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Abstract. We establish the existence of at least three weak solutions for the
(p1, . . . , pn)-biharmonic system{

∆(|∆ui|pi−2∆ui) = λFui(x, u1, . . . , un) in Ω,

ui = ∆ui = 0 on ∂Ω,

for 1 ≤ i ≤ n. The proof is based on a recent three critical points theorem.

1. Introduction. In this work, we study the existence of at least three
weak solutions for the nonlinear elliptic system of (p1, . . . , pn)-biharmonic
type under Navier boundary conditions

(1.1)

{
∆(|∆ui|pi−2∆ui) = λFui(x, u1, . . . , un) in Ω,

ui = ∆ui = 0 on ∂Ω,

for 1 ≤ i ≤ n, where Ω ⊂ RN (N ≥ 2) is a non-empty bounded open set
with smooth boundary ∂Ω, pi ≥ 1 for 1 ≤ i ≤ n, λ > 0, F : Ω×Rn → R is a
function such that F (·, t1, . . . , tn) is continuous in Ω for all (t1, . . . , tn) ∈ Rn,
F (x, ·, . . . , ·) is C1 in Rn for every x ∈ Ω and F (x, 0, . . . , 0) = 0 for all x ∈ Ω;
finally Ft denotes the partial derivative of F with respect to t.

Here and in the next section, X will denote the Cartesian product of n
Sobolev spaces W 2,pi(Ω) ∩W 1,pi

0 (Ω) for i = 1, . . . , n, i.e., X = (W 2,p1(Ω) ∩
W 1,p1

0 (Ω))× · · · × (W 2,pn(Ω) ∩W 1,pn
0 (Ω)) endowed with the norm

‖(u1, . . . , un)‖ =
n∑
i=1

‖ui‖pi
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where

‖ui‖pi =
( �

Ω

|∆ui(x)|pi dx
)1/pi

for 1 ≤ i ≤ n.
We say that u = (u1, . . . , un) is a weak solution to the system (1.1) if

u = (u1, . . . , un) ∈ X and

�

Ω

n∑
i=1

|∆ui(x)|pi−2∆ui(x)∆vi(x) dx

− λ
�

Ω

n∑
i=1

Fui(x, u1(x), . . . , un(x))vi(x) dx = 0

for every (v1, . . . , vn) ∈ X.
There seems to be increasing interest in studying fourth-order boundary

value problems, especially because the static form change of beam or the
support of a rigid body can be described by a fourth-order equation, and a
model to study travelling waves in suspension bridges involves a fourth-order
nonlinear equation (for instance, see [15]), so this subject is important to
physics. More general nonlinear fourth-order elliptic boundary value prob-
lems have been studied [1, 4, 5, 7, 8, 10–13, 16-20, 22, 26, 28] in recent years.
In [12], using variational methods and under a suitable set of assumptions
involving two parameters α and β (for instance, α2 − 4β > 0) the authors
obtained two nontrivial solutions to the problem

(1.2)


uiv + αu′′ + βu = f(x, u), x ∈ (0, 1),

u(0) = u(1) = 0,

u′′(0) = u′′(1) = 0

where α, β are real constants and f : [0, 1]×R→ R is a continuous function.
In [13], applying Morse theory, the existence of three solutions to problem
(1.2) with α = β = 0 was proved. In [17], by also using the fixed-point index
in cones and under the assumption α2 − 4β = 0, multiple solutions to the
problem

(1.3)


uiv + αu′′ + βu = λf(x, u), x ∈ (0, 1),

u(0) = u(1) = 0,

u′′(0) = u′′(1) = 0

were obtained, where α, β are real constants, λ is a positive parameter and
f : [0, 1]×R→ R is a continuous function, while in [7] the authors established
multiple solutions for problem (1.3) by using a three critical points theorem
(see Theorem 2.1) established in [3]. In [1] based on Ricceri’s three critical
points theorem [23] the existence of at least three (weak) solutions of the
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fourth-order boundary value problem
uiv + αu′′ + βu = λf(x, u) + µg(x, u), x ∈ (0, 1)

u(0) = u(1) = 0,

u′′(0) = u′′(1) = 0,

was considered where α, β are real constants, f, g : [0, 1] × R → R are
L2-Carathéodory functions and λ, µ > 0. In [18], the authors studied the
following superlinear p-biharmonic elliptic problem with Navier boundary
condition:

(1.4)

