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Quantifier elimination in quasianalytic structures
via non-standard analysis

by Krzysztof Jan Nowak (Kraków)

Abstract. The paper is a continuation of an earlier one where we developed a theory
of active and non-active infinitesimals and intended to establish quantifier elimination in
quasianalytic structures. That article, however, did not attain full generality, which refers
to one of its results, namely the theorem on an active infinitesimal, playing an essential role
in our non-standard analysis. The general case was covered in our subsequent preprint,
which constitutes a basis for the approach presented here. We also provide a quasianalytic
exposition of the results concerning rectilinearization of terms and of definable functions
from our earlier research. It will be used to demonstrate a quasianalytic structure cor-
responding to a quasianalytic Denjoy–Carleman class which, unlike the classical analytic
structure, does not admit quantifier elimination in the language of restricted quasianalytic
functions augmented merely by the reciprocal function 1/x. More precisely, we construct
a definable plane curve, which indicates that both the classical theorem by J. Denef and
L. van den Dries as well as Łojasiewicz’s theorem that every subanalytic curve is semian-
alytic are no longer true for quasianalytic structures. Besides rectilinearization of terms,
our construction makes use of some theorems on power substitution for Denjoy–Carleman
classes and on non-extendability of quasianalytic function germs. The last result relies on
Grothendieck’s factorization and open mapping theorems for (LF)-spaces.

1. Introduction. The paper is a continuation of our earlier article [20]
devoted to quantifier elimination in quasianalytic structures, where we de-
veloped a theory of active and non-active infinitesimals in the non-standard
models of the universal diagram of a given quasianalytic structure. This
theory allowed us to simultaneously examine the exchange property and val-
uation property for terms in the language L of restricted quasianalytic func-
tions augmented by rational powers and, eventually, to establish quantifier
elimination and description of definable functions by L-terms. That article,
however, did not attain full generality, which refers to one of its results,
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namely, the theorem on an active infinitesimal [20, Theorem 4.4], playing
an essential role in our non-standard analysis. The general case was covered
in our subsequent preprint [22] which constitutes a basis for the approach
presented here. Recently, quantifier elimination for generalized quasianalytic
algebras was achieved by J.-P. Rolin and T. Servi [26] by other methods, an
essential ingredient of which was a quasianalytic version of rectilinearization
of definable sets.

We also provide a quasianalytic exposition of the results concerning rec-
tilinearization of L-terms and of definable functions from our article [21],
which is a technique much more delicate in comparison with rectilineariza-
tion of definable sets. Finally, we shall use this technique to demonstrate a
quasianalytic structure corresponding to a quasianalytic Denjoy–Carleman
class which, unlike the classical analytic structure, does not admit quantifier
elimination in the language of restricted quasianalytic functions augmented
merely by the reciprocal function 1/x. The construction was given in our
preprint [25]. This indicates that the classical theorem by J. Denef and L. van
den Dries [6] no longer holds for quasianalytic structures. More precisely, we
construct a definable plane curve, which also shows that the classical theorem
of Łojasiewicz [14] that every subanalytic curve is semianalytic is no longer
true for quasianalytic structures. Besides rectilinearization of terms, our con-
struction applies some theorems on power substitution for Denjoy–Carleman
classes and on non-extendability of quasianalytic function germs.

The content of this paper falls into eight sections discussed briefly below.
In Section 2, we provide an exposition of results on rectilinearization of
L-terms from our paper [21]. Section 3 presents several annotated results
on infinitesimals (including the theorem on an active infinitesimal) from our
paper [20] which are ingredients of one induction procedure, investigated in
the next section. Section 5 establishes quantifier elimination and description
of definable functions by L-terms as well as general versions of the valuation
property and rectilinearization of definable functions.

The purpose of the subsequent sections is to construct a counterexample
to the aforementioned problem, formulated in [22], whether a quasianalytic
structure admits quantifier elimination in the language augmented merely
by the reciprocal function 1/x. The construction, given in Section 8, makes
use of rectilinearization of terms as well as of two function-theoretic theo-
rems about Denjoy–Carleman classes. The first, established in Section 6, is
concerned with power substitution. The other, presented in Section 7, is a
refinement of the non-extendability theorem given by V. Thilliez [31], relying
on Grothendieck’s factorization and open mapping theorems for (LF)-spaces.

