q} \mathcal{K}_{5}= & \left\{\mathcal{T} \in \hat{\mathcal{V}}:{ }_{X Y Z}^{\mathfrak{S}} \mathcal{T}_{X Y Z}=0\right\},
\end{align*}
$$

where $c_{12}(\mathcal{T})(Z)=\sum_{i=1}^{4 n} \mathcal{T}_{e_{i} e_{i} Z}$ for any local orthonormal basis $\left\{e_{i}\right\}$ of $V$.
We now recall some definitions and results by Alekseevsky [A] (cf. AC], (C0). A quaternion-Kähler manifold of nonzero scalar curvature is said to be an Alekseevskian space if it admits a simply transitive, completely solvable Lie group of isometries. An Alekseevskian space is simply-connected and it can be regarded as a completely solvable Lie group with a left-invariant metric. The corresponding metric Lie algebra with the quaternionic structure inherited from that of the manifold is a quaternion-Hermitian vector space $(\mathfrak{s},\langle\rangle, \mathrm{q}$,$) , which is called a quaternionic or Alekseevskian Lie algebra.$ A metric Lie algebra $\mathfrak{f}$ with an orthonormal basis $\{G, H\}$ and a complex structure $J$ is said to be a key algebra with root $\mu$ if $G=J H,[H, G]=\mu G$, $\mu>0$. A metric Lie algebra $\mathfrak{f}+\mathfrak{x}$ with a complex structure $J$ is said to be an elementary Kählerian Lie algebra with root $\mu$ if $\mathfrak{f}=\operatorname{Span}\{G, H\}$ is a key subalgebra with root $\mu$ and $\left.\operatorname{ad}_{H}\right|_{\mathfrak{r}}=\frac{1}{2} \mu I,\left.\operatorname{ad}_{G}\right|_{\mathfrak{x}}=0,[X, Y]=\mu\langle J X, Y\rangle G$, $X, Y \in \mathfrak{x}$. A representation $U \mapsto T_{U}$ of a Lie algebra $\mathfrak{u}$ with a complex structure $J$ on a Euclidean space $(\mathfrak{x},\langle\rangle$,$) with a complex structure J_{1}$ is said to be symplectic if it satisfies the two conditions given in [A, Def. 6.3]. If $T_{\mathfrak{u}} \mathfrak{x}=\mathfrak{x}$, $T$ is called nondegenerate. If $T$ is a nondegenerate symplectic representation of a key algebra $\mathfrak{f}=\operatorname{Span}\{G, H\}$ with root $\mu$ on a space $\left(\mathfrak{x},\langle\rangle,, J_{1}\right)$, then $\mathfrak{x}$ admits a weight decomposition $\mathfrak{x}=\mathfrak{x}_{+}+\mathfrak{x}_{-}$such that

$$
\begin{equation*}
\mathfrak{x}_{-}=J_{1} \mathfrak{x}_{+},\left.\quad T_{G}\right|_{\mathfrak{x}_{+}}=0,\left.\quad T_{G}\right|_{\mathfrak{x}_{-}}=-\mu J_{1},\left.\quad T_{H}\right|_{\mathfrak{x}_{ \pm}}= \pm \frac{1}{2} \mu I . \tag{2.5}
\end{equation*}
$$

Any Alekseevskian algebra $(\mathfrak{s},\langle\rangle, \mathrm{q}$,$) , with \mathrm{q}=\operatorname{Span}\left\{J_{a}: a=1,2,3\right\}$, contains a unique (up to scaling) one-dimensional quaternionic subalgebra $s^{\prime}$ (i.e., a subalgebra $\mathfrak{s}^{\prime}$ such that $q \mathfrak{s}^{\prime} \subset \mathfrak{s}^{\prime}$ ), corresponding either to the complex hyperbolic plane $\mathbb{C H}(2)$ or to the quaternionic hyperbolic line $\mathbb{H H}(1)$. In the former case it is of the form $\mathfrak{s}=\mathfrak{u}+J_{2} \mathfrak{u}$ (orthogonal sum), and $\left(\mathfrak{u}, J_{1 \mid \mathfrak{u}}\right)$ is the so-called principal Kählerian subalgebra of $\mathfrak{s}$. The Lie algebra $\mathfrak{u}$ contains a key subalgebra $\mathfrak{f}_{0}=\operatorname{Span}\left\{G_{0}, H_{0}\right\}$ with root 1 such that $\mathfrak{f}_{0}+J_{2} \mathfrak{f}_{0}$ is the canonical one-dimensional quaternionic subalgebra of $\mathfrak{s}$, and the adjoint
representation of $\mathfrak{s}$ induces a representation of $\mathfrak{u}$ on $\mathfrak{u}^{\perp}=J_{2} \mathfrak{u}$. A Kählerian Lie algebra $(\mathfrak{u}, J)$, that is, a metric Lie algebra which corresponds to a Kählerian homogeneous space, is said to be admissible if $\mathfrak{u}=\mathfrak{f}_{0}+\mathfrak{u}_{0}$ is a direct orthogonal sum of a key algebra $\mathfrak{f}_{0}=\operatorname{Span}\left\{G_{0}, H_{0}\right\}$ with root 1 and a completely solvable Kählerian Lie algebra $\mathfrak{u}_{0}$. Write $\widetilde{U}=\varphi(U)$ for each $U \in \mathfrak{u}$, and denote by $J_{1}$ and $\hat{J}$ the complex structures on $\widetilde{\mathfrak{u}}$ given by

$$
\begin{equation*}
J_{1}=-\varphi J \varphi^{-1},\left.\quad \hat{J}\right|_{\mathfrak{f}_{0}}=-\left.J_{1}\right|_{\tilde{\mathfrak{f}}_{0}},\left.\quad \hat{J}\right|_{\widetilde{\mathfrak{u}}_{0}}=\left.J_{1}\right|_{\widetilde{\mathfrak{u}}_{0}} \tag{2.6}
\end{equation*}
$$

Then a representation $U \mapsto T_{U}$ of such a Lie algebra $\mathfrak{u}$ on a Euclidean space $\widetilde{\mathfrak{u}}$ together with a vector space isometry $\varphi: \mathfrak{u} \rightarrow \widetilde{\mathfrak{u}}$ is said to be a $Q$-representation if it satisfies the eight conditions (Q1-8) given in A , Lem. 5.5 and Def. 5.3] (cf. also Cortés [Co, Def. 1.8]).

If $\mathfrak{s}$ is an Alekseevskian Lie algebra with principal Kählerian subalgebra $(\mathfrak{u}, J)$, then the representation of $\mathfrak{u}$ on $J_{2} \mathfrak{u}$ induced by the adjoint representation of $\mathfrak{s}$ is a Q-representation with $\varphi=\left.J_{2}\right|_{\mathfrak{u}}: \mathfrak{u} \rightarrow \mathfrak{u}^{\perp}$. Conversely, let $(T, \varphi)$ be a Q-representation of an admissible Kählerian Lie algebra ( $\mathfrak{u}, J$ ) on the Euclidean vector space $\widetilde{\mathfrak{u}}=\varphi(\mathfrak{u})=\widetilde{\mathfrak{f}}_{0}+\widetilde{\mathfrak{u}}_{0}$. Then a quaternionic structure $\mathrm{q}=\operatorname{Span}\left\{J_{a}: a=1,2,3\right\}$ on the Euclidean vector space $\mathfrak{s}=\mathfrak{u}+\widetilde{\mathfrak{u}}$ (orthogonal sum) is defined by

$$
\begin{gather*}
\left.J_{1}\right|_{\mathfrak{u}}=J,\left.\quad J_{1}\right|_{\tilde{\mathfrak{u}}}=-\varphi J \varphi^{-1} \\
\left.J_{2}\right|_{\mathfrak{u}}=\varphi,\left.\quad J_{2}\right|_{\tilde{\mathfrak{u}}}=-\varphi^{-1}, \quad J_{3}=J_{1} J_{2} \tag{2.7}
\end{gather*}
$$