{
∆(|∆u|p−2∆u) = g(x, u) in Ω,

u = ∆u = 0 on ∂Ω,

where Ω is a bounded domain with smooth boundary ∂Ω in Rn, n ≥ 2p+1,
p > 1, and g : Ω × R → R is a Carathéodory function. By means of Morse
theory, the authors proved the existence of a nontrivial solution to problem
(1.4) having a linking structure around the origin. Moreover, in the case of
both resonance near zero and nonresonance at +∞, the existence of two
nontrivial solutions was shown. Very recently, Li and Tang [19], employing
Ricceri’s three critical points theorem [23] investigated the problem

(1.5)

{
∆(|∆u|p−2∆u) = λf(x, u) + µg(x, u) in Ω,

u = ∆u = 0 on ∂Ω,

where Ω ⊂ RN (N ≥ 1) is a non-empty bounded open set with C1 boundary,
p > max{1, N/2}, λ, µ > 0 and f : Ω × R → R is a continuous function,
establishing the existence of an open interval Λ ⊆ [0,∞[ and a number
q > 0 with the following property: for every λ ∈ Λ and every Carathéodory
function g : Ω × R→ R satisfying

sup
|t|≤ζ
|g(·, t)| ∈ L1(Ω)

for all ζ > 0, there is a δ > 0 such that, for each µ ∈ [0, δ] equation (1.5)

admits at least three weak solutions in W 2,p(Ω)∩W 1,p
0 (Ω) whose norms are

less than q; Li and Tang in [20] generalized these results to the system
∆(|∆u|p−2∆u) = λFu(x, u, v) + µGu(x, u, v) in Ω,

∆(|∆v|q−2∆v) = λFv(x, u, v) + µGv(x, u, v) in Ω,

u = ∆u = v = ∆v = 0 on ∂Ω,

where Ω ⊂ RN (N ≥ 1) is a non-empty bounded open set with smooth
boundary, p > max{1, N/2}, q > max{1, N/2}, λ, µ > 0, F : Ω × R2 → R
is a function such that F (·, t1, t2) is continuous in Ω for all (t1, t2) ∈ R2,
F (x, ·, ·) is C1 in R2 for every x ∈ Ω and F (x, 0, 0) = 0 for all x ∈ Ω, and
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G : Ω × R2 → R is a measurable function with respect to x in Ω for every
(t1, t2) ∈ R2, and is a C1-function of (t1, t2) ∈ R2 for every x in Ω.

We point out that our results extend in several directions the previous
work of [1], [16], [20] and [19] by relaxing some hypotheses and sharpening
the conclusion. The applicability of our results is illustrated by an example.

2. Main results. Our analysis is based on the following three critical
points theorem (see also [24], [23], [6] and [21] for related results), which
transfers the existence of three solutions of the system (1.1) into the exis-
tence of critical points of the Euler functional.

Theorem 2.1 (see [9, Theorem 3.6]). Let X be a reflexive real Banach
space, let Φ : X → R be a sequentially weakly lower semicontinuous, coercive
and continuously Gâteaux differentiable functional whose Gâteaux derivative
admits a continuous inverse on X∗, and let Ψ : X → R be a sequentially
weakly upper semicontinuous and continuously Gâteaux differentiable func-
tional whose Gâteaux derivative is compact. Assume that there exist r ∈ R
and w ∈ X with 0 < r < Φ(w) such that

(i) supu∈Φ−1(]−∞,r]) Ψ(u) < r
Ψ(w)

Φ(w)
,

(ii) for each λ in

Λr :=

]
Φ(w)

Ψ(w)
,

r

supu∈Φ−1(]−∞,r]) Ψ(u)

[
the functional Φ− λΨ is coercive.

Then for each λ ∈ Λr the functional Φ−λΨ has at least three distinct critical
points in X.

We need the following proposition in the proof of Theorem 2.3.

Proposition 2.2. Let X be as in the introduction and T : X → X∗ be
the operator defined by

T (u1, . . . , un)(h1, . . . , hn) =
�

Ω

n∑
i=1

|∆ui(x)|pi−2∆ui(x)∆hi(x) dx

for every (u1, . . . , un), (h1, . . . , hn) ∈ X. Then T admits a continuous in-
verse on X∗.