Let us recall (cf. [19, 20, 23, 24]) that a quasianalytic structure RQ is
the expansion of the real field by restricted Q-analytic functions (abbrevi-
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ated to Q-functions) determined by a system Q = (Qm)m∈N of sheaves of
local R-algebras of smooth functions on Rm, subject to the following six
conditions:

(1) each algebra Q(U) contains the restrictions of polynomials;
(2) Q is closed under composition, i.e. the composition of Q-maps is a
Q-map (whenever it is well-defined);

(3) Q is closed under inverse, i.e. if ϕ : U → V is a Q-map between
open subsets U, V ⊂ Rn, a ∈ U , b ∈ V , and if ∂ϕ/∂x(a) 6= 0, then
there are neighbourhoods Ua and Vb of a and b, respectively, and a
Q-diffeomorphism ψ : Vb → Ua such that ϕ ◦ ψ is the identity map
on Vb;

(4) Q is closed under differentiation;
(5) Q is closed under division by a coordinate, i.e. if a function f ∈ Q(U)

vanishes for xi = ai, then f(x) = (xi − ai)g(x) with some g ∈ Q(U);
(6) Q is quasianalytic, i.e. if f ∈ Q(U) and the Taylor series f̂a of f at

a point a ∈ U vanishes, then f vanishes in the vicinity of a.

Note that Q-analytic maps (abbreviated to Q-maps) give rise, in the
ordinary manner, to the category Q of Q-manifolds, which is a subcate-
gory of that of smooth manifolds and smooth maps. Similarly, Q-analytic,
Q-semianalytic and Q-subanalytic sets can be defined. The above condi-
tions ensure some (limited) resolution of singularities in the category Q,
including transformation to a normal crossing by blowing up (cf. [2, 3, 27]),
upon which the geometry of quasianalytic structures relies, especially in the
absence of good algebraic properties (cf. [27, 19, 20, 22]). Consequently, the
structure RQ is model complete and o-minimal. Its definable subsets coincide
with those subsets of Rn, n ∈ N, that are Q-subanalytic in a semialgebraic
compactification of Rn. On the other hand, every polynomially bounded,
o-minimalstructure R determines a quasianalytic system of sheaves of germs
of smooth functions that are locally definable in R.

Examples of such categories are provided by quasianalytic Denjoy–Carle-
man classesQM , whereM = (Mn)n∈N are increasing sequences withM0 = 1.
The class QM consists of smooth functions f(x) = f(x1, . . . , xm) in m vari-
ables, m ∈ N, whose derivatives locally satisfy the following growth condi-
tion:

|∂|α|f/∂xα(x)| ≤ CR|α||α|!M|α| for all α ∈ Nn,
with some constants C,R > 0 depending only on the vicinity of a given
point. This growth condition is often formulated in a slightly different way:

|∂|α|f/∂xα(x)| ≤ CR|α|M ′|α| for all α ∈ Nn,

where M ′n = n!Mn. Obviously, the class QM contains all real analytic func-
tions.
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In order to ensure some important algebraic and analytic properties of
the class QM , it suffices to assume that the sequenceM orM ′ is log-convex.
The latter implies that QM is closed under multiplication (by virtue of the
Leibniz formula). The former assumption is stronger and implies that QM is
closed under composition (Roumieu [28]) and under inverse (Komatsu [11]);
see also [3]. Hence the set Qm(M) of germs at 0 ∈ Rm of QM -analytic
functions is a local ring. Moreover, the class QM is quasianalytic iff

∞∑
n=0

Mn

(n+ 1)Mn+1
=∞

(the Denjoy–Carleman theorem; see e.g. [29]), and is closed under differen-
tiation and under division by a coordinate iff

sup
n

n

√
Mn+1

Mn
<∞

(cf. [16, 30]). It is well-known (cf. [4, 5, 30]) that, for two log-convex sequences
M and N , the inclusion QM ⊂ QN holds iff there is a constant C > 0 such
that Mn ≤ CnNn for all n ∈ N or, equivalently,

sup

{
n

√
Mn

Nn
: n ∈ N

}
<∞.