Let $\hat{J}$ be the complex structure on $\tilde{\mathfrak{u}}$ defined as in (2.6), and let $\hat{\omega}$ denote the Kähler form on $\widetilde{\mathfrak{u}}$ given by $\hat{\omega}(\widetilde{U}, \widetilde{V})=\langle\hat{J} \widetilde{U}, \widetilde{V}\rangle$. Then the following conditions define the structure of Lie algebra of $\mathfrak{s}$ :
$\mathfrak{u}$ is a subalgebra of $\mathfrak{s},\left.\quad \operatorname{ad}_{U}\right|_{\tilde{\mathfrak{u}}}=T_{U}, \quad[\widetilde{U}, \widetilde{V}]=\hat{\omega}(\widetilde{U}, \widetilde{V}) G_{0}$,
for all $U, V \in \mathfrak{u}$.
The rank of a solvable Lie algebra $\mathfrak{s}$ is the dimension of a Cartan subalgebra of $\mathfrak{s}$. The rank of an Alekseevskian space $\mathcal{S}$ is the rank of its Alekseevskian Lie algebra $\mathfrak{s}$, which is proved to be at most 4. An admissible Kählerian Lie algebra $\mathfrak{u}=\mathfrak{f}_{0}+\mathfrak{u}_{0}$ which admits a Q-representation decomposes as a semidirect sum of elementary Kählerian Lie algebras, with $\mathfrak{u}_{0}=\sum_{i \geq 1}\left(\mathfrak{f}_{i}+\mathfrak{x}_{i}\right)$, that is, $\left[\mathfrak{f}_{i}+\mathfrak{x}_{i}, \mathfrak{f}_{j}+\mathfrak{x}_{j}\right] \subset \mathfrak{f}_{j}+\mathfrak{f}_{j}, i \geq j$, with symplectic representation $\left.\operatorname{ad}_{\mathfrak{f}_{i}}\right|_{\mathfrak{x}_{j}}$ for $i>j$ and commuting key algebras, $\left[\mathfrak{f}_{i}, \mathfrak{f}_{j}\right]=0$, for $i \neq j$ (see [Co, p. 134]). The rank of $\mathfrak{u}=\mathfrak{f}_{0}+\sum_{i \geq 1}\left(\mathfrak{f}_{i}+\mathfrak{x}_{i}\right)$ coincides with the number of key algebras of $\mathfrak{u}$. There are three types of admissible Kählerian Lie algebras, the first type corresponding to the case with smallest root 1 .
3. Homogeneous quaternionic Kähler structures on $\mathcal{W}(p, q)$. Now we focus on the rank-four $\mathcal{W}$-case. We shall make calculations essentially based on the explicit description, found by Cortés [Co], of the spaces
$\mathcal{W}(p, q), 0 \leq p \leq q$, as completely solvable Lie groups with a left-invariant quaternionic Kähler structure.

We recall that given Euclidean spaces $x, y, z$, a bilinear map $\psi: x \times z \rightarrow y$ is said to be isometric if $\langle\psi(X, Z), \psi(X, Z)\rangle=\langle X, X\rangle\langle Z, Z\rangle, X \in x, Z \in z$. Let $\mathfrak{x}_{-}, \mathfrak{z}_{-}, \mathfrak{y}_{-}$be Euclidean vector spaces. Every isometric map $\psi: \mathfrak{x}_{-} \times$ $\mathfrak{z}_{-} \rightarrow \mathfrak{y}_{-}$defines a Kählerian Lie algebra $\mathfrak{u}(\psi)=\left(\mathfrak{f}_{0}+\mathfrak{u}_{0}, J\right)$ of type 1 and rank 4 by means of a recipe given in [A, Prop. 9.3]. According to [A, Props. $9.2-9.4]$, there are two possibilities for Kählerian Lie algebras $\mathfrak{u}=\mathfrak{u}(\psi)$ of type 1 and rank $>2$ which admit a Q-representation. These two possibilities originate the series of Alekseevskian $\mathcal{W}$ - and $\mathcal{V}$-spaces, respectively. The $\mathcal{W}$ spaces correspond to the case $\mathfrak{x}_{-}=0$ (hence $\psi=0$ ), and $\mathfrak{u}=\mathfrak{u}(p, q) \cong$ $\mathfrak{u}(q, p)$ is completely determined by the parameters $p=\operatorname{dim} \mathfrak{y}_{-} \geq 0$ and $q=\operatorname{dim} \mathfrak{z}_{-} \geq 0$. Any such Lie algebra $\mathfrak{u}$ has a unique Q-representation $T$ and the corresponding Alekseevskian spaces are denoted by $\mathcal{W}(p, q)$. In this case the set of rules of the aforementioned recipe reduces to:

1. The space $\mathfrak{u}_{0}$ is a semidirect sum $\mathfrak{u}_{0}=\left(\mathfrak{f}_{1}+\mathfrak{x}_{1}\right)+\mathfrak{f}_{2}+\mathfrak{f}_{3}$ of elementary Kählerian key algebras with commuting Lie algebras with root 1.
2. The space $\mathfrak{x}_{1}$ admits a $J$-invariant decomposition $\mathfrak{x}_{1}=\mathfrak{y}+\mathfrak{z}$ such that $\left.\operatorname{ad}_{\mathfrak{f}_{3}}\right|_{\mathfrak{y}}$ and $\left.\operatorname{ad}_{\mathfrak{f}_{2}}\right|_{\mathfrak{z}}$ are nondegenerate symplectic representations with weight decompositions $\mathfrak{y}=\mathfrak{y}_{+}+\mathfrak{y}_{-}$and $\mathfrak{z}=\mathfrak{z}_{+}+\mathfrak{z}_{-}$, where $\mathfrak{y}_{+}=J \mathfrak{y}_{-}$and $\mathfrak{z}_{+}=J \mathfrak{z}_{-}$. Furthermore, $\left[\mathfrak{f}_{2}, \mathfrak{y}\right]=\left[\mathfrak{f}_{3}, \mathfrak{z}\right]=[\mathfrak{y}, \mathfrak{z}]=0$.

Let $\left\{Y_{j+}\right\}, j=1, \ldots, p$, and $\left\{Z_{k+}\right\}, k=1, \ldots, q$, be orthonormal bases of $\mathfrak{y}_{+}$and $\mathfrak{z}_{+}$, respectively, and let $Y_{j-}=J Y_{j+}, Z_{k-}=J Z_{k+}$. Then, as $\operatorname{ad}_{G_{0}} \mathfrak{u}_{0}=0\left(\left[\boxed{A}\right.\right.$, Lem. 4.6]) and $\operatorname{ad}_{H_{0}} \mathfrak{u}_{0}=0([\boxed{A},(5.2)])$, we have the Lie brackets on $\mathfrak{u}$ given in Table 1 .

Table 1. Lie brackets on $\mathfrak{u}$

|  | $G_{0}$ | $H_{0}$ | $G_{1}$ | $H_{1}$ | $G_{2}$ | $H_{2}$ | $G_{3}$ | $H_{3}$ | $Y_{j^{\prime}+}$ | $Y_{j^{\prime}-}$ | $Z_{k^{\prime}+}$ | $Z_{k^{\prime}-}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $G_{0}$ | 0 | $-G_{0}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $H_{0}$ | $G_{0}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $G_{1}$ | 0 | 0 | 0 | $-G_{1}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $H_{1}$ | 0 | 0 | $G_{1}$ | 0 | 0 | 0 | 0 | 0 | $\frac{1}{2} Y_{j^{\prime}+}$ | $\frac{1}{2} Y_{j^{\prime}-}$ | $\frac{1}{2} Z_{k^{\prime}+}$ | $\frac{1}{2} Z_{k^{\prime}-}$ |
| $G_{2}$ | 0 | 0 | 0 | 0 | 0 | $-G_{2}$ | 0 | 0 | 0 | 0 | 0 | $Z_{k^{\prime}+}$ |
| $H_{2}$ | 0 | 0 | 0 | 0 | $G_{2}$ | 0 | 0 | 0 | 0 | 0 | $\frac{1}{2} Z_{k^{\prime}+}$ | $-\frac{1}{2} Z_{k^{\prime}-}$ |
| $G_{3}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $-G_{3}$ | 0 | $Y_{j^{\prime}+}$ | 0 | 0 |
| $H_{3}$ | 0 | 0 | 0 | 0 | 0 | 0 | $G_{3}$ | 0 | $\frac{1}{2} Y_{j^{\prime}+}$ | $-\frac{1}{2} Y_{j^{\prime}-}$ | 0 | 0 |
| $Y_{j+}$ | 0 | 0 | 0 | $-\frac{1}{2} Y_{j+}$ | 0 | 0 | 0 | $-\frac{1}{2} Y_{j+}$ | 0 | $\delta_{j j^{\prime}} G_{1}$ | 0 | 0 |
| $Y_{j-}$ | 0 | 0 | 0 | $-\frac{1}{2} Y_{j-}$ | 0 | 0 | $-Y_{j+}$ | $\frac{1}{2} Y_{j-}$ | $-\delta_{j j^{\prime}} G_{1}$ | 0 | 0 | 0 |
| $Z_{k+}$ | 0 | 0 | 0 | $-\frac{1}{2} Z_{k+}$ | 0 | $-\frac{1}{2} Z_{k+}$ | 0 | 0 | 0 | 0 | 0 | $\delta_{k k^{\prime}} G_{1}$ |
| $Z_{k-}$ | 0 | 0 | 0 | $-\frac{1}{2} Z_{k-}-Z_{k+}$ | $\frac{1}{2} Z_{k-}$ | 0 | 0 | 0 | 0 | $-\delta_{k k^{\prime}} G_{1}$ | 0 |  |

Furthermore, the Kählerian Lie algebra $(\mathfrak{u}, J)$ has a unique Q -representation on the Euclidean vector space $\widetilde{\mathfrak{u}}=\widetilde{\mathfrak{f}}_{0}+\widetilde{\mathfrak{u}}_{0}, T: \mathfrak{u} \rightarrow \operatorname{End}(\widetilde{\mathfrak{u}})$, where $\sim: \mathfrak{u} \rightarrow \widetilde{\mathfrak{u}}$ denotes the corresponding isometry of Euclidean vector spaces.

