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On topological classification of complex mappings

by Hadi Seyedinejad (Kashan)
and Ali Zaghian (Shahin Shahr)

Abstract. We study the topological invariant φ of Kwieciński and Tworzewski, par-
ticularly beyond the case of mappings with smooth targets. We derive a lower bound for φ
of a general mapping, which is similarly effective as the upper bound given by Kwieciński
and Tworzewski. Some classes of mappings are identified for which the exact value of φ
can be computed. Also, we prove that the variation of φ on the source space of a mapping
with a smooth target is semicontinuous in the Zariski topology.

1. Introduction and main results. We study the topology of complex
analytic mappings (which we simply callmappings) by analyzing their family
of fibres. Kwieciński and Tworzewski [KT] introduce a topological invariant
φ = φ(f) of a mapping f : X → Y , defined as the supremum of the number
of points in any given fibre of f that can be simultaneously approximated
by points in general fibres (see Definition 2.1 below). They show that if Y
is locally irreducible of dimension n, then φ(f) can only take on values
0, 1, . . . , n−1, and∞, with φ(f) =∞ being equivalent to openness of f . We
will provide a family of examples (Example 2.3) which shows that, for every
target dimension n, all the values of φ = 0, 1, . . . , n − 1 can be attained by
non-open mappings.

If Y is a singular space, the formula given in [KT] (see (2.1) below)
computes only an upper bound for φ(f). In this paper, we present a similarly
effective formula which gives a lower bound for φ:

Theorem 1.1. Let Y be a locally irreducible space contained in a space Υ
of pure dimension N . Let Ω be a space of pure dimension k, and suppose
that X ⊆ Y ×Ω is a space which can be defined in Υ ×Ω locally by at most
r holomorphic functions (i.e., every stalk of the coherent ideal of OΥ×Ω
defining X admits r generators). Let f : X → Y be the projection mapping,
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and suppose that φ(f) > 0. Then

φ(f) ≥ min
λ6=j∈I

[
N − dim f(Xj)− 1

j − (k − r)

]
,

where I is the set of all fibre dimensions of f , λ is the minimum of I, and,
for every j ∈ I, Xj is the locus of all ξ ∈ X with dimξ f

−1(f(ξ)) = j.
(Square brackets take the integer part of the fraction.)

We will comment on the assumptions of Theorem 1.1 in Section 3.
In the special case of mappings with smooth targets, as shown in [KT],

the value of φ is precisely equal to the upper bound given by formula (2.1).
(We have denoted this upper bound by φs.) In the next two results, which
are proved in Section 4, we provide a larger class of mappings for which we
also have φ = φs.

Corollary 1.2. Let Y be a locally irreducible, pure-dimensional space,
Ω a space of pure dimension k, and X a pure-dimensional space defined in
Y ×Ω locally by r holomorphic functions, where r = dim(Y ×Ω)− dimX.
(In other words, we may say that X is locally a set-theoretical complete inter-
section in Y ×Ω.) Then, for the projection f : X → Y , we have φ(f) = φs(f).

Proposition 1.3. Consider a mapping f : X → Y with Y locally irre-
ducible and of pure dimension. If Y admits a desingularization which is a
finite mapping (in particular, if dimY = 1), then φ(f) = φs(f).

As an immediate consequence, the important result [KT, Theorem 1.1]
(and, similarly, [KT, Theorem 2.2]) can be stated for a wider class of map-
pings than the ones with smooth targets:

Corollary 1.4. Let f : X → Y be a mapping, with X and Y of pure
dimension d and Y locally irreducible, such that either Y admits a finite
desingularization or f can be set up as in Corollary 1.2. Suppose that exactly
for one η0 ∈ Y the fibre f−1(η0) is of positive dimension. Then, for every x
in an open subset of X, we have

#f−1(f(x)) ≥
[

d− 1

dim f−1(η0)

]
,

where # denotes the number of points.

Lastly, we will prove that, given a mapping with a smooth target, the
local values of φ (see Definition 5.1) vary semicontinuously with respect to
the analytic Zariski topology:

Proposition 1.5. Let f : X → Y be a mapping with Y smooth (or,
more generally, with f as in Corollary 1.2 or Proposition 1.3). For every
a ∈ N, the set {x ∈ X | φx(f) ≤ a} is a (closed) analytic subset of X.
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For the basics about complex analytic spaces and mappings, we suggest
[F] and [Ł].