Proof. Taking into account (2.2) of [25] for pi ≥ 2 there exists a positive
constant cpi such that

〈|x|pi−2x− |y|pi−2y, x− y〉 ≥ cpi |x− y|pi

for every x, y ∈ RN where 〈· , ·〉 denotes the usual inner product in RN .
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Thus, it is easy to see that

(T (u1, . . . , un)− T (v1, . . . , vn))(u1 − v1, . . . , un − vn)

≥ min{cp1 , . . . , cpn}
n∑
i=1

‖ui − vi‖pipi

for every (u1, . . . , un), (v1, . . . , vn) ∈ X, which means that T is strongly
monotone. Therefore, since T is coercive and hemicontinuous in X (for more
details, see [20]), by applying Theorem 26.A of [27], we conclude that T
admits a continuous inverse on X∗.

Let us recall that for 1 ≤ i ≤ n, W 1,pi
0 (Ω) is compactly embedded in

(2.1)

Lqi(Ω) for all qi ∈ [pi, piN/(N − pi)[ if pi < N,

Lqi(Ω) for all qi > 1 if pi = N,

C0(Ω) if pi > N,

and that for 1 ≤ i ≤ n, W 2,pi(Ω) is compactly embedded in

(2.2)

Lp
∗
i (Ω) for all p∗i ∈ [pi, piN/(N − 2pi)[ if pi < N/2,

Lri(Ω) for all ri > pi if 2pi = N,

C0(Ω) if pi > max{1, N/2}.

So, if pi > max{1, N/2} for 1 ≤ i ≤ n (N = 1 is included in this case)

the embedding W 2,pi(Ω) ∩W 1,pi
0 (Ω) ↪→ C0(Ω) is compact, and if pi ≤ N/2

for 1 ≤ i ≤ n, the embedding W 2,pi(Ω) ∩W 1,pi
0 (Ω) ↪→ LqiΩ) is compact for

all qi ∈ [pi, piN/(N − 2pi)[.

Put

(2.3) k = max

{
sup

ui∈W 2,pi (Ω)∩W 1,pi
0 (Ω)\{0}

maxx∈Ω |ui(x)|pi
‖ui‖pipi

: 1 ≤ i ≤ n
}
.

In the case pi > max{1, N/2} for 1 ≤ i ≤ n, since the embedding W 2,pi(Ω)∩
W 1,pi

0 (Ω) ↪→ C0(Ω) for 1 ≤ i ≤ n is compact, one has k <∞.

For all γ > 0 we define

(2.4) K(γ) =

{
t = (t1, . . . , tn) ∈ Rn :

n∑
i=1

|ti|pi
pi
≤ γ

}
.

Now, we state our main result.

Theorem 2.3. Assume that there exist a positive constant r and two
elements w = (w1, . . . , wn) and w = (w1, . . . , wn) in X such that

(A1)
∑n

i=1
‖wi‖

pi
pi

pi
> r;
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(A2) if pi > max{1, N/2} for 1 ≤ i ≤ n, then

(2.5)
�

Ω

sup
t∈K(kr)

F (x, t) dx <
(
r

n∏
i=1

pi

) 	
Ω F (x,w(x)) dx∑n

i=1

∏n
j=1, j 6=i pj‖wi‖

pi
pi

where k is given by (2.3), and

(2.6) lim sup
|t1|+···+|tn|→∞

F (x, t)∑n
i=1 |ti|pi/pi

<

	
Ω supt∈K(kr) F (x, t) dx

m(Ω)kr

uniformly with respect to x ∈ Ω where m(·) is Lebesgue measure;

(A3) if pi ≤ max{1, N/2} for 1 ≤ i ≤ n, then there exist positive con-
stants b1, θ and s with pi < θ < piN/(N − 2pi) and s < pi for 1 ≤ i ≤ n
satisfying

|F (x, t)| ≤ b1
(

1 +
n∑
i=1

|ti|s
)
∀ti ∈ R,(2.7)

lim sup∑n
i=1 |ti|→0

|F (x, t)|∑n
i=1 |ti|θ

<∞,(2.8)

�

Ω

F (x,w(x)) dx > 0.(2.9)

Then, for each λ in

Λr :=



] ∑n
i=1 ‖wi‖

pi
pi/pi	

Ω F (x,w(x)) dx
,

r	
Ω supt∈K(kr) F (x, t) dx

[
if pi > max{1, N/2},] ∑n

i=1 ‖wi‖
pi
pi/pi	

Ω F (x,w(x)) dx
,

r	
Ω sup∑n

i=1 ‖ui‖
pi
pi
/pi≤r F (x, u(x)) dx

[
if pi≤max{1,N/2}

the system (1.1) admits at least three distinct weak solutions in X.