Consider the quaternion-Hermitian vector space ( $\mathfrak{w}(p, q),\langle\rangle,, \mathbf{q})$, where the space $\mathfrak{w}(p, q)=\mathfrak{u}+\mathfrak{u}$ is a direct orthogonal sum, and $\mathfrak{q}=\operatorname{Span}\left\{J_{a}: a=\right.$ $1,2,3\}$ is the quaternionic structure on $\mathfrak{w}(p, q)$ defined by 2.7). Then

$$
\begin{equation*}
\mathcal{B}=\left\{G_{i}, H_{i}, Y_{j+}, Y_{j-}, Z_{k+}, Z_{k-}, \widetilde{G}_{i}, \widetilde{H}_{i}, \widetilde{Y}_{j+}, \widetilde{Y}_{j-}, \widetilde{Z}_{k+}, \widetilde{Z}_{k-}\right\} \tag{3.1}
\end{equation*}
$$

for $0 \leq i \leq 3,1 \leq j \leq p, 1 \leq k \leq q$, is an orthonormal basis of $\mathfrak{w}(p, q)$.
Table 2. The action of $J_{a}, a=1,2,3$, on $\mathfrak{w}(p, q)$

|  | $G_{i}$ | $H_{i}$ | $Y_{j+}$ | $Y_{j-}$ | $Z_{k+}$ | $Z_{k-}$ | $\widetilde{G}_{i}$ | $\widetilde{H}_{i}$ | $\widetilde{Y}_{j+}$ | $\widetilde{Y}_{j-}$ | $\widetilde{Z}_{k+}$ | $\widetilde{Z}_{k-}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $J_{1}$ | $-H_{i}$ | $G_{i}$ | $Y_{j-}$ | $-Y_{j+}$ | $Z_{k-}$ | $-Z_{k+}$ | $\widetilde{H}_{i}$ | $-\widetilde{G}_{i}$ | $-\widetilde{Y}_{j-}$ | $\widetilde{Y}_{j+}$ | $-\widetilde{Z}_{k-}$ | $\widetilde{Z}_{k+}$ |
| $J_{2}$ | $\widetilde{G}_{i}$ | $\widetilde{H}_{i}$ | $\widetilde{Y}_{j_{+}}$ | $\widetilde{Y}_{j-}$ | $\widetilde{Z}_{k+}$ | $\widetilde{Z}_{k-}$ | $-G_{i}$ | $-H_{i}$ | $-Y_{j+}$ | $-Y_{j-}$ | $-Z_{k+}$ | $-Z_{k-}$ |
| $J_{3}$ | $\widetilde{H}_{i}$ | $-\widetilde{G}_{i}$ | $-\widetilde{Y}_{j-}$ | $\widetilde{Y}_{j+}$ | $-\widetilde{Z}_{k-}$ | $\widetilde{Z}_{k+}$ | $H_{i}$ | $-G_{i}$ | $-Y_{j-}$ | $Y_{j+}$ | $-Z_{k-}$ | $Z_{k+}$ |

Table 3. The complex structure $\hat{J}$ on $\widetilde{\mathfrak{u}}$

|  | $\widetilde{G}_{0}$ | $\widetilde{H}_{0}$ | $\widetilde{G}_{i}$ | $\widetilde{H}_{i}$ | $\widetilde{Y}_{j+}$ | $\widetilde{Y}_{j-}$ | $\widetilde{Z}_{k+}$ | $\widetilde{Z}_{k-}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\hat{J}$ | $-\widetilde{H}_{0}$ | $\widetilde{G}_{0}$ | $\widetilde{H}_{i}$ | $-\widetilde{G}_{i}$ | $-\widetilde{Y}_{j-}$ | $\widetilde{Y}_{j+}$ | $-\widetilde{Z}_{k-}$ | $\widetilde{Z}_{k+}$ |

The action of $J_{a}, a=1,2,3$, on $\mathfrak{w}(p, q)=\mathfrak{u}+\widetilde{\mathfrak{u}}$ is given in Table 2. Moreover, the vector space $\mathfrak{w}(p, q)$ has a structure of Lie algebra given by (2.8), with $\mathfrak{s}=\mathfrak{w}(p, q)$, where the complex structure $\hat{J}$ on $\tilde{\mathfrak{u}}$ is defined by Table 3 . Hence, by the third condition in (2.8), the nonnull brackets of the elements of $\tilde{\mathfrak{u}}$ are

$$
\begin{align*}
{\left[\widetilde{H}_{0}, \widetilde{G}_{0}\right] } & =-\left[\widetilde{H}_{i}, \widetilde{G}_{i}\right]  \tag{3.2}\\
& =-\left[\widetilde{Y}_{j+}, \widetilde{Y}_{j-}\right]=-\left[\widetilde{Z}_{k+}, \widetilde{Z}_{k-}\right]=G_{0}, \quad i=1,2,3 .
\end{align*}
$$

If $U \in \mathfrak{u}$ and $\widetilde{V} \in \widetilde{\mathfrak{u}}$, then by the second condition in (2.8), one has $[U, \widetilde{V}]=$ $T_{U} \widetilde{V}$, and the values of $T_{U} \widetilde{V}$ are given in Tables 47 , where $T: \mathfrak{u} \rightarrow \operatorname{End}(\widetilde{\mathfrak{u}})$ is expressed in terms of the orthonormal basis $\left\{\widetilde{G}_{i}, \widetilde{H}_{i}, \widetilde{Y}_{j+}, \widetilde{Y}_{j-}, \widetilde{Z}_{k+}, \widetilde{Z}_{k-}\right\}$ of $\mathfrak{u}$, from the conditions (Q1-8) of a Q-representation (cf. [Co, Prop. 2.1]). Table 6 follows from the properties of a weight decomposition with respect to a nondegenerate symplectic representation (2.5) and the properties in (A, Prop. 9.3].

The Lie algebra $\mathfrak{w}(p, q)$ is 4 -step solvable with $\operatorname{dim}_{\mathbb{R}} \mathfrak{w}(p, q)=4(4+p+q)$, and the corresponding simply-connected Lie group with left-invariant metric is the Alekseevskian space $\mathcal{W}(p, q)$.

We have $\mathfrak{w}(p, q)^{*}=\mathfrak{u}^{*}+\widetilde{\mathfrak{u}}^{*}$. Let

$$
\mathcal{B}^{*}=\left\{\gamma^{i}, \eta^{i}, \xi^{j+}, \xi^{j-}, \zeta^{k+}, \zeta^{k-}, \widetilde{\gamma}^{i}, \widetilde{\eta}^{i}, \widetilde{\xi}^{j+}, \widetilde{\xi}^{j-}, \widetilde{\zeta}^{k+}, \widetilde{\zeta}^{k-}\right\}
$$

be the basis of $\mathfrak{w}(p, q)^{*}$ dual to the basis (3.1) of $\mathfrak{w}(p, q)$, and denote by $S_{X}$ the 2-form defined by $S_{X}(Y, Z)=S_{X Y Z}$.