Some conventions. We always consider the strong topology of complex
analytic spaces (that is, the one induced by the Euclidean topology of the lo-
cal models) unless we explicitly indicate that the analytic Zariski topology is
being considered (that is, the topology defined by taking (Euclidean closed)
analytic subsets as closed sets). Since our study concerns only the topolog-
ical structure, we may always assume that our spaces are reduced. So, in
particular, by an irreducible component of a space X, we mean an isolated
one (i.e., one which is not included in another irreducible component of X).
Since the nature of our study, and of the invariant φ in particular, is indeed
local, we might implicitly take for granted that, for instance, the number of
irreducible components of a space is finite. We set N = {0, 1, 2, . . . }.

2. The invariant φ. We recall a precise definition of φ (from [KT]) as
follows:

Definition 2.1. For a mapping f : X → Y , φ(f) is the supremum of all
integers i ≥ 1 with the following property: for every ξ ∈ X, every x1, . . . , xi
in the fibre f−1(f(ξ)), and every subset B ⊆ Y with empty interior, there
exist a sequence {yj}j in Y \ B with yj → f(ξ), and sequences {xk,j}j ,
k = 1, . . . , i, such that xk,j ∈ f−1(yj) and xk,j → xk. If no such i exists, then
we set φ(f) = 0.

Equivalently [KT, Proposition 6.2], φ can also be defined as follows:

Definition 2.2. For a mapping f : X → Y , φ(f) is the largest integer
i ≥ 1 such that the i-fold fibred power of f , denoted by f{i} : X{i} → Y ,
contains no vertical components, and φ(f) = 0 if no such i exists. (We recall
that an irreducible component of the source space of a mapping is called a
vertical component if its image has empty interior in the target.)

The latter definition is mainly useful for explicit calculations, particularly
considering that vertical components in some important cases (such as the
case of algebraic mappings) correspond to torsion elements. (See [ABM], [A],
and [AS], besides [KT], for effective methods of testing for openness in terms
of vertical components or torsion elements.)

The formula given in [KT] for estimation of φ is as follows: Let f :
X → Y be a mapping with Y locally irreducible and of pure dimension n.
Consider an equidimensional partition {Xp}p of X with respect to f , which
is a locally finite partition of X such that each Xp is a non-empty irreducible
(locally closed) subspace of X and the restriction f |Xp is an equidimensional
mapping (i.e., a mapping whose non-empty fibres are all of pure and the
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same dimension). Then φ(f) is bounded above by

(2.1) φs(f) := min
p

{[
n− dim f(Xp)− 1

fbd f |Xp − (hp − n)

] ∣∣∣∣ fbd f |Xp > hp − n
}
,

where fbd stands for fibre dimension and hp = min{dimξX | ξ ∈ Xp}. It is
proved in [KT, Theorem 3.5] that if Y is smooth, then φ(f) = φs(f).

Formula (2.1) becomes somewhat simpler if we know that X is of pure
dimensionm. In that case, it suffices to first obtain the partition of X defined
by fibre dimensions of f , that is, {Xj}j , whereXj , for every fibre dimension j
of f , is the locus of all points ξ ∈ X such that the fibre dimension fbdξ f of
f at ξ is equal to dimξ f

−1(f(ξ)) = j. Then

(2.2) φs(f) = min
j

{[
n− dim f(Xj)− 1

j − (m− n)

] ∣∣∣∣ j > m− n
}
.

The following example shows that the classification of non-open mappings
by their Kwieciński–Tworzewski invariant φ is not void; that is, for every
target dimension n and every integer 0 ≤ i ≤ n− 1, there exists a mapping
f : X → Y with dimY = n such that φ(f) = i.

Example 2.3. Choose n, ` ∈ N with 1 ≤ ` ≤ n. Let X be the analytic
subset of C2n+1 with coordinates (y1, . . . , yn, x1, . . . , xn+1) defined by

y1x1 + · · ·+ y`x` + x2n+1 = 0 and y2x1 + · · ·+ y`x`−1 + y1x` = 0.