Proof. In order to apply Theorem 2.1 to our problem, we introduce the
functionals Φ, Ψ : X → R for each u = (u1, . . . , un) ∈ X as follows:

(2.10) Φ(u) =

n∑
i=1

‖ui‖pipi
pi

and

(2.11) Ψ(u) =
�

Ω

F (x, u1(x), . . . , un(x)) dx.

It is well known that Φ and Ψ are well defined and continuously differentiable
functionals whose derivatives at the point u = (u1, . . . , un) ∈ X are the
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functionals Φ′(u), Ψ ′(u) ∈ X∗ given by

Φ′(u)(v) =
�

Ω

n∑
i=1

|∆ui(x)|pi−2∆ui(x)∆vi(x) dx,

Ψ ′(u)(v) =
�

Ω

n∑
i=1

Fui(x, u1(x), . . . , un(x))vi(x) dx

for every v = (v1, . . . , vn) ∈ X; moreover, Ψ is sequentially weakly upper
semicontinuous.

Furthermore, Proposition 2.2 implies that Φ′ admits a continuous inverse
on X∗ and since Φ′ is monotone, we infer that Φ is sequentially weakly lower
semicontinuous (see [27, Proposition 25.20]).

We claim that Ψ ′ : X → X∗ is a compact operator. If pi > max{1, N/2}
for 1 ≤ i ≤ n, it is enough to show that Ψ ′ is strongly continuous on X.
To see this, for fixed (u1, . . . , un) ∈ X let (u1m, . . . , unm) → (u1, . . . , un)
weakly in X as m → ∞. Then the convergence is uniform on Ω (see [27]).
Since F (x, ·, . . . , ·) is C1 in Rn for every x ∈ Ω, the derivatives of F are
continuous in Rn for every x ∈ Ω, so for 1 ≤ i ≤ n, Fui(x, u1m, . . . , unm)→
Fui(x, u1, . . . , un) strongly as m → ∞, which yields Ψ ′(u1m, . . . , unm) →
Ψ ′(u1, . . . , un) strongly as m → ∞. Thus we proved that Ψ ′ is strongly
continuous on X, which implies that Ψ ′ is compact operator by Proposition
26.2 of [27]. If pi ≤ max{1, N/2} for 1 ≤ i ≤ n, taking into account that the

embedding W 2,pi ∩W 1,pi
0 ↪→ Lqi , qi ∈ [pi, piN/(N − 2pi)[ for 1 ≤ i ≤ n is

compact, from condition (A3), we see that Φ′ is compact. Hence the claim
is true.

From (A1) and (2.10) we get 0 < r < Φ(w), as required in Theorem 2.1.
In what follows, we discuss two cases.

Case 1. If pi > max{1, N/2} for 1 ≤ i ≤ n, from (2.3) for each
(u1, . . . , un) ∈ X we have

sup
x∈Ω
|ui(x)|pi ≤ k‖ui‖pipi for i = 1, . . . , n,

so that

(2.12) sup
x∈Ω

n∑
i=1

|ui(x)|pi
pi

≤ k
n∑
i=1

‖ui‖pipi
pi

,

and hence using (2.10) and (2.12), we obtain

Φ−1(]−∞, r]) =

{
u ∈ X :

n∑
i=1

‖ui‖pipi
pi

≤ r
}

⊆
{
u ∈ X :

n∑
i=1

|ui(x)|pi
pi

≤ kr for all x ∈ Ω
}
.
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Therefore, owing to assumption (2.5), we have

sup
u∈Φ−1(]−∞,r])

Ψ(u) = sup
u∈Φ−1(]−∞,r])

�

Ω

F (x, u(x)) dx

≤
�

Ω

sup
t∈K(kr)

F (x, t) dx

< r

	
Ω F (x,w(x)) dx∑n
i=1 ‖wi‖

pi
pi/pi

= r
Ψ(w)

Φ(w)
.

Furthermore, from (2.6) there exist two constants γ, τ ∈ R with

γ <

	
Ω supt∈K(kr) F (x, t) dx

r

such that

km(Ω)F (x, t) ≤ γ
n∑
i=1

|ti|pi
pi

+ τ for all x ∈ Ω

and all (t1, . . . , tn) ∈ Rn. Fix u = (u1, . . . , un) ∈ X. Then

(2.13) F (x, u(x)) ≤ 1

km(Ω)

(
γ

n∑
i=1

|ui(x)|pi
pi

+ τ

)
for all x ∈ Ω.