THEOREM 3.1. The homogeneous quaternionic Kähler structure $S$ on each rank-four Alekseevskian space $\mathcal{W}(p, q), 0 \leq p \leq q$, which gives its description as the simply-connected solvable Lie group with Lie algebra $\mathfrak{w}(p, q)$, is given, in terms of the basis $\mathcal{B}^{*}$ of $\mathfrak{w}(p, q)^{*}$, by

$$
\begin{aligned}
& S_{\mid \mathfrak{u}^{*} \otimes \wedge^{2} \mathfrak{u}^{*}}=\sum_{i=0}^{3} \gamma^{i} \otimes\left(\gamma^{i} \wedge \eta^{i}\right)-\frac{1}{2}\left(\gamma^{1} \otimes\left(\xi^{j+} \wedge \xi^{j-}+\zeta^{k+} \wedge \zeta^{k-}\right)\right. \\
& \left.+\gamma^{2} \otimes \zeta^{k+} \wedge \zeta^{k-}+\gamma^{3} \otimes \xi^{j+} \wedge \xi^{j-}\right) \\
& +\frac{1}{2} \sum_{j=1}^{p} \xi^{j+} \otimes\left(\xi^{j+} \wedge\left(\eta^{1}+\eta^{3}\right)+\xi^{j-} \wedge\left(\gamma^{1}+\gamma^{3}\right)\right) \\
& +\frac{1}{2} \sum_{j=1}^{p} \xi^{j-} \otimes\left(\xi^{j+} \wedge\left(\gamma^{3}-\gamma^{1}\right)+\xi^{j-} \wedge\left(\eta^{1}-\eta^{3}\right)\right) \\
& +\frac{1}{2} \sum_{k=1}^{q} \zeta^{k+} \otimes\left(\zeta^{k+} \wedge\left(\eta^{1}+\eta^{2}\right)+\zeta^{k-} \wedge\left(\gamma^{1}+\gamma^{2}\right)\right) \\
& +\frac{1}{2} \sum_{k=1}^{q} \zeta^{k-} \otimes\left(\zeta^{k+} \wedge\left(\gamma^{2}-\gamma^{1}\right)+\zeta^{k-} \wedge\left(\eta^{1}-\eta^{2}\right)\right), \\
& S_{\mid \mathfrak{u}^{*} \otimes \Lambda^{2} \widetilde{\mathfrak{u}}^{*}}=\frac{1}{2} \gamma^{0} \otimes\left(\widetilde{\gamma}^{0} \wedge \widetilde{\eta}^{0}-\sum_{i=1}^{3} \widetilde{\gamma}^{i} \wedge \widetilde{\eta}^{i}\right. \\
& \left.+\sum_{j=1}^{p} \widetilde{\xi}^{j+} \wedge \widetilde{\xi}^{j-}+\sum_{k=1}^{q} \widetilde{\zeta}^{k+} \wedge \widetilde{\zeta}^{k-}\right) \\
& -\frac{1}{2} \gamma^{1} \otimes\left(\widetilde{\gamma}^{0} \wedge \widetilde{\eta}^{0}-\widetilde{\gamma}^{1} \wedge \widetilde{\eta}^{1}+\widetilde{\gamma}^{2} \wedge \widetilde{\eta}^{2}+\widetilde{\gamma}^{3} \wedge \widetilde{\eta}^{3}\right) \\
& -\frac{1}{2} \gamma^{2} \otimes\left(\widetilde{\gamma}^{0} \wedge \widetilde{\eta}^{0}+\widetilde{\gamma}^{1} \wedge \widetilde{\eta}^{1}-\widetilde{\gamma}^{2} \wedge \widetilde{\eta}^{2}\right. \\
& \left.+\widetilde{\gamma}^{3} \wedge \widetilde{\eta}^{3}-\sum_{j=1}^{p} \widetilde{\xi}^{j+} \wedge \widetilde{\xi}^{j-}\right) \\
& -\frac{1}{2} \gamma^{3} \otimes\left(\widetilde{\gamma}^{0} \wedge \widetilde{\eta}^{0}+\widetilde{\gamma}^{1} \wedge \widetilde{\eta}^{1}+\widetilde{\gamma}^{2} \wedge \widetilde{\eta}^{2}\right. \\
& \left.-\widetilde{\gamma}^{3} \wedge \widetilde{\eta}^{3}-\sum_{k=1}^{q} \widetilde{\zeta}^{k+} \wedge \widetilde{\zeta}^{k-}\right) \\
& +\frac{1}{2} \sum_{j=1}^{p} \xi^{j+} \otimes\left(\widetilde{\xi}^{j+} \wedge\left(\widetilde{\eta}^{1}+\widetilde{\eta}^{3}\right)+\widetilde{\xi}^{j-} \wedge\left(\widetilde{\gamma}^{1}+\widetilde{\gamma}^{3}\right)\right) \\
& -\frac{1}{2} \sum_{j=1}^{p} \xi^{j-} \otimes\left(\widetilde{\xi}^{j+} \wedge\left(\widetilde{\gamma}^{1}-\widetilde{\gamma}^{3}\right)-\widetilde{\xi}^{j-} \wedge\left(\widetilde{\eta}^{1}-\widetilde{\eta}^{3}\right)\right) \\
& +\frac{1}{2} \sum_{k=1}^{q} \zeta^{k+} \otimes\left(\widetilde{\zeta}^{k+} \wedge\left(\widetilde{\eta}^{1}+\widetilde{\eta}^{2}\right)+\widetilde{\zeta}^{k-} \wedge\left(\widetilde{\gamma}^{1}+\widetilde{\gamma}^{2}\right)\right) \\
& -\frac{1}{2} \sum_{k=1}^{q} \zeta^{k-} \otimes\left(\widetilde{\zeta}^{k+} \wedge\left(\widetilde{\gamma}^{1}-\widetilde{\gamma}^{2}\right)-\widetilde{\zeta}^{k-} \wedge\left(\widetilde{\eta}^{1}-\widetilde{\eta}^{2}\right)\right), \\
& S_{\widetilde{G}_{0}}=\frac{1}{2}\left(\sum_{i=0}^{3}\left(\widetilde{\gamma}^{i} \wedge \eta^{i}-\widetilde{\eta}^{i} \wedge \gamma^{i}\right)\right. \\
& -\sum_{j=1}^{p}\left(\widetilde{\xi}^{j+} \wedge \xi^{j-}-\widetilde{\xi}^{j-} \wedge \xi^{j+}\right) \\
& \left.-\sum_{k=1}^{q}\left(\widetilde{\zeta}^{k+} \wedge \zeta^{k-}-\widetilde{\zeta}^{k-} \wedge \zeta^{k-}\right)\right), \\
& S_{\widetilde{H}_{0}}=\frac{1}{2}\left(\sum_{i=0}^{3}\left(\widetilde{\gamma}^{i} \wedge \gamma^{i}+\widetilde{\eta}^{i} \wedge \eta^{i}\right)\right. \\
& +\sum_{j=1}^{p}\left(\widetilde{\xi}^{j+} \wedge \xi^{j+}+\widetilde{\xi}^{j-} \wedge \xi^{j-}\right) \\
& \left.+\sum_{k=1}^{q}\left(\widetilde{\zeta}^{k+} \wedge \zeta^{k+}+\widetilde{\zeta}^{k-} \wedge \zeta^{k-}\right)\right),
\end{aligned}
$$