(If ` = 1, the second equation is y1x1 = 0.)
Set Y = Cn with coordinates (y1, . . . , yn). Define f : X → Y as the

projection. We claim that φ(f) = `− 1.
First, we justify that X is of pure dimension 2n − 1, so that we may

use (2.2). If ` = 1, then X is just a union of two (2n − 1)-dimensional
spaces (one of which is clearly vertical over Y ). So, suppose that ` > 1. For
y ∈ Y = Cn, define

Dy =

[
y1 · · · y`−1 y`

y2 · · · y` y1

]
,

and set A = {(y, x) ∈ X | rankDy < 2}. We have

A= {(y, x) ∈ X | ∃c ∈ C \ {0} such that (y1, . . . , y`) = c(y2, . . . , y`, y1)}
∪ {(y, x) ∈ X | y1 = · · · = y` = 0}

= {(y, x)∈X | ∃ c∈C \ {0} such that y1 = c`y1, y2 = c`−1y1, . . . , y`= cy1}
∪ {(y, x) ∈ X | y1 = · · · = y` = 0}

=
⋃

c∈C, c`=1

{(y, x) ∈ X | y2 = c`−1y1, . . . , y` = cy1}.
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By considering the defining equations of X, we get

A =
⋃

c∈C, c`=1

{(y, x) ∈ C2n+1 | y2 = c`−1y1, . . . , y` = cy1,
y1x1 + c`−1y1x2 + · · ·+ cy1x` + x2n+1 = 0,

c`−1y1x1 + · · ·+ cy1x`−1 + y1x` = 0}.
Multiplying the third equation by c gives

A =
⋃

c∈C, c`=1

{(y, x) ∈ C2n+1 | y2 = c`−1y1, . . . , y` = cy1,
y1x1 + c`−1y1x2 + · · ·+ cy1x` + x2n+1 = 0,

y1x1 + c`−1y1x2 + · · ·+ cy1x` = 0},
which simplifies to

(2.3) A =
⋃

c∈C, c`=1

{(y, x) ∈ C2n+1 | y2 = c`−1y1, . . . , y` = cy1,
xn+1 = 0,
y1(x1 + c`−1x2 + · · ·+ cx`) = 0}.

It is now easily seen that dimA = 2n − `. Write X = A ∪ (X \ A). Since
X is defined by two equations, we have dimξX ≥ 2n + 1 − 2 = 2n − 1 for
every ξ ∈ X. On the other hand, dimA = 2n − ` < 2n − 1, and hence
dimA < dimξX for every ξ ∈ X. We conclude that A is a nowhere-dense
subset of X.

Take a point (η, ξ) ∈ X \ A, where η ∈ Cny and ξ ∈ Cn+1
x . Since

rankDη = 2, there is a non-singular submatrix[
ηi ηj

ησ(i) ησ(j)

]
for some i, j, 1 ≤ i < j ≤ `, where σ is the permutation (1 2 · · · `). It
follows that we can solve the defining equations of X in a neighbourhood of
(η, ξ) in X \A for xi and xj . Hence dim(η,ξ)(X \A) = 2n+ 1− 2 = 2n− 1,
and in particular X \ A is of pure dimension 2n− 1. It follows that X is of
pure dimension 2n− 1.

Next, we need to find the partition of X defined by fibre dimensions of f .
Take a point η ∈ Y = Cn. If rankDη = 2, then from the defining equations
of X, we get dim f−1(η) = n− 1. If rankDη < 2 and η1 6= 0, then, by (2.3),
we get f−1(f(η)) = {(η, x) ∈ C2n+1 | xn+1 = 0, x1+ c`−1x2+ · · ·+ cx` = 0}.
So again, dim f−1(η) = n − 1. Finally, assume rankDη < 2 and η1 = 0,
or equivalently by (2.3), η1 = · · · = η` = 0. In this case, f−1(f(η)) =
{(η, x) ∈ C2n+1 | xn+1 = 0}, and hence dim f−1(η) = n. Thus there is only
one non-generic fibre locus to consider:Xn, with f(Xn) = {η1 = · · ·= η`=0}.
One then calculates, by (2.2), that

φ(f) = φs(f) =

[
n− (n− `)− 1

n− (2n− 1− n)

]
= `− 1.
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3. Mappings with singular targets. Theorem 1.1 is the subject of
this section. We remark first that the assumption of φ(f) > 0 is not an
important restriction in Theorem 1.1. Indeed, if φ(f) = 0, then the mapping
f has a vertical component, the upper bound φs(f) readily gives the value of
zero, and there will be no need for a lower bound. Second, the special setting
of Theorem 1.1 can be established (locally) for any mapping f : X → Y ,
for example, by embedding X (after shrinking if needed) into some Ω = Ck,
replacing X by the graph Γf of f in Y ×X, and replacing f by the projection
Γf → Y . An (open) question immediately follows:

Question 3.1. Is there a systematic method of setting up (according to
the assumptions of Theorem 1.1) a given mapping f so that the best lower
bound (and possibly the exact value) for φ(f) is obtained by Theorem 1.1?