2. Rectilinearization of terms. In our paper [21] we established sev-
eral results concerning rectilinearization of functions definable by a Weier-
strass system. This was done in two stages: first, we proved that every de-
finable function is piecewise given by finitely many terms in the language
augmented by rational powers; next, we proceeded with rectilinearization
of terms using transformation to a normal crossing by blowing up and in-
duction with respect to the complexity of terms. That second stage can be
repeated verbatim for the case of quasianalytic structures. We begin with
suitable terminology.

By a quadrant in Rm we mean a subset of Rm of the form

{x = (x1, . . . , xm) ∈ Rm : xi = 0, xj > 0, xk < 0 for i ∈ I0, j ∈ I+, k ∈ I−},
where {I0, I+, I−} is a partition of {1, . . . ,m}; its trace Q on the cube
[−1, 1]m will be called a bounded quadrant . The interior Int(Q) of the quad-
rant Q is its trace on the open cube (−1, 1)m. A bounded closed quadrant is
the closure Q of a bounded quadrant Q, i.e. a subset of Rm of the form

Q := {x ∈ [−1, 1]m : xi = 0, xj ≥ 0, xk ≤ 0 for i ∈ I0, j ∈ I+, k ∈ I−}.
In this section, by a normal crossing on a bounded quadrant Q in Rm

we mean a function g of the form

g(x) = xα · u(x),
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where α ∈ Nm and u is a function Q-analytic near Q which vanishes nowhere
on Q. Below we state the theorem on rectilinearization of terms [21, Theo-
rem 1] for the case of the quasianalytic structure RQ.

Theorem 2.1 (Simultaneous rectilinearization of L-terms). If

f1, . . . , fs : Rm → R
are functions piecewise given by a finite number of L-terms, and K is a
compact subset of Rm, then there exists a finite collection of modifications

ϕi : [−1, 1]m → Rm, i = 1, . . . , p,

such that

(1) each ϕi extends to a Q-map in a neighbourhood of the cube [−1, 1]m,
which is a composite of finitely many local blow-ups with smooth
Q-analytic centres and local power substitutions;

(2) the union of the images ϕi((−1, 1)m), i = 1, . . . , p, is a neighbourhood
of K;

(3) for every bounded quadrant Qj, j = 1, . . . , 3m, the restriction to Qj
of each function fk ◦ϕi, k = 1, . . . , s, i = 1, . . . , p, either vanishes or
is a normal crossing or a reciprocal normal crossing on Qj.

Remark 2.2. Observe that, if the functions f1, . . . , fs are piecewise given
by terms in the language of restrictedQ-analytic functions augmented merely
by the reciprocal function 1/x, then one can require that the modifica-
tions ϕi, i = 1, . . . , p, be composites of finitely many local blow-ups with
smooth Q-analytic centres.

We now recall the basic notions linked with our method of decomposi-
tion into special cubes, initiated in [19] and formulated in terms of special
modifications in [20, Theorem 2.1]. Unless otherwise stated, we say that

ϕ : (0, 1)d → S ⊂ Rm

is a special modification if the set S is piecewise given by L-terms, ϕ is a
Q-map in the vicinity of [0, 1]d which is a diffeomorphism of (0, 1)d onto S,
and the inverse map ψ to this diffeomorphism is piecewise given by a finite
number of L-terms. Then S is called a special cube with associated diffeo-
morphism ϕ.

Every bounded subset F ⊂ Rm piecewise given by L-terms is a finite
union of special cubes [20, Corollary 2.3]. Combined with Theorem 2.1, the
method of special cubes allows us to obtain the following

Corollary 2.3 (Desingularization of L-terms). If

f1, . . . , fs : Rm → R
are bounded functions piecewise given by a finite number of L-terms, and
K is a compact subset of Rm, then there exists a finite collection of special
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modifications
σi : (0, 1)

di → Si ⊂ Rm, i = 1, . . . , p,

such that

(1) the union of the special cubes Si, i = 1, . . . , p, is a neighbourhood
of K;

(2) each composite function fk ◦ϕi, k = 1, . . . , s, extends to a Q-function
in the vicinity of [0, 1]di .