Now, in order to prove the coercivity of the functional Φ − λΨ , we first
assume that γ > 0. So, for any fixed λ ∈ Λr, from (2.10)–(2.13) we have

Φ(u)− λΨ(u) =

n∑
i=1

‖ui‖pipi
pi

− λ
�

Ω

F (x, u(x)) dx

≥
n∑
i=1

‖ui‖pipi
pi

− λγ

km(Ω)

( n∑
i=1

1

pi

�

Ω

|ui(x)|pi dx
)
− λτ

k

≥
n∑
i=1

‖ui‖pipi
pi

− λγ

km(Ω)

(
km(Ω)

n∑
i=1

‖ui‖pipi
pi

)
− λτ

k

=
n∑
i=1

‖ui‖pipi
pi

− λγ
n∑
i=1

‖ui‖pipi
pi

− λτ

k

≥
(

1− γ r	
Ω supt∈K(kr) F (x, t) dx

) n∑
i=1

‖ui‖pipi
pi

− λτ

k
,

and thus

lim
‖u‖→∞

(Φ(u)− λΨ(u)) =∞.

On the other hand, if γ ≤ 0, we clearly get lim‖u‖→∞(Φ(u)− λΨ(u)) = ∞.
Both cases lead to the coercivity of the functional Φ− λΨ .
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Case 2. If pi ≤ max{1, N/2} for 1 ≤ i ≤ n, from (2.10) we get

Φ−1(]−∞, r]) =

{
u ∈ X :

n∑
i=1

‖ui‖pipi
pi

≤ r
}

⊆ {u ∈ X : ‖ui‖pi ≤ pi
√
pir for 1 ≤ i ≤ n}.

From (2.8), for some positive constant b2, there exists η ∈ (0, 1) satisfying

|F (x, t)| ≤ b2
n∑
i=1

|ti|θ

for all |ti| ≤ η for 1 ≤ i ≤ n. In view of assumption (A3) and (2.7), if we put

b3 = max

{
b2, sup
|ti|>η

b1(1 +
∑n

i=1 |ti|s)∑n
i=1 |ti|θ

}
,

then |F (x, t)| ≤ b3
∑n

i=1 |ti|θ for all ti ∈ R. Therefore, by (2.1) and (2.2), we
have (for a suitable constant b4 > 0)

sup
u∈Φ−1(]−∞,r])

Ψ(u) ≤ sup
Φ(u)≤r

�

Ω

|F (x, u(x))| dx

≤ b3 sup
Φ(u)≤r

�

Ω

n∑
i=1

|ui(x)|θ dx

≤ b4 sup∑n
i=1 ‖ui‖

pi
pi
/pi≤r

n∑
i=1

‖ui‖θpi

≤ b4n( pi
√
pir)

θ for 1 ≤ i ≤ n.

So

lim
r→0

supu∈Φ−1(]−∞,r]) Ψ(u)

r
= 0.

Since, from assumption (2.9), Ψ(w) > 0, from the above we have

sup
u∈Φ−1(]−∞,r])

Ψ(u) < r
Ψ(w)

Φ(w)
.

Moreover, any fixed λ ∈ Λr, from assumption (2.7) one has

Φ(u)− λΨ(u) ≥
n∑
i=1

‖ui‖pipi
pi

− λ
�

Ω

b1

(
1 +

n∑
i=1

|ui(x)|s
)
dx.

Noting that s < qi for all qi ∈ [pi, piN/(N − 2pi)[, we see that

Φ(u)− λΨ(u) ≥
n∑
i=1

‖ui‖pipi
pi

− λ
�

Ω

b1

(
1 + C

n∑
i=1

|ui(x)|qi
)
dx
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for some C > 0. Then, using the embedding W 2,pi(Ω) ∩W 1,pi
0 (Ω) ↪→ LqiΩ)

for all qi ∈ [pi, piN/(N − 2pi)[, for each λ ∈ Λr we have

lim
‖u‖→∞

(Φ(u)− λΨ(u)) =∞.

So, assumptions (i) and (ii) in Theorem 2.1 are satisfied. Hence, as the
weak solutions of the system (1.1) are exactly the solutions of the equation
Φ′(u) − λΨ ′(u) = 0, the system (1.1) admits at least three distinct weak
solutions in X.

Now we want to present a verifiable consequence of the main result where
the test function w is specified.