Proof of Theorem 1.1. For every ζ ∈ X{i}, i ≥ 1, the germ X
{i}
ζ will be

defined in (Υ ×Ωi)ζ by at most ir equations, according to the underlying set
of fibred product. Hence, by estimating the dimension of the intersection,
for every ζ ∈ X{i}, we can write

(3.1) dimX
{i}
ζ ≥ dim(Υ ×Ωi)ζ − ir = N + i(k − r).

By considering again the set-theoretical structure of fibred product, write

X{i} =
⋃

(j1,...,ji)

Xj1 ×Y · · · ×Y Xji ,

where the union is over all (j1, . . . , ji) ∈ Ni such that j1, . . . , ji are fibre
dimensions of f . Denote by j0 the maximum of j1, . . . , ji, and consider the
projection π : Xj1 ×Y · · · ×Y Xji → Xj0 . Since fbdζ(f ◦ π) ≤ ij0 for every
ζ ∈ Xj1×Y · · ·×Y Xji , by the Dimension Formula (see, e.g., [Ł, Section V.3]),
we get

(3.2) dim(Xj1 ×Y · · · ×Y Xji) ≤ ij0 + dim f(Xj0).

Suppose i ≥ 1 is such that, for every fibre dimension j > λ (where λ is
the minimal fibre dimension of f), we have

(3.3) ij + dim f(Xj) < N + i(k − r).

Then (3.1)–(3.3) imply that dim(Xj1 ×Y · · · ×Y Xji) < dimX
{i}
ζ for ev-

ery (j1, . . . , ji) 6= (λ, . . . , λ) and every ζ ∈ X{i}. This, in turn, implies
that (Xj1 ×Y · · · ×Y Xji)ζ is a nowhere-dense subgerm of X{i}ζ for every
(j1, . . . , ji) 6= (λ, . . . , λ) and every ζ ∈ X{i}. Now, take a point ζ ∈ X{i},
and write

X
{i}
ζ = ((Xλ)

{i})ζ ∪
( ⋃

(j1,...,ji)6=(λ,...,λ)

Xj1 ×Y · · · ×Y Xji

)
ζ
.
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As the second summand is the germ of a locally finite union of nowhere-
dense subsets, it follows that ((Xλ)

{i})ζ is a dense subgerm of X{i}ζ . On the
other hand, f |Xλ is an open mapping (by Remmert’s Rank Theorem (see,
e.g., [Ł, Section V.6]), the fact that f has no vertical components, and local
irreducibility of Y ). Then, since openness is preserved under pulling back,
it follows by induction that (f |Xλ){i} : (Xλ)

{i} → Y is an open mapping.
Thus X{i}ζ cannot have any vertical components over Y . We have thus shown
that for any i ≥ 1 such that (3.3) holds for every j > λ, X{i}ζ has no vertical
components for every ζ ∈ X{i}, and hence X{i} has no vertical components.
But (3.3) is equivalent to

i ≤ N − dim f(Xj)− 1

j − (k − r)

for every j > λ. (Note that if j > λ, then we have j > k − r, since by
estimation of codimension applied to a fibre, λ ≥ dimΩ − r = k − r.) The
result follows now by Definition 2.2.

In the following example, we apply Theorem 1.1 to calculate the exact
value of φ(f).

Example 3.2. Set

Y = {y ∈ C4 | y1y4 − y2y3 = 0},
X = {(y, x) ∈ Y × C | y1x2 + y4x+ y2 − y3 = 0},

and define f : X → Y as the projection.
Take a point η ∈ Y . If η1 6= 0 or η4 6= 0, then f−1(η) is either a singleton

or a pair of points. If η1 = η4 = 0, then (by the defining equations of Y )
η2η3 = 0, and, in order to get a non-empty fibre, we should have (by the
defining equations of X) η3 = η4 = 0, so η = 0, and the fibre will be Cx.
Thus {X0, X1} is the partition of X defined by fibre dimensions of f . We
have dim f(X1) = 0.