Proof. We use induction on m. The assertion is trivial if m = 0. Sup-
posing the assertion holds for d < m, we shall prove it for m. Take the
modifications

ϕi : [−1, 1]m → Rm, i = 1, . . . , p,

achieved in Theorem 2.1. For each i = 1, . . . , p, there exists a closed nowhere
dense subset Vi ⊂ Rm piecewise given by L-terms such that the restriction

ϕi : (−1, 1)m \ ϕ−1i (Vi)→ Rm \ Vi
is a diffeomorphism onto the image piecewise given by L-terms, and the
inverse map to this diffeomorphism is piecewise given by a finite number of
L-terms. By decomposition into special cubes [20, Theorem 2.1], it is enough
to consider the restrictions of the functions f1, . . . , fs, to the subsets Vi of
dimensions di < m, i = 1, . . . , p. Again, application of special modifications
reduces the problem to the dimensions di < m, which finishes the proof by
the induction hypothesis.

Now, let T be the universal diagram of the structure RQ in the language
L of restricted quasianalytic functions augmented by rational powers, i.e.
the set of all universal L-sentences that are true in RQ. Fix a model R of the
universal theory T in the language L. Every L-substructure of R is a model
of T . We always regard the standard model RQ as a substructure of R.
Since decompositions into special cubes are described by L-terms (both a
special modification ϕ and its inverse ψ), they are preserved by passage to
any model R of T :

F =
⋃
j

Sj ⇒ FR =
⋃
j

SRj .

For simplicity of notation, we shall usually omit the superscript R referring
to interpretations in a model R, which will not lead to confusion.

We say that infinitesimals λ = (λ1, . . . , λm) ∈ R are analytically de-
pendent if λ lie in a special cube S = ϕ((0, 1)d) with d < m. We call
infinitesimals λ analytically independent if they are not analytically depen-
dent. Analytical independence is preserved, of course, under permutation
of infinitesimals. We say that a subset A in R is analytically independent if
every finite subset A in R consists of analytically independent infinitesimals.
If A ⊂ B and the set B is analytically independent, so is A.
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For a subset A ⊂ R, let 〈A〉 denote the substructure ofR generated by A.
We shall see in the next two sections that the span operation 〈A〉 satisfies
the exchange property.

The convex hull of R in R is a valuation ring V of bounded (with respect
to R) elements in R; its maximal ideal m consists of all infinitesimals in R.
The valuation v induced by V is called the standard valuation on the field R;
its value group ΓR is a Q-vector space. In order to investigate the valuation v,
we have established in [20] several results about Q-functions, recalled in this
and the next section.

Now we are going to formulate rectilinearization of terms in the language
of infinitesimals. Clearly, Corollary 2.3 immediately yields the version stated
below, which coincides with that from [20, Corollary 2.6], whose proof, how-
ever, was rather scanty.

Corollary 2.4. Consider an L-term t(x) and positive analytically in-
dependent infinitesimals λ = (λ1, . . . , λm). If t(λ) is bounded, then there
exists a special modification

ϕ : (0, 1)m → Rm with λ = ϕ(λ′) for some λ′ ∈ (0, 1)m

such that the superposition f := t ◦ϕ extends to a Q-function in the vicinity
of [0, 1]m; in particular t(λ) = f(λ′).

3. Some results on active and non-active infinitesimals. In [20],
we developed a theory of active and non-active infinitesimals, crucial for
our approach to the geometry of quasianalytic structures. Here, we wish
to present several annotated results of this theory, which are ingredients
of an induction procedure investigated in the next section. We say that an
infinitesimal µ is non-active over infinitesimals λ = (λ1, . . . , λm) if for each
L-term t(x) we have

v(µ− t(λ)) ∈ Γ〈λ〉.
Otherwise, the infinitesimal µ is called active over λ. It is clear that if µ is
non-active over λ, so is the infinitesimal µ′ = s(λ)µ+ t(λ) that is the value
at (λ, µ) of a y-linear L-term.