$$
\begin{aligned}
& S_{\widetilde{G}_{1}}=\frac{1}{2}\left(\widetilde{\gamma}^{0} \wedge \eta^{1}+\widetilde{\eta}^{0} \wedge \gamma^{1}+\widetilde{\gamma}^{1} \wedge \eta^{0}+\widetilde{\eta}^{1} \wedge \gamma^{0}\right. \\
& \left.-\widetilde{\gamma}^{2} \wedge \eta^{3}-\widetilde{\eta}^{2} \wedge \gamma^{3}-\widetilde{\gamma}^{3} \wedge \eta^{2}-\widetilde{\eta}^{3} \wedge \gamma^{2}\right), \\
& S_{\widetilde{H}_{1}}=-\frac{1}{2}\left(\widetilde{\gamma}^{0} \wedge \gamma^{1}-\widetilde{\eta}^{0} \wedge \eta^{1}+\widetilde{\gamma}^{1} \wedge \gamma^{0}-\widetilde{\eta}^{1} \wedge \eta^{0}\right. \\
& \left.+\widetilde{\gamma}^{2} \wedge \gamma^{3}-\widetilde{\eta}^{2} \wedge \eta^{3}+\widetilde{\gamma}^{3} \wedge \gamma^{2}-\widetilde{\eta}^{3} \wedge \eta^{2}\right), \\
& S_{\widetilde{G}_{2}}=\frac{1}{2}\left(\widetilde{\gamma}^{0} \wedge \eta^{2}+\widetilde{\eta}^{0} \wedge \gamma^{2}-\widetilde{\gamma}^{1} \wedge \eta^{3}-\widetilde{\eta}^{1} \wedge \gamma^{3}\right. \\
& +\widetilde{\gamma}^{2} \wedge \eta^{0}+\widetilde{\eta}^{2} \wedge \gamma^{0}-\widetilde{\gamma}^{3} \wedge \eta^{1}-\widetilde{\eta}^{3} \wedge \gamma^{1} \\
& \left.-\sum_{j=1}^{p}\left(\widetilde{\xi}^{j+} \wedge \xi^{j-}+\widetilde{\xi}^{j-} \wedge \xi^{j+}\right)\right), \\
& S_{\widetilde{H}_{2}}=-\frac{1}{2}\left(\widetilde{\gamma}^{0} \wedge \gamma^{2}-\widetilde{\eta}^{0} \wedge \eta^{2}+\widetilde{\gamma}^{1} \wedge \gamma^{3}-\widetilde{\eta}^{1} \wedge \eta^{3}\right. \\
& +\widetilde{\gamma}^{2} \wedge \gamma^{0}-\widetilde{\eta}^{2} \wedge \eta^{0}+\widetilde{\gamma}^{3} \wedge \gamma^{1}-\widetilde{\eta}^{3} \wedge \eta^{1} \\
& \left.-\sum_{j=1}^{p}\left(\widetilde{\xi}^{j+} \wedge \xi^{j+}-\widetilde{\xi}^{j-} \wedge \xi^{j-}\right)\right), \\
& S_{\widetilde{G}_{3}}=\frac{1}{2}\left(\widetilde{\gamma}^{0} \wedge \eta^{3}+\widetilde{\eta}^{0} \wedge \gamma^{3}-\widetilde{\gamma}^{1} \wedge \eta^{2}-\widetilde{\eta}^{1} \wedge \gamma^{2}\right. \\
& -\widetilde{\gamma}^{2} \wedge \eta^{1}-\widetilde{\eta}^{2} \wedge \gamma^{1}+\widetilde{\gamma}^{3} \wedge \eta^{0}+\widetilde{\eta}^{3} \wedge \gamma^{0} \\
& \left.-\sum_{k=1}^{q}\left(\widetilde{\zeta}^{k+} \wedge \zeta^{k-}+\widetilde{\zeta}^{k-} \wedge \zeta^{k+}\right)\right), \\
& S_{\widetilde{H}_{3}}=-\frac{1}{2}\left(\widetilde{\gamma}^{0} \wedge \gamma^{3}-\widetilde{\eta}^{0} \wedge \eta^{3}+\widetilde{\gamma}^{1} \wedge \gamma^{2}-\widetilde{\eta}^{1} \wedge \eta^{2}\right. \\
& +\widetilde{\gamma}^{2} \wedge \gamma^{1}-\widetilde{\eta}^{2} \wedge \eta^{1}+\widetilde{\gamma}^{3} \wedge \gamma^{0}-\widetilde{\eta}^{3} \wedge \eta^{0} \\
& \left.-\sum_{k=1}^{q}\left(\widetilde{\zeta}^{k+} \wedge \zeta^{k+}-\widetilde{\zeta}^{k-} \wedge \zeta^{k-}\right)\right), \\
& S_{\widetilde{Y}_{j+}}=-\frac{1}{2} \sum_{j=1}^{p}\left(\left(\widetilde{\gamma}^{0}+\widetilde{\gamma}^{2}\right) \wedge \xi^{j-}-\left(\widetilde{\eta}^{0}+\widetilde{\eta}^{2}\right) \wedge \xi^{j+}\right. \\
& \left.+\widetilde{\xi}^{j-} \wedge\left(\gamma^{0}+\gamma^{2}\right)-\widetilde{\xi}^{j+} \wedge\left(\eta^{0}+\eta^{2}\right)\right), \\
& S_{\widetilde{Y}_{j-}}=\frac{1}{2} \sum_{j=1}^{p}\left(\left(\widetilde{\gamma}^{0}-\widetilde{\gamma}^{2}\right) \wedge \xi^{j+}+\left(\widetilde{\eta}^{0}-\widetilde{\eta}^{2}\right) \wedge \xi^{j-}\right. \\
& \left.+\widetilde{\xi}^{j+} \wedge\left(\gamma^{0}-\gamma^{2}\right)+\widetilde{\xi}^{j-} \wedge\left(\eta^{0}-\eta^{2}\right)\right), \\
& S_{\widetilde{Z}_{k_{+}}}=-\frac{1}{2} \sum_{k=1}^{q}\left(\left(\widetilde{\gamma}^{0}+\widetilde{\gamma}^{3}\right) \wedge \zeta^{k-}-\left(\widetilde{\eta}^{0}+\widetilde{\eta}^{3}\right) \wedge \zeta^{k+}\right. \\
& \left.+\widetilde{\zeta}^{k-} \wedge\left(\gamma^{0}+\gamma^{3}\right)-\widetilde{\zeta}^{k+} \wedge\left(\eta^{0}+\eta^{3}\right)\right), \\
& S_{\widetilde{Z}_{k_{-}}}=\frac{1}{2} \sum_{k=1}^{q}\left(\left(\widetilde{\gamma}^{0}-\widetilde{\gamma}^{3}\right) \wedge \zeta^{k+}+\left(\widetilde{\eta}^{0}-\widetilde{\eta}^{3}\right) \wedge \zeta^{k-}\right. \\
& \left.+\widetilde{\zeta}^{k+} \wedge\left(\gamma^{0}-\gamma^{3}\right)+\widetilde{\zeta}^{k-} \wedge\left(\eta^{0}-\eta^{3}\right)\right) .
\end{aligned}
$$

Proof. Consider the tensor field $S$ on $\mathcal{W}(p, q), 0 \leq p \leq q$, given by

$$
\begin{equation*}
2\left\langle S_{X} Y, Z\right\rangle=\langle[X, Y], Z\rangle-\langle[X, Z], Y\rangle-\langle[Y, Z], X\rangle \tag{3.3}
\end{equation*}
$$

for $X, Y, Z \in \mathfrak{w}(p, q)$. Let $\nabla$ be the Levi-Civita connection on $\mathcal{W}(p, q)$ with respect to the invariant metric defined by $\langle$,$\rangle . Then \widetilde{\nabla}=\nabla-S$ is the connection on the Lie group $\mathcal{W}(p, q)$ for which every left-invariant vector field is
parallel. Thus, conditions $(2.2)$ are satisfied and $S$ is a homogeneous quaternionic Kähler structure. Moreover, the holonomy algebra of the connection $\widetilde{\nabla}$ is trivial, and then $S$ provides the description of $\mathcal{W}(p, q)$ as a Lie group (see [TV, p. 32, Eqs. (1.79)]).

Table 4. The Q-representation $T: \mathfrak{u} \rightarrow \operatorname{End}(\widetilde{\mathfrak{u}})$

|  | $\widetilde{G}_{0}$ | $\widetilde{H}_{0}$ | $\widetilde{G}_{1}$ | $\widetilde{H}_{1}$ |
| :--- | :---: | :---: | :---: | :---: |
| $G_{0}$ | 0 | 0 | 0 | 0 |
| $H_{0}$ | $\frac{1}{2} \widetilde{G}_{0}$ | $\frac{1}{2} \widetilde{H}_{0}$ | $\frac{1}{2} \widetilde{G}_{1}$ | $\frac{1}{2} \widetilde{H}_{1}$ |
| $G_{1}$ | $-\frac{1}{2}\left(\widetilde{H}_{0}+\widetilde{H}_{1}\right)$ | $\frac{1}{2}\left(\widetilde{G}_{0}+\widetilde{G}_{1}\right)$ | $\frac{1}{2}\left(\widetilde{H}_{0}+\widetilde{H}_{1}\right)$ | $-\frac{1}{2}\left(\widetilde{G}_{0}+\widetilde{G}_{1}\right)$ |
| $H_{1}$ | $\frac{1}{2} \widetilde{G}_{1}$ | $\frac{1}{2} \widetilde{H}_{1}$ | $\frac{1}{2} \widetilde{G}_{0}$ | $\frac{1}{2} \widetilde{H}_{0}$ |
| $G_{2}$ | $-\frac{1}{2}\left(\widetilde{H}_{0}+\widetilde{H}_{2}\right)$ | $\frac{1}{2}\left(\widetilde{G}_{0}+\widetilde{G}_{2}\right)$ | $-\frac{1}{2}\left(\widetilde{H}_{3}+\widetilde{H}_{1}\right)$ | $-\frac{1}{2}\left(\widetilde{G}_{3}-\widetilde{G}_{1}\right)$ |
| $H_{2}$ | $\frac{1}{2} \widetilde{G}_{2}$ | $\frac{1}{2} \widetilde{H}_{2}$ | $-\frac{1}{2} \widetilde{G}_{3}$ | $\frac{1}{2} \widetilde{H}_{3}$ |
| $G_{3}$ | $-\frac{1}{2}\left(\widetilde{H}_{0}+\widetilde{H}_{3}\right)$ | $\frac{1}{2}\left(\widetilde{G}_{0}+\widetilde{G}_{3}\right)$ | $-\frac{1}{2}\left(\widetilde{H}_{1}+\widetilde{H}_{2}\right)$ | $\frac{1}{2}\left(\widetilde{G}_{1}-\widetilde{G}_{2}\right)$ |
| $H_{3}$ | $\frac{1}{2} \widetilde{G}_{3}$ | $\frac{1}{2} \widetilde{H}_{3}$ | $-\frac{1}{2} \widetilde{G}_{2}$ | $\frac{1}{2} \widetilde{H}_{2}$ |
| $Y_{j+}$ | $\frac{1}{2} \widetilde{Y}_{j-}$ | $\frac{1}{2} \widetilde{Y}_{j+}$ | $-\frac{1}{2} \widetilde{Y}_{j-}$ | $-\frac{1}{2} \widetilde{Y}_{j+}$ |
| $Y_{j-}$ | $-\frac{1}{2} \widetilde{Y}_{j+}$ | $\frac{1}{2} \widetilde{Y}_{j-}$ | $\frac{1}{2} \widetilde{Y}_{j+}$ | $-\frac{1}{2} \widetilde{Y}_{j-}$ |
| $Z_{k+}$ | $\frac{1}{2} \widetilde{Z}_{k-}$ | $\frac{1}{2} \widetilde{Z}_{k+}$ | $-\frac{1}{2} \widetilde{Z}_{k-}$ | $-\frac{1}{2} \widetilde{Z}_{k+}$ |
| $Z_{k-}$ | $-\frac{1}{2} \widetilde{Z}_{k+}$ | $\frac{1}{2} \widetilde{Z}_{k-}$ | $\frac{1}{2} \widetilde{Z}_{k+}$ | $-\frac{1}{2} \widetilde{Z}_{k-}$ |