Fix x0 ∈ Ω and pick r1, r2 with 0 < r1 < r2 such that

B(x0, r1) ⊂ B(x0, r2) ⊆ Ω

where B(x0, ri) denotes the (open) ball with center at x0 and radius ri for
i = 1, . . . , n. Put

(2.14) σi = σi(N, pi, r1, r2) :=
12(N +2)2(r1 +r2)

(r2 − r1)3

(
kπN/2(rN2 −rN1 )

Γ (1 +N/2)

)1/pi

for 1 ≤ i ≤ n, and

(2.15) θi = θi(N, pi, r1, r2)

:=


3N

(r2 − r1)(r1 + r2)

(
kπN/2((r1 +r2)

N − (2r1)
N )

2NΓ (1 +N/2)

)1/pi

if N <
4r1

r2 − r1
,

12r1
(r2 − r1)2(r1 + r2)

(
kπN/2((r1 + r2)

N − (2r1)
N )

2NΓ (1 +N/2)

)1/pi

if N ≥ 4r1
r2−r1

.

Corollary 2.4. Assume that there exists w = (w1, . . . , wn) ∈ X such
that assumption (A3) in Theorem 2.3 holds. Furthermore, suppose that there
exist two positive constants c and d with

n∑
i=1

(dθi)
pi

pi
>

c∏n
i=1 pi

such that:

(B1) F (x, t) ≥ 0 for each (x, t) ∈ (Ω \B(x0, r1))× [0, d]n;

(B2) if pi > max{1, N/2} for 1 ≤ i ≤ n, then

(2.16)
n∑
i=1

(dσi)
pi

pi

�

Ω

sup
t∈K(c/

∏n
i=1 pi)

F (x, t) dx

<
c∏n
i=1 pi

�

B(x0,r1)

F (x, d, . . . , d) dx
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where σi and θi are given by (2.14) and (2.15), respectively, and

(2.17) lim sup
|t1|+···+|tn|→∞

F (x, t)∑n
i=1 |ti|pi/pi

<

∏n
i=1 pi

m(Ω)c

�

Ω

sup
t∈K(c/

∏n
i=1 pi)

F (x, t) dx

for all x ∈ Ω.
Then, for r := c/k

∏n
i=1 pi and each λ in

Λ′ :=

] ∑n
i=1

(dσi)
pi

kpi	
B(x0,r1)

F (x, d, . . . , d) dx
,

r	
Ω supt∈K(kr) F (x, t) dx

[
if pi>max{1,N/2},

] ∑n
i=1

‖wi‖
pi
pi

pi	
ΩF (x,w(x)) dx

,
r	

Ω sup∑n
i=1

‖ui‖
pi
pi

pi
≤r
F (x, u(x)) dx

[
if pi≤max{1,N/2},

the system (1.1) admits at least three distinct weak solutions in X.

Proof. Set w(x) = (w1(x), . . . , wn(x)) where for 1 ≤ i ≤ n,

wi(x)

=


0 if x ∈ Ω \B(x0, r2),

d(3(l4−r42)−4(r1+r2)(l
3−r32)+6r1r2(l

2−r22))

(r2 − r1)3(r1 + r2)
if x∈B(x0, r2)\B(x0, r1),

d if x ∈ B(x0, r1),

with l = dist(x, x0) =
√∑N

i=1(xi − x0i )2. We have

∂wi(x)

∂xi

=


0 if x∈(Ω\B(x0, r2)) ∪ S(x0, r1),

12d(l2(xi − x0i )−(r1 + r2)l(xi−x0i )+r1r2(xi−x0i ))
(r2 − r1)3(r1 + r2)

if x∈B(x0, r2)\B(x0, r1),

∂2wi(x)

∂2xi

=


0 if x∈(Ω \B(x0, r2)) ∪B(x0, r1),

12d(r1r2 + (2l − r1 − r2)(xi − x0i )2/l − (r2 + r1 − l)l)
(r2 − r1)3(r1 + r2)

if x∈B(x0, r2) \B(x0, r1),
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and

N∑
i=1

∂2wi(x)

∂2xi

=


0 if x∈(Ω \B(x0, r2)) ∪B(x0, r1),

12d((N + 2)l2 − (N + 1)(r1 + r2)l +Nr1r2))

(r2 − r1)3(r1 + r2)

if x∈B(x0, r2) \B(x0, r1).

It is easy to see that w = (w1, . . . , wn) ∈ X and, in particular,

‖wi‖pipi =
(12d)pi2πN/2

(r2 − r1)3pi(r1 + r2)piΓ (N/2)
(2.18)

×
r2�

r1

|(N + 2)ξ2 − (N + 1)(r1 + r2)ξ +Nr1r2|piξN−1 dξ

for 1 ≤ i ≤ n. Hence, from (2.14), (2.15) and (2.18) we get

(2.19)
(dθi)

pi

k
< ‖wi‖pipi <

(dσi)
pi

k

for 1 ≤ i ≤ n. However, taking into account that
∑n

i=1
(dθi)

pi

pi
> c∏n

i=1 pi
,

from (2.19) one has
n∑
i=1

‖wi‖pipi
pi

> r,

which is assumption (A1).