We first examined, by means of successive lowering of the order of a given
Q-function [20, Theorem 3.1], its behaviour at non-active infinitesimals
[20, Propositions 3.2 and 3.3], and thence concluded that, given a finite
number of infinitesimals λ = (λ1, . . . , λm), the value group Γ〈λ〉 is a vec-
tor space over Q of dimension ≤ m [20, Corollary 3.4]. Also examined were
the behaviour of L-terms [20, Proposition 3.5] and the exchange property
[20, Proposition 3.6] at such infinitesimals. However, it was yet more diffi-
cult to describe the behaviour of L-terms at active infinitesimals. To this
end, we introduced the concept of a regular sequence of infinitesimals: a se-
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quence λ = (λ1, . . . , λm) of infinitesimals will be called regular with main
part λ1, . . . , λk if the valuations

v(λ1), . . . , v(λk) ∈ Γ〈λ〉
form a basis over Q of the valuation group Γ〈λ1,...,λm〉.

Now we list five results from [20], including the theorem on an active
infinitesimal. It was not proved in full generality there; nevertheless, the
classical analytic case was. The formulations below take into account the
number of infinitesimals under study, because these results will be encom-
passed by one induction procedure.

(Im) ([20, Theorem 4.4]: active infinitesimal). For any n ≤ m, consider
a regular sequence µ, λ1, . . . , λn of infinitesimals with main part µ, λ1, . . . , λk
and an L-term t(y, x), x = (x1, . . . , xn), such that

ν := t(µ, λ) 6∈ 〈λ〉
is an infinitesimal. If v(µ) 6∈ Γ〈λ〉, then ν is active over the infinitesimals λ.

(IIm) ([20, Proposition 4.7]). For any n ≤ m, consider a regular sequence
λ1, . . . , λn of infinitesimals with main part λ1, . . . , λk and an infinitesimal µ
with v(µ) 6∈ Γ〈λ〉. Then dimΓ〈µ,λ〉 = k + 1 whence µ, λ1, . . . , λn is a regular
sequence of infinitesimals with main part µ, λ1, . . . , λk.

(IIIm) ([20, Corollary 4.8]: valuation property for L-terms). For any
n ≤ m and infinitesimals µ, λ1, . . . , λn, we have the following dichotomy:

• either µ is non-active over λ, and then Γ〈λ,µ〉 = Γ〈λ〉,
• or µ is active over λ, and then dimΓ〈λ,µ〉 = dimΓ〈λ〉 + 1.

In the latter case, one can find an L-term t(x) such that

v(µ− t(λ)) 6∈ Γ〈λ〉 and Γ〈λ,µ〉 = Γ〈λ〉 ⊕Q · v(µ− t(λ)).
(IVm) ([20, Corollary 4.9]: exchange property for L-terms). For any

n ≤ m and infinitesimals µ, λ1, . . . , λn, if ν ∈ 〈λ, µ〉 and ν 6∈ 〈λ〉, then
µ ∈ 〈λ, ν〉.

(Vm) ([20, Proposition 5.1 and Corollary 5.2]: behaviour of analytically
independent infinitesimals). For any n ≤ m and any two sets of analyti-
cally independent infinitesimals λ1, . . . , λn and λ′1, . . . , λ

′
n, if 〈λ〉 ⊂ 〈λ′〉 then

〈λ〉 = 〈λ′〉. Consequently, the infinitesimals (λ1, . . . , λn, µ) are analytically
independent iff µ 6∈ 〈λ〉.

The proofs of the above results provided in [20] yield the following infer-
ences:

(Im) ⇒ (IIm+1), (IIm) ⇒ (IIIm)

and
(Im) ∧ (IIIm) ⇒ (IVm) ⇒ (Vm+1).
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Therefore the induction hypothesis (Im−1) implies the hypotheses (IIm),
(IIIm), (IVm−1) and (Vm). Actually, in the proofs we shall make use of the
assertions (Im−1), (IIIm) and (Vm).