The space X has pure dimension 3. By (2.2), we get

φs(f) =

[
3− 0− 1

1− (3− 3)

]
= 2.

Thus φ(f) ≤ 2.
Now, apply Theorem 1.1 by setting Υ = Y , N = 3, Ω = C, k = 1, and

r = 1. We get

φ(f) ≥
[

3− 0− 1

1− (1− 1)

]
= 2.

Thus φ(f) = 2.
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4. Special classes of mappings. In this section, we give the proofs of
those results that identify classes of mappings for which φ = φs.

Proof of Corollary 1.2. We can assume that f has no vertical compo-
nents, as otherwise we have φ(f) = φs(f) = 0. In the context of Theorem 1.1,
set Υ = Y , n := N = dimY , and m := dimX. Then, by the Dimension For-
mula, we have λ = m − n, where λ is the minimum fibre dimension of f .
On the other hand, by assumption, we have k − r = m − n. Now, compare
the formula of our lower bound in Theorem 1.1 and formula (2.2) to con-
clude that the former is equal to the latter and, φ(f) being in between, that
φ(f) = φs(f).

Next, we go over to the proof of Proposition 1.3. We need a lemma first.

Lemma 4.1. Consider mappings f : X → Y and σ : Z → Y , and let
f ′ : Z ×Y X → Z be the pullback of f by σ. If σ is surjective and has no
vertical components, then φ(f ′) ≤ φ(f).

Proof. Set i := φ(f) + 1, so that the i-fold fibred power f{i} : X{i} → Y
has a vertical component, say Σ. Let σ′ be the pullback of σ by f{i}, and let
(f{i})′ be the pullback of f{i} by σ. We get the following Cartesian square:

Z ×Y X{i}
σ′

−−−−→ X{i}y(f{i})′
yf{i}

Z
σ−−−−→ Y

Suppose σ is surjective. Then the pullback σ′ is surjective, so (σ′)−1(reg(Σ))
is a non-empty open subset of Z ×Y X{i}, where reg(Σ) denotes the reg-
ular locus of Σ. Let Σ′ be an irreducible component of Z ×Y X{i} with a
non-empty intersection with (σ′)−1(reg(Σ)). Then reg(Σ′)∩ (σ′)−1(reg(Σ))

is a non-empty open subset of Σ′, which is mapped into the set σ−1(f{i}(Σ))
by (f{i})′. Suppose now that σ has no vertical components, which implies
that the inverse image of a set with empty interior by σ has empty inte-
rior. Therefore σ−1(f{i}(Σ)) has empty interior in Z, as by verticality of Σ,
f{i}(Σ) has empty interior in Y . Now that an open subset of Σ′ has an im-
age with empty interior in Z, we conclude (by irreducibility of X and thus
pure-dimensionality of its image) that the whole Σ′ should have such image.
Note that (f{i})′, by the universal properties of fibred product, is equivalent
to (f ′){i}. Thus (f{i})′ has a vertical component. By Definition 2.2, we get
φ(f ′) < i, thus φ(f ′) ≤ φ(f).

Proof of Proposition 1.3. Let σ : Z → Y be a finite desingularization
of Y . Here, by local irreducibility of Y , one easily verifies that σ is an
open mapping. Let f ′ : Z ×Y X → Z be the pullback of f by σ, and
σ′ : Z ×Y X → X the pullback of σ by f . Since σ is surjective and has no
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vertical components, by Lemma 4.1, we get φ(f ′) ≤ φ(f). We know that
φ(f) ≤ φs(f), and Z being smooth, we have φs(f ′) = φ(f ′). Altogether,

φs(f
′) = φ(f ′) ≤ φ(f) ≤ φs(f).

To conclude the proof, it suffices to show that φs(f ′) ≥ φs(f).
Let {Xj}j be the partition of X defined by fibre dimensions j of f . Note

that σ′ is surjective, for it is a pullback of the surjective mapping σ. Then
observe that, for every ξ ∈ X, the fibre of f through ξ is isomorphic to the
fibre of f ′ through every ξ′ ∈ (σ′)−1(ξ). Therefore {(σ′)−1(Xj)}j will be the
partition of Z×Y X defined by fibre dimensions j of f ′. By decomposing Xj

into irreducible components
⋃
iXj,i, a rank partition {Xj,i \

⋃i−1
k=1Xj,k}j,i

of X with respect to f is constructed; denote it {Xp}p. In a similar way,
construct a rank partition out of {(σ′)−1(Xj)}j ; denote it {X ′q}q. By (2.1),
we have

(4.1) φs(f
′) =

[
dimZ − dim f ′(X ′q)− 1

j − (hq − dimZ)

]
for some X ′q, with fbd f ′|X′

q
= j. Note that, by construction, X ′q is mapped

by σ′ into some Xp, with

(4.2) fbd f |Xp = j.