Table 5. The Q-representation $T: \mathfrak{u} \rightarrow \operatorname{End}(\widetilde{\mathfrak{u}})$

|  | $\widetilde{G}_{2}$ | $\widetilde{H}_{2}$ | $\widetilde{G}_{3}$ | $\widetilde{H}_{3}$ |
| :--- | :---: | :---: | :---: | :---: |
| $G_{0}$ | 0 | 0 | 0 | 0 |
| $H_{0}$ | $\frac{1}{2} \widetilde{G}_{2}$ | $\frac{1}{2} \widetilde{H}_{2}$ | $\frac{1}{2} \widetilde{G}_{3}$ | $\frac{1}{2} \widetilde{H}_{3}$ |
| $G_{1}$ | $-\frac{1}{2}\left(\widetilde{H}_{2}+\widetilde{H}_{3}\right)$ | $\frac{1}{2}\left(\widetilde{G}_{2}-\widetilde{G}_{3}\right)$ | $-\frac{1}{2}\left(\widetilde{H}_{2}+\widetilde{H}_{3}\right)$ | $-\frac{1}{2}\left(\widetilde{G}_{2}-\widetilde{G}_{3}\right)$ |
| $H_{1}$ | $-\frac{1}{2} \widetilde{G}_{3}$ | $\frac{1}{2} \widetilde{H}_{3}$ | $-\frac{1}{2} \widetilde{G}_{2}$ | $\frac{1}{2} \widetilde{H}_{2}$ |
| $G_{2}$ | $\frac{1}{2}\left(\widetilde{H}_{0}+\widetilde{H}_{2}\right)$ | $-\frac{1}{2}\left(\widetilde{G}_{0}+\widetilde{G}_{2}\right)$ | $-\frac{1}{2}\left(\widetilde{H}_{3}+\widetilde{H}_{1}\right)$ | $\frac{1}{2}\left(\widetilde{G}_{3}-\widetilde{G}_{1}\right)$ |
| $H_{2}$ | $\frac{1}{2} \widetilde{G}_{0}$ | $\frac{1}{2} \widetilde{H}_{0}$ | $-\frac{1}{2} \widetilde{G}_{1}$ | $\frac{1}{2} \widetilde{H}_{1}$ |
| $G_{3}$ | $-\frac{1}{2}\left(\widetilde{H}_{1}+\widetilde{H}_{2}\right)$ | $-\frac{1}{2}\left(\widetilde{G}_{1}-\widetilde{G}_{2}\right)$ | $\frac{1}{2}\left(\widetilde{H}_{0}+\widetilde{H}_{3}\right)$ | $-\frac{1}{2}\left(\widetilde{G}_{0}+\widetilde{G}_{3}\right)$ |
| $H_{3}$ | $-\frac{1}{2} \widetilde{G}_{1}$ | $\frac{1}{2} \widetilde{H}_{1}$ | $\frac{1}{2} \widetilde{G}_{0}$ | $\frac{1}{2} \widetilde{H}_{0}$ |
| $Y_{j+}$ | $-\frac{1}{2} \widetilde{Y}_{j-}$ | $\frac{1}{2} \widetilde{Y}_{j+}$ | $-\frac{1}{2} \widetilde{Y}_{j-}$ | $-\frac{1}{2} \widetilde{Y}_{j+}$ |
| $Y_{j-}$ | $-\frac{1}{2} \widetilde{Y}_{j+}$ | $-\frac{1}{2} \widetilde{Y}_{j-}$ | $-\frac{1}{2} \widetilde{Y}_{j+}$ | $\frac{1}{2} \widetilde{Y}_{j-}$ |
| $Z_{k+}$ | $-\frac{1}{2} \widetilde{Z}_{k-}$ | $-\frac{1}{2} \widetilde{Z}_{k+}$ | $-\frac{1}{2} \widetilde{Z}_{k-}$ | $\frac{1}{2} \widetilde{Z}_{k+}$ |
| $Z_{k-}$ | $-\frac{1}{2} \widetilde{Z}_{k+}$ | $\frac{1}{2} \widetilde{Z}_{k-}$ | $-\frac{1}{2} \widetilde{Z}_{k+}$ | $-\frac{1}{2} \widetilde{Z}_{k-}$ |

Since (see 2.8$)$ we have $[\mathfrak{u}, \mathfrak{u}] \subset \mathfrak{u},[\mathfrak{u}, \widetilde{\mathfrak{u}}] \subset \widetilde{\mathfrak{u}},[\widetilde{\mathfrak{u}}, \widetilde{\mathfrak{u}}] \subset \mathfrak{u}$, and $\mathfrak{u}$ and $\widetilde{\mathfrak{u}}$ are orthogonal, from (3.3) we have

$$
\begin{equation*}
S_{U V \widetilde{W}}=0, \quad S_{\widetilde{U} V W}=0, \quad S_{U \tilde{V} W}=0, \quad S_{\widetilde{U} \widetilde{V} \widetilde{W}}=0 \tag{3.4}
\end{equation*}
$$

Table 6. The Q-representation $T: \mathfrak{u} \rightarrow \operatorname{End}(\widetilde{\mathfrak{u}})$

|  | $\widetilde{Y}_{j^{\prime}+}$ | $\widetilde{Y}_{j^{\prime}-}$ | $\widetilde{Z}_{k^{\prime}+}$ | $\widetilde{Z}_{k^{\prime}-}$ |
| :---: | :---: | :---: | :---: | :---: |
| $G_{0}$ | 0 | 0 | 0 | 0 |
| $H_{0}$ | $\frac{1}{2} \widetilde{Y}_{j^{\prime}+}$ | $\frac{1}{2} \widetilde{Y}_{j^{\prime}-}$ | $\frac{1}{2} \widetilde{Z}_{k^{\prime}+}$ | $\frac{1}{2} \widetilde{Z}_{k^{\prime}-}$ |
| $G_{1}$ | 0 | 0 | 0 | 0 |
| $H_{1}$ | 0 | 0 | 0 | 0 |
| $G_{2}$ | 0 | $-\widetilde{Y}_{j^{\prime}+}$ | 0 | 0 |
| $H_{2}$ | $\frac{1}{2} \widetilde{Y}_{j^{\prime}+}$ | $-\frac{1}{2} \widetilde{Y}_{j^{\prime}-}$ | 0 | 0 |
| $G_{3}$ | 0 | 0 | 0 | $-\widetilde{Z}_{k+}$ |
| $H_{3}$ | 0 | 0 | $\frac{1}{2} \widetilde{Z}_{k^{\prime}+}$ | $-\frac{1}{2} \widetilde{Z}_{k^{\prime}-}$ |