Remark 3.1. The exchange property for L-terms means exactly that
the structure R with span operation is geometric, and that we have at our
disposal the concepts of rank and basis for its substructures.

4. Proof of the theorem on an active infinitesimal. We proceed
by induction on the number m of infinitesimals λ1, . . . , λm. When m = 0,
then 〈λ〉 = 〈∅〉 = R and the conclusion is evident. So take m > 0 and assume
the theorem holds when the number of infinitesimals λ is smaller than m.

In [20], we have reduced the problem to the case of

t(u, v, x̃) = f(u, v/u, x̃), ν := t(µ, λ) = f(µ, λ1/µ, λ̃),

where f(u, v, x̃) is a function Q-analytic at 0 ∈ Rm+1; here v = x1, x̃ =
(x2, . . . , xm) and λ̃ = (λ2, . . . , λm).

The valuation group Γ〈λ,µ〉 is a vector space over Q of dimension ≤ m+1
[20, Corollary 3.4]. It is a direct sum of finitely many archimedean subgroups

Γ〈λ,µ〉 = G1 ⊕ · · · ⊕Gr with G+
1 > · · · > G+

r ,

where G+
i stands for the semigroup of all positive elements of Gi. It is well-

known that every archimedean ordered abelian group is isomorphic to a
subgroup of the ordered additive group R of real numbers.

Let ε = (ε1, . . . , εp) denote those infinitesimals from among λ for which

v(ε1), . . . , v(εp) > G2 ⊕ · · · ⊕Gr
and δ = (δ1, . . . , δq) the remaining λ’s; obviously, p+q = m. The valued field
〈λ, µ〉 can be completed with respect to the standard valuation v, and the
completion has the same valuation group. Notice that the topology induced
by v is metrizable with a basis of zero neighbourhoods consisting of sets of
the form

{t(µ, δ, ε) : v(t(µ, δ, ε)) > γ}, γ ∈ G1.

In the completion, one can deal with formal power series in the infinitesimals
ε with Q-analytic coefficients taken on the infinitesimals δ.

We encounter two cases.

Case A: λ1 is one of the ε’s, say λ1 = ε1. Consider the Taylor coeffi-
cients

1

i!j!
· ∂

i+jf

∂ui∂vj
(0, 0, x̃) =: aij(x̃), i, j ∈ N,

which are Q-analytic functions at zero. A crucial role is played by the fol-
lowing



244 K. J. Nowak

Lemma 4.1. Under the assumptions of (Im) on an active infinitesimal,
we must have

∞∑
i=0

ai,i+s(λ̃)ε
i
1 6= 0 or

∞∑
j=0

aj+s,j(λ̃)ε
j
1 6= 0

for some s ∈ N \ {0}.
Proof. Suppose the lemma were false. Then

∞∑
i=0

ai,i+s(λ̃)ε
i
1 = 0 and

∞∑
j=0

aj+s,j(λ̃)ε
j
1 = 0

for all s ∈ N \ {0}.
But we can find a model of the universal diagram T with the infinitesimals

λ and an infinitesimal µ∗ such that λ, µ∗ are analytically independent and

v(µ∗), v(ε1/µ
∗) > G2 ⊕ · · · ⊕Gr.

Indeed, it follows from the induction hypothesis that the assertion (Vm)
holds. The infinitesimals λ and µ∗ are therefore analytically independent iff
µ∗ 6∈ 〈λ〉. Consequently, it suffices to find a model of the universal diagram
T along with the diagram of the structure 〈λ〉 and the sentences of the form

c 6= t(λ) where t(x) are L-terms

and the sentence
1

2

√
ε1 < c < 2

√
ε1 ;

here c denotes a new constant construed as µ∗. Its existence can be imme-
diately deduced from model-theoretic compactness.