Then σ(f ′(X ′q)) ⊆ f(Xp), and, as a result of finiteness of σ, we get

(4.3) dim f ′(X ′q) ≤ dim f(Xp).

Note also that σ′ is an open, finite mapping (for σ is), thus dimξ(Z×Y X) =
dimσ′(ξ)X for every ξ ∈ Z ×Y X. In particular,

(4.4) hq = min{dimξ Z ×Y X | ξ ∈ X ′q} ≥ hp = min{dimξX | ξ ∈ Xp}.

Now, by (4.1)–(4.4) and (2.1), it follows that φs(f ′) ≥ φs(f).

5. Semicontinuity of φ

Definition 5.1. Let f : X → Y be a mapping. For ξ ∈ X, we define
φξ(f) := supU φ(f |U ), where the supremum is over all open subsets U of X
containing ξ.

We finish the paper with the proof of lower semicontinuity of φ in the
Zariski topology.

Proof of Proposition 1.5. It suffices to prove that, for every ξ ∈ X, the
conclusion is true for f |U , where U is some open neighbourhood containing ξ.
So, take ξ ∈ X. We may shrink X at ξ ∈ X as we wish. Also, we may assume
that Y is connected (thus pure-dimensional, for the sake of using (2.1)).
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For every fibre dimension j of f , let Xj as before denote the set of points
at which the fibre dimension of f is equal to j. For each j, let Xj =

⋃
iXj,i

be the decomposition into irreducible components. By shrinking X, we may
assume that there are only finitely many j’s and that, for every j, every such
decomposition is finite. Denote the (finite) set of all these (j, i)’s by I.

For contradiction, suppose that φx(f) is not lower semicontinuous (in the
Zariski topology) on X, i.e., there exists ξ ∈ X such that, for every Zariski
open U ⊆ X containing ξ, there exists x ∈ U for which φξ(f) > φx(f).
Notice that φx(f) = φ(f |Vx) for some open Vx ⊆ U containing x. For the
latter in turn, according to (2.1), we have

φ(f |Vx) =
[
dimY − dim f(Wx)− 1

jx − (hx − dimY )

]
,

where jx is some fibre dimension of f , Wx is some irreducible component of
Xjx,ix ∩ Vx, where (jx, ix) ∈ I, and hx = min{dimyX | y ∈ Wx}. Observe
that dim f(Wx) = dim f(Xjx,ix), considering that Xjx,ix is an irreducible
space. Thus φx(f) depends only on (jx, ix) and hx.

Recall that U was arbitrary. Therefore, given that (jx, ix) and hx can
only take finitely many values on X, it follows that there exist (j0, i0) ∈ I,
h0 ∈ N, and a sequence {xr}r∈N of mutually disjoint points of X convergent
in the Zariski topology to ξ, such that, by (2.1), φxr(f) is constantly equal
to

(5.1) φxr(f) =

[
dimY − dim f(Xj0,i0)− 1

j0 − (h0 − dimY )

]
< φξ(f).

This, a priori, means Xj0,i0∩{ξ∈X | dimξX=h0} intersects Vxr for all r∈N.
It follows that ξ is in the Zariski closure of Xj0,i0 ∩ {ξ ∈X | dimξX= h0}.
Note that Xj0,i0 is an analytically constructible subset of X by the Cartan–
Remmert Theorem (see, e.g., [Ł, Section V.3]). The set {ξ ∈X | dimξX = h0}
is also analytically constructible. Therefore Xj0,i0 ∩ {ξ ∈ X | dimξX = h0}
has the same closure in both the Zariski and Euclidean topologies of X.
Hence ξ lies in the closure of Xj0,i0 ∩ {ξ ∈ X | dimξX = h0}, which in turn
implies, by (2.1) again, that φξ(f) ≤ φxr(f), contradicting (5.1).

In the general setting, however, the question of semicontinuity (in the
Zariski topology) of φ remains open, as the mysterious behaviour of φ in the
case of singular targets is not yet totally understood.
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