Table 7. The Q-representation $T: \mathfrak{u} \rightarrow \operatorname{End}(\widetilde{\mathfrak{u}})$

|  | $\widetilde{Y}_{j^{\prime}+}$ | $\widetilde{Y}_{j^{\prime}-}$ | $\widetilde{Z}_{k^{\prime}+}$ | $\widetilde{Z}_{k^{\prime}-}$ |
| :---: | :---: | :---: | :---: | :---: |
| $Y_{j+}$ | $\begin{aligned} & \frac{\delta_{j j^{\prime}}}{2}\left(\widetilde{H}_{0}+\widetilde{H}_{1}\right. \\ & \left.\quad+\widetilde{H}_{2}+\widetilde{H}_{3}\right) \end{aligned}$ | $\begin{aligned} & \frac{\delta_{j j^{\prime}}}{2}\left(\widetilde{G}_{0}+\widetilde{G}_{1}\right. \\ & \left.\quad-\widetilde{G}_{2}+\widetilde{G}_{3}\right) \end{aligned}$ | 0 | 0 |
| $Y_{j-}$ | $\begin{aligned} & -\frac{\delta_{j j^{\prime}}}{2}\left(\widetilde{G}_{0}+\widetilde{G}_{1}\right. \\ & \left.\quad+\widetilde{G}_{2}-\widetilde{G}_{3}\right) \end{aligned}$ | $\begin{aligned} & \frac{\delta_{j j^{\prime}}}{2}\left(\widetilde{H}_{0}+\widetilde{H}_{1}\right. \\ & \left.\quad-\widetilde{H}_{2}-\widetilde{H}_{3}\right) \end{aligned}$ | 0 | 0 |
| $Z_{k+}$ | 0 | 0 | $\begin{aligned} & \frac{\delta_{k k^{\prime}}}{2}\left(\widetilde{H}_{0}+\widetilde{H}_{1}\right. \\ & \left.\quad+\widetilde{H}_{2}+\widetilde{H}_{3}\right) \end{aligned}$ | $\begin{aligned} & \frac{\delta_{k k^{\prime}}}{2}\left(\widetilde{G}_{0}+\widetilde{G}_{1}\right. \\ & \left.\quad+\widetilde{G}_{2}-\widetilde{G}_{3}\right) \end{aligned}$ |
| $Z_{k-}$ | 0 | 0 | $\begin{aligned} & -\frac{\delta_{k k^{\prime}}}{2}\left(\widetilde{G}_{0}+\widetilde{G}_{1}\right. \\ & \left.-\widetilde{G}_{2}+\widetilde{G}_{3}\right) \end{aligned}$ | $\begin{aligned} & \frac{\delta_{k k^{\prime}}}{2}\left(\widetilde{H}_{0}+\widetilde{H}_{1}\right. \\ & \left.\quad-\widetilde{H}_{2}-\widetilde{H}_{3}\right) \\ & \hline \end{aligned}$ |

On account of (3.3), Table 1, and the equation $S_{U V \widetilde{W}}=0$ in (3.4), one obtains the nonzero values of $S_{U V W}$ for $U, V$ and $W$ in the orthonormal basis $\mathcal{B}$. In order to obtain $S_{\mid \mathfrak{u}^{*} \otimes \wedge^{2} \widetilde{\mathfrak{u}}^{*}}$, we use (3.2), (3.3), the equation $S_{U \tilde{V} W}=0$ in (3.4) and Tables 4 to 7 , since $[U, \widetilde{V}]=T_{U} \widetilde{V}$. From (3.3), by using (3.2), Tables 4 to 7 , and the equations $S_{\widetilde{U} V W}=S_{\widetilde{U} \widetilde{V} \widetilde{W}}=0$ in (3.4), we obtain the values of $S_{\widetilde{U}}$ for each $\widetilde{U}=\widetilde{G}_{i}, \widetilde{H}_{i}, \widetilde{Y}_{j+}, \widetilde{Y}_{j-}, \widetilde{Z}_{k+}, \widetilde{Z}_{k-}$.
4. The type of the structure on $\mathcal{W}(p, q)$. We now determine the type of the previous structure $S$.

Theorem 4.1. The homogeneous quaternionic Kähler structure on each rank-four Alekseevskian space $\mathcal{W}(p, q)$, given in Theorem 3.1, has a nonzero component in each basic Fino type.

Proof. From the expression of $S$ in Theorem 3.1 and from Table 1 we find that the forms $\alpha^{a}, a=1,2,3$, in (2.3) corresponding to $S$ are given by

$$
\begin{equation*}
\alpha^{1}=-\frac{1}{2} \sum_{i=0}^{3} \gamma^{i}, \quad \alpha^{2}=-\widetilde{\eta}^{0}, \quad \alpha^{3}=\widetilde{\gamma}^{0} . \tag{4.1}
\end{equation*}
$$

Hence, since $S=\Theta+\mathcal{T}$, where $\Theta$ is given by (2.3), from (4.1) and using Table 1. it follows that the tensor field $\Theta$ on $\mathcal{W}(p, q)$ corresponding to $S$ is given by

$$
\begin{align*}
& \frac{1}{4} \sum_{i=0}^{3} \gamma^{i} \otimes\left\{\sum_{l=0}^{3}\left(\gamma^{l} \wedge \eta^{l}-\widetilde{\gamma}^{l} \wedge \widetilde{\eta}^{l}\right)\right.  \tag{4.2}\\
& \left.\quad-\sum_{j=1}^{p}\left(\xi^{j+} \wedge \xi^{j-}-\widetilde{\xi}^{j+} \wedge \widetilde{\xi}^{j-}\right)-\sum_{k=1}^{q}\left(\zeta^{k+} \wedge \zeta^{k-}-\widetilde{\zeta}^{k+} \wedge \widetilde{\zeta}^{k-}\right)\right\} \\
& +\frac{1}{2} \widetilde{\gamma}^{0} \otimes\left\{\sum_{l=0}^{3}\left(\gamma^{l} \wedge \widetilde{\eta}^{l}+\widetilde{\gamma}^{l} \wedge \eta^{l}\right)\right. \\
& \left.\quad-\sum_{j=1}^{p}\left(\xi^{j+} \wedge \widetilde{\xi}^{j-}+\widetilde{\xi}^{j+} \wedge \xi^{j-}\right)-\sum_{k=1}^{q}\left(\zeta^{k+} \wedge \widetilde{\zeta}^{k-}+\widetilde{\zeta}^{k+} \wedge \zeta^{k-}\right)\right\} \\
& -\frac{1}{2} \widetilde{\eta}^{0} \otimes\left\{\sum_{l=0}^{3}\left(\gamma^{l} \wedge \widetilde{\gamma}^{l}+\eta^{l} \wedge \widetilde{\eta}^{l}\right)\right. \\
& \left.+\sum_{j=1}^{p}\left(\xi^{j+} \wedge \widetilde{\xi}^{j+}+\xi^{j-} \wedge \widetilde{\xi}^{j-}\right)+\sum_{k=1}^{q}\left(\zeta^{k+} \wedge \widetilde{\zeta}^{k+}+\zeta^{k-} \wedge \widetilde{\zeta}^{k-}\right)\right\} .
\end{align*}
$$

On the other hand, considering again that the structure decomposes as $S=\Theta+\mathcal{T}$, and the values of the 1 -forms $\alpha^{a}$ are those in (4.1), we infer that as, for instance,

$$
\sum_{a=1}^{3} \alpha^{a}\left(J_{a} H_{2}\right)=-1 / 2 \neq 0
$$

the component $\Theta$ of the structure $S$ does not belong to $\mathcal{Q} \mathcal{K}_{2}$.
From 4.2, the nonzero values of $\Theta_{X Y Z}$ are those with $X=G_{0}, G_{1}$, $G_{2}, G_{3}, \widetilde{G}_{0}, \widetilde{H}_{0}$. In particular one has the next nonzero values of type $\Theta_{X X Y}$ :

$$
\begin{align*}
& \Theta_{G_{0} G_{0} H_{0}}=\Theta_{G_{1} G_{1} H_{1}}=\Theta_{G_{2} G_{2} H_{2}}=\Theta_{G_{3} G_{3} H_{3}}=1 / 4, \\
& \Theta_{\widetilde{G}_{0} \widetilde{G}_{0} H_{0}}=\Theta_{\widetilde{H}_{0} \widetilde{H}_{0} H_{0}}=1 / 2 . \tag{4.3}
\end{align*}
$$