Under the conditions stated above, we have

t(µ∗, λ) = f(µ∗, λ1/µ
∗, λ̃)

=
∞∑
i=0

ai,i(λ̃)ε
i
1 +

∞∑
s=1

(ε1/µ
∗)s

∞∑
i=0

ai,i+s(λ̃)ε
i
1 +

∞∑
s=1

(µ∗)s
∞∑
j=0

aj+s,j(λ̃)ε
i
1

=
∞∑
i=0

ai,i(λ̃)ε
i
1,

and thus we get
∂t

∂u
(µ∗, λ) = 0.

Here
∂t

∂u
(u, x) =

∂

∂u
f(u, x1/u, x̃)

is a Q-function on an open set

Ω = S × {x̃ ∈ Rm−1 : |x2|, . . . , |xm| < ρ},
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where ρ ∈ R, ρ > 0 is small enough, and

S = {(u, x1) ∈ R2 : |u| < ρ, |x1| < ρ|u|}

is a sector. Since the infinitesimals µ∗, λ are analytically independent, the
above Q-function must vanish on an open special cube contained in Ω. By
the identity principle for quasianalytic functions, it vanishes identically on Ω,
and thus

t(u, x) = f(u, x1/u, x̃) = g(x),

where r ∈ R, r ∈ (0, ρ), and g(x) := f(r, x1/r, x̃) is a Q-function at 0 ∈ Rmx .
Hence

ν := t(µ, λ) = g(λ) ∈ 〈λ〉,

and this contradiction completes the proof of Lemma 4.1.

Since µ · ε1/µ = ε1, we see that

v(µ) ≥ 1
2v(ε1) or v(ε1/µ) ≥ 1

2v(ε1).

By symmetry, we may assume that the former condition holds. Then the
series

ν0 :=
∞∑

i=j=0

aij(λ̃)µ
i(ε1/µ)

j =
∞∑
i=0

aii(λ̃)ε
i
1,

ν+ :=

∞∑
i=0

∑
j<i

aij(λ̃)µ
i(ε1/µ)

j =

∞∑
i=0

∑
j<i

aij(λ̃)µ
i−jεj1,

ν− :=

∞∑
i=0

(
1

i!
· ∂

if

∂ui
(0, ε1/µ, λ̃)µ

i −
∑
j≤i

aij(λ̃)µ
i(ε1/µ)

j

)

=

∞∑
i=0

(
1

i!
· ∂

if

∂ui
(0, ε1/µ, λ̃)−

∑
j≤i

aij(λ̃)(ε1/µ)
j

)
µi

are well-defined elements of the completion of the valued field 〈λ, µ〉 with
respect to the standard valuation v. We have ν = ν++ν0+ν−. Observe that
the Q-analytic function in the ith summand of the last series is of the form(

1

i!
· ∂

if

∂ui
(0, v, x̃)−

∑
j≤i

aij(x̃)v
j

)
ui = gi(v, x̃)v

i+1ui

for some function gi which is Q-analytic at zero.

Lemma 4.2. If
∞∑
i=0

ai,i+s(λ̃)ε
i
1 6= 0 or

∞∑
j=0

aj+s,j(λ̃)ε
j
1 6= 0
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for some s ∈ N \ {0}, then, respectively,
ν− 6= 0 and v(ν−) ∈ Γ〈λ〉 − (N \ {0})v(µ),

or
ν+ 6= 0 and v(ν+) ∈ Γ〈λ〉 + (N \ {0})v(µ).

Proof. Consider first the latter case. Clearly,

ν+ =
∞∑
l=1

( ∞∑
j=0

aj+l,j(λ̃)ε
j
1

)
µl,

and the values of (the valuation v taken on) the lth summands of the above
series are pairwise distinct, unless they are infinity. Consequently, v(ν+) is
the minimum of the values of those summands, because some summands are
non-vanishing (for instance, the sth one). Hence

v(ν+) <∞ and v(ν+) ∈ Γ〈λ〉 + (N \ {0})v(µ),
as desired.