Since 0 ≤ wi(x) ≤ d for each x ∈ Ω for 1 ≤ i ≤ n, condition (B1) ensures
that

(2.20)
�

Ω\B(x0,r2)

F (x,w(x)) dx+
�

B(x0,r2)\B(x0,r1)

F (x,w(x)) dx ≥ 0.

Moreover, from (2.16) and (2.20), we have

�

Ω

sup
t∈K(kr)

F (x, t) dx <
c
	
B(x0,r1)

F (x, d, . . . , d) dx(∑n
i=1

(dσi)pi

pi

)
(
∏n
i=1 pi)

≤ c

k

	
Ω F (x,w(x)) dx∑n

i=1

∏n
j=1,j 6=i

pj‖wi‖pipi

=
(
r

n∏
i=1

pi

) 	
Ω F (x,w(x))dx∑n

i=1

∏n
j=1, j 6=i pj‖wi‖

pi
pi

,

so assumption (2.5) in (A2) is satisfied. Also, (2.17) yields (2.6). Hence,
taking into account that Λ′ ⊆ Λr, using Theorem 2.3, we obtain the desired
conclusion.
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Remark 2.5. For any u ∈ L2(Ω), we have u =
∑∞

k=1 akek, where the
ak are coefficients and ek is an eigenvector corresponding to the eigenvalue
λk for k = 1, . . . ,∞ of the operator −∆, the selfadjoint extension of the
operator −

∑N
k=1 ∂

2/∂x2k with the domain C2
0 (Ω) ⊂ L2(Ω), where ek for k =

1, . . . ,∞ form an orthonormal base. Then we can get −∆u =
∑∞

k=1 akλkek.
Using the equality above, it follows that

‖∆u‖2L2 =
∞∑
k=1

a2kλ
2
k ≥ λ21

∞∑
k=1

a2k = λ21‖u‖2L2 ,

so

(2.21) ‖∆u‖L2 ≥ λ1‖u‖L2 .

Taking into account that ‖u‖∞ ≤ 1
2‖u‖

1/2
L2 ‖∆u‖

1/2
L2 (see [14]), from (2.21) we

obtain

(2.22) ‖u‖∞ ≤
1

2
λ
−1/2
1 ‖∆u‖L2 .

Moreover, using the Hölder inequality we have

‖∆u‖L2 =
( �

Ω

|∆u|2 dx
)1/2

≤ (‖1‖Lp‖ |∆u|2‖Lq)1/2 ≤ m(Ω)1/2p‖∆u‖L2q

where 1/p+ 1/q = 1, which in conjunction with (2.22) yields

‖u‖∞ ≤
1

2
λ
−1/2
1 m(Ω)1/2p‖∆u‖L2q .

We recall an estimate for λ1, the principal eigenvalue of the operator ∆, on
a planar convex domain: λ1 ≥ π2

4

(
L2

4A2 + 1
d2

)
where A, L and d denote the

area, boundary length and diameter of the domain, respectively (see [2]).

We present an example to illustrate Corollary 2.4 as follows:

Example 2.6. Let Ω = {(x, y) ∈ R2 : x2 + y2 ≤ 9}, p1 = p2 = 4 and
F : Ω × R2 → R be defined by

F (x, y, t1, t2) =


0 for ti < 0, i = 1, 2,

(x2 + y2)t1002 e−t2 for t1 < 0, t2 ≥ 0,

(x2 + y2)t1001 e−t1 for t1 ≥ 0, t2 < 0,

(x2 + y2)
∑2

i=1 t
100
i e−ti for ti ≥ 0, i = 1, 2,

for (x, y, t1, t2) ∈ Ω×R2. In fact, by choosing r1 = 1 and r2 = 2, taking into

account that k = 9·64
289π3 , we have

σ1 = σ2 =
3456

π1/2
4

√
27

289
and θ1 = θ2 =

12

π1/2
4

√
45

1156
.