Suppose next that $\Theta \in \mathcal{Q} \mathcal{K}_{1}$. Then there would be a 1 -form $\alpha$ as that in expressions (2.4), and in particular we would have

$$
1 / 4=\Theta_{G_{0} G_{0} H_{0}}=\alpha\left(H_{0}\right), \quad 1 / 2=\Theta_{\widetilde{G}_{0} \widetilde{G}_{0} H_{0}}=\alpha\left(H_{0}\right),
$$

which is absurd. Hence $\Theta \in \mathcal{Q} \mathcal{K}_{12} \backslash\left\{\mathcal{Q K}_{1} \cup \mathcal{Q} \mathcal{K}_{2}\right\}$.
Furthermore, as $\operatorname{dim} \mathcal{W}(p, q)=4(4+p+q)$ and on account of (4.3), the form $\beta$ defining the $\mathcal{Q K}_{3}$-component (see expressions (2.4)), that is,

$$
\beta=\frac{1}{2+\operatorname{dim} \mathfrak{w}(p, q)} c_{12}(\mathcal{T})=\frac{1}{18+4(p+q)} c_{12}(\mathcal{T}),
$$

is given by

$$
\begin{equation*}
\beta=\frac{1}{18+4(p+q)}\left\{\left(\frac{15}{4}+p+q\right) \eta^{0}+\left(\frac{3}{4}+p+q\right) \eta^{1}+\frac{3}{4}\left(\eta^{2}+\eta^{3}\right)\right\} \tag{4.4}
\end{equation*}
$$

Hence $S$ has a nonzero component in $\mathcal{Q} \mathcal{K}_{3}$ for all $0 \leq p \leq q$.
Consider now the operator $\Psi: \hat{\mathcal{V}} \rightarrow \hat{\mathcal{V}}$ defined by

$$
\Psi(\mathcal{T})_{X Y Z}=\mathcal{T}_{Y Z X}+\mathcal{T}_{Z X Y}+\sum_{a=1}^{3}\left(\mathcal{T}_{J_{a} Y J_{a} Z X}+\mathcal{T}_{J_{a} Z X J_{a} Y}\right)
$$

having eigenvalues 2 and -4 , with corresponding eigenspaces $\mathcal{Q K}_{34}$ and $\mathcal{Q} \mathcal{K}_{5}$, respectively (see expressions $(2.4)$ ). Consider $\mathcal{T}^{\beta} \in \mathcal{Q} \mathcal{K}_{3}$, given by

$$
\begin{aligned}
\mathcal{T}_{X Y Z}^{\beta}= & \langle X, Y\rangle \beta(Z)-\langle X, Z\rangle \beta(Y) \\
& +\sum_{a=1}^{3}\left(\left\langle X, J_{a} Y\right\rangle \beta\left(J_{a} Z\right)-\left\langle X, J_{a} Z\right\rangle \beta\left(J_{a} Y\right)\right)
\end{aligned}
$$

where $\beta$ stands for the 1 -form (4.4). Then $\mathcal{T}-\mathcal{T}^{\beta} \in \mathcal{Q} \mathcal{K}_{45}$, so that we have $\Psi\left(\mathcal{T}-\mathcal{T}^{\beta}\right)_{X Y Z}=\Psi(\mathcal{T})_{X Y Z}-2 \mathcal{T}_{X Y Z}^{\beta}$. Taking then for instance the vectors $X=Y=G_{0}, Z=H_{0}$, we get
$\left(\mathcal{T}-\mathcal{T}^{\beta}\right)_{G_{0} G_{0} H_{0}}=\frac{6+p+q}{2(9+2(p+q))}, \quad \Psi\left(\mathcal{T}-\mathcal{T}^{\beta}\right)_{G_{0} G_{0} H_{0}}=-\frac{21+5(p+q)}{9+2(p+q)}$,
hence $\mathcal{T}-\mathcal{T}^{\beta} \in \mathcal{Q K}_{45} \backslash\left\{\mathcal{Q} \mathcal{K}_{4} \cup \mathcal{Q} \mathcal{K}_{5}\right\}$ for all $0 \leq p \leq q$. That is, $S$ has, for all $0 \leq p \leq q$, a nonzero component in each basic type.

As the simplest examples, consider the $4(4+q)$-dimensional spaces $\mathcal{W}(0, q)$ $\cong \mathrm{SO}_{0}(4+q, 4) /(\mathrm{SO}(4+q) \times \mathrm{SO}(4)), q \geq 0$, which $(\mathrm{cf}$. [Co, Table 1]) are the Alekseevskian $\mathcal{W}$-spaces which are symmetric. As such, they admit the structure $S=0$. Moreover, being solvable Lie groups with Lie algebra $\mathfrak{w}(0, q)$, they admit the corresponding structure given by Theorem 3.1, when $p=0$.

Acknowledgements. Research partly supported by Ministry of Economy and Competitiveness, Spain, under Project MTM2011-22528.

## References

[A] D. V. Alekseevsky, Classification of quaternionic spaces with a transitive solvable group of motions, Math. USSR Izv. 9 (1975), 297-339.
[AC] D. V. Alekseevsky and V. Cortés, Homogeneous quaternionic Kähler manifolds of unimodular group, Boll. Un. Mat. Ital. B (7) 11 (1997), no. 2, suppl., 217-219.
[AS] W. Ambrose and I. M. Singer, On homogeneous Riemannian manifolds, Duke Math. J. 25 (1958), 647-669.
[BW] J. Bagger and E. Witten, Matter couplings in $N=2$ supergravity, Nucl. Phys. B222 (1983), 1-10.
[BGO1] W. Batat, P. M. Gadea and J. A. Oubiña, Homogeneous pseudo-Riemannian structures of linear type, J. Geom. Phys. 61 (2011), 745-764.
[BGO2] -, -, —, Homogeneous quaternionic Kähler structures on rank-three Alekseevsky spaces, Publ. Math. Debrecen 78 (2011), 691-707.
[CGO1] M. Castrillón López, P. M. Gadea and J. A. Oubiña, Homogeneous quaternionic Kähler structures on eight-dimensional non-compact quaternion-Kähler symmetric spaces, Math. Phys. Anal. Geom. 12 (2009), 47-74.
[CGO2] -, 一, —, Homogeneous quaternionic Kähler structures on 12-dimensional Alekseevsky spaces, J. Geom. Phys. 57 (2007), 2098-2113.
[CGS] M. Castrillón López, P. M. Gadea and A. F. Swann, Homogeneous quaternionic Kähler structures and quaternionic hyperbolic space, Transform. Groups 11 (2006), 575-608.
[Ce] S. Cecotti, Homogeneous Kähler manifolds and T-algebras in $N=2$ supergravity and superstrings, Comm. Math. Phys. 124 (1989), 23-55.
[Co] V. Cortés, Alekseevskian spaces, Differential Geom. Appl. 6 (1996), 129-168.
[F] A. Fino, Intrinsic torsion and weak holonomy, Math. J. Toyama Univ. 21 (1998), 1-22.
[I] S. Ishihara, Quaternion Kählerian manifolds, J. Differential Geom. 9 (1974), 483-500.
[J] W. Jelonek, Quaternionic-Kähler geometry and almost Kähler $\mathcal{A}$-manifolds, Ann. Polon. Math. 75 (2000), 111-124.
[K] V. F. Kiričenko, On homogeneous Riemannian spaces with an invariant structure tensor, Dokl. Akad. Nauk SSSR 252 (1980), 291-293 (in Russian).
[TV] F. Tricerri and L. Vanhecke, Homogeneous Structures on Riemannian Manifolds, London Math. Soc. Lecture Note Ser. 83, Cambridge Univ. Press, 1983.
[V] G. E. Vîlcu, 3-submersions from QR-hypersurfaces of quaternionic Kähler manifolds, Ann. Polon. Math. 98 (2010), 301-309.
[WP] B. de Wit and A. van Proeyen, Special geometry, cubic polynomials and homogeneous quaternionic spaces, Comm. Math. Phys. 149 (1992), 307-333.
[W] J. A. Wolf, Complex homogeneous contact manifolds and quaternionic symmetric spaces, J. Math. Mech. 14 (1965), 1033-1047.

## Wafaa Batat

École Normale Supérieure
d'Enseignement Technologique d'Oran
Département de Mathématiques et Informatique
B.P. 1523, El M'Naouar, Oran, Algeria

E-mail: wafa.batat@enset-oran.dz
Jaime Muñoz Masqué
Instituto de Seguridad de la Información, CSIC
Serrano 144, 28006 Madrid, Spain
E-mail: jaime@iec.csic.es
P. M. Gadea Instituto de Física Fundamental, CSIC Serrano 113-bis, 28006 Madrid, Spain E-mail: pmgadea@iff.csic.es

Received 25.3.2011
and in final form 9.9.2011