274 S. Heidarkhani et al.

Clearly, by choosing x0 = (0, 0), c = 4 and d = 100 we observe that assump-
tion (B1) is satisfied. For (B2),

2∑
i=1

(dσi)
pi

pi

�

Ω

sup
(t1,t2)∈K(c/

∏2
i=1 pi)

F (x, t1, t2) dx dy

= κ
�

Ω

sup
(t1,t2)∈K(1/4)

F (x, y, t1, t2) dx dy

≤ κ
�

Ω

sup
(t1,t2)∈K(1/4)

(x2 + y2)
2∑
i=1

t100i e−ti dx dy

= κ max
(t1,t2)∈K(1/4)

2∑
i=1

t100i e−ti
�

x2+y2≤9

(x2 + y2) dx dy

≤ κ
(

2 max
|t|≤1

t100e−t
) �

x2+y2≤9

(x2 + y2) dx dy

≤ 81πκe ≤ π

4
100100e−100 =

1

2
100100e−100

�

x2+y2≤1

(x2 + y2) dx dy

=
c∏2
i=1 pi

�

S(x0,r1)

F (x, y, d, d) dx dy,

where κ = 1
2(100 · 3456

π1/2
4

√
27
289)4. So, Corollary 2.4 is applicable to the system

∆(|∆u1|2∆u1) = λ(x2 + y2)(u+1 )99e−u
+
1 (100− u+1 ) in Ω,

∆(|∆u2|2∆u2) = λ(x2 + y2)(u+2 )99e−u
+
2 (100− u+2 ) in Ω,

u1 = ∆u1 = u2 = ∆u2 = 0 on ∂Ω,

where u+i = max{ui, 0}, for every λ ∈
]289π2(100· 3456

π1/2
4
√

27
289

)4

18·64·(100)100e−100 , 289π2

26·310e
[
.

Put

τi = τi(N, pi, r1, r2)(2.23)

:=
12(N +2)2(r1 +r2)

(r2 − r1)3

(
k(rN2 −rN1 )

rN1

)1/pi

for 1≤ i≤ n.

Here is a remarkable consequence of Corollary 2.4.

Corollary 2.7. Let F : Rn → R be a C1 function in Rn such that
F (0, . . . , 0) = 0. Assume that there exist positive constants c and d with∑n

i=1 (dθi)
pi/pi > c/

∏n
i=1 pi and an element w = (w1, . . . , wn) ∈ X such

that

(C1) F (t) ≥ 0 for each t ∈ [0, d]n;
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(C2) if pi > max{1, N/2} for 1 ≤ i ≤ n, then

(2.24) m(Ω)

n∑
i=1

(dτi)
pi

pi
max

t∈K(c/
∏n
i=1 pi)

F (t) <
c∏n
i=1 pi

F (d, . . . , d)

where τi is given by (2.23), and

(2.25) lim sup
|t1|+···+|tn|→∞

F (t)∑n
i=1 |ti|pi/pi

<

∏n
i=1 pi
c

max
t∈K(c/

∏n
i=1 pi)

F (t1, . . . , tn);

(C3) if pi ≤ max{1, N/2} for 1 ≤ i ≤ n, then there exist positive con-
stants b1, θ and s with pi < θ < piN/(N − 2pi) and s < pi for 1 ≤ i ≤ n
satisfying

|F (t)| ≤ b1
(

1 +

n∑
i=1

|ti|s
)
∀ti ∈ R,(2.26)

lim sup∑n
i=1 |ti|→0

|F (t)|∑n
i=1 |ti|θ

<∞,(2.27)

�

Ω

F (w(x)) dx > 0.(2.28)

Then, for r := c/k
∏n
i=1 pi and each λ in

Λ′′ :=



]∑n
i=1

(dτi)
pi

kpi

F (d, . . . , d)
,

r

m(Ω) maxt∈K1(kr) F (t)

[
if pi > max{1, N/2},

] ∑n
i=1

‖wi‖
pi
pi

pi	
Ω F (w(x)) dx

,
r	

Ω sup∑n
i=1 ‖ui‖

pi
pi
/pi≤r F (u(x)) dx

[
if pi ≤ max{1, N/2},

the system {
∆(|∆ui|pi−2∆ui) = λFui(u1, . . . , un) in Ω,

ui = ∆ui = 0 on ∂Ω

for 1 ≤ i ≤ n, admits at least three distinct weak solutions in X.

Proof. Set F (x, t) = F (t) for all x ∈ Ω and t = (t1, . . . , tn) ∈ Rn.
Clearly, all assumptions of Corollary 2.4 are satisfied. In particular, since

m(B(x0, r1)) = rN1
πN/2

Γ (1+N/2) , assumption (2.24) implies (2.16). So, we have

the conclusion by using Corollary 2.4.
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