In the former case, take n large enough so that

v(µn) > v

( ∞∑
i=0

ai,i+s(λ̃)µ
i(ε1/µ)

i+s

)
,

and write ν− as follows:

ν− =
s∑
l=1

( ∞∑
i=0

ai,i+l(λ̃)µ
i(ε1/µ)

i+l

)

+

n−1∑
i=0

(
1

i!
· ∂

if

∂ui
(0, ε1/µ, λ̃)−

∑
j≤i+s

aij(λ̃)(ε1/µ)
j

)
µi

+

∞∑
i=n

(
1

i!
· ∂

if

∂ui
(0, ε1/µ, λ̃)−

∑
j≤i+s

aij(λ̃)(ε1/µ)
j

)
µi.

Observe again that the Q-analytic functions which occur in the ith sum-
mands of the second series above are of the form(

1

i!
· ∂

if

∂ui
(0, v, x̃)−

∑
j≤i+s

aij(x̃)v
j

)
ui = hi(v, x̃)v

i+s+1ui

for some functions hi which are Q-analytic at zero, i = 0, 1, . . . , n. Hence
n−1∑
i=0

(
1

i!
· ∂

if

∂ui
(0, ε1/µ, λ̃)−

∑
j≤i+s

aij(λ̃)(ε1/µ)
j

)
µi

= (ε1/µ)
s+1

n∑
i=0

hi(ε1/µ, λ̃)ε
i
1.
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By [20, Corollary 2.11] we have

v(hi(ε1/µ, λ̃)) ∈ Γ〈λ〉 ⊕ N · v(ε1/µ).
Since

∞∑
i=0

ai,i+l(λ̃)µ
i(ε1/µ)

i+l = (ε1/µ)
l
∞∑
i=0

ai,i+l(λ̃)ε
i
1, l = 1, . . . , s,

the values

v

( ∞∑
i=0

ai,i+l(λ̃)µ
i(ε1/µ)

i+l

)
, l = 1, . . . , s,

and

v

(n−1∑
i=0

(
1

i!
· ∂

if

∂ui
(0, ε1/µ, λ̃)−

∑
j≤i+s

aij(λ̃)(ε1/µ)
j

)
µi
)

are pairwise distinct, unless they are infinity. Consequently, v(ν−) is the
minimum of the above s+ 1 values. Hence

v(ν−) <∞ and v(ν−) ∈ Γ〈λ〉 − (N \ {0})v(µ),
which completes the proof of Lemma 4.2.

Now, take n ∈ N large enough so that

nv(ε1) > min{v(ν−), v(ν+)}.
Then

v
(
ν −

n−1∑
i=0

ai,i(λ̃)ε
i
1

)
= min{v(ν−), v(ν+)} 6∈ Γ〈λ〉.

This means that ν is active over the infinitesimals λ, concluding the proof
of (Im) in Case A.

Case B: λ1 is one of the δ’s, say λ1 = δ1. Let us rename the coordinates
in Rm in the following way: the coordinates x = (x1, . . . , xq) correspond
to the infinitesimals δ, and the coordinates y = (y1, . . . , yp) correspond to
the infinitesimals ε. In the new variables, the function f can be written as
f(u, v, x̃, y), x̃ = (x2, . . . , xq). We first establish the following

Reduction step. We can assume that the infinitesimal ν is of the form
ν = f(µ, δ1/µ, δ̃, ε), where f is a function Q-analytic at zero, and

v(ε) > G2 ⊕ · · · ⊕Gr and Γ〈δ,µ〉 < G+
1 .

Proof. First, we recursively attach the old infinitesimals δ2, . . . , δq, after
performing suitable special modifications, either to the new infinitesimals δ′
or to the new infinitesimals ε′, so as to fulfil the conditions

(4.1) v(ε′) > G2 ⊕ · · · ⊕Gr and Γ〈δ′〉 < G+
1 .
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At the beginning, take as new infinitesimals δ′ those infinitesimals from
δ2, . . . , δq which lie in the main part of the regular sequence µ, λ1, . . . , λk.
Having constructed a sequence δ′2, . . . , δ′i, take an infinitesimal δj from among
δ2, . . . , δq which has not yet been considered in the process. If

Γ〈δ′2,...,δ′i,δj〉 < G+
1 ,

attach δj =: δ′i+1 to the new infinitesimals δ′. Otherwise δj is active over
δ′2, . . . , δ

′
i. By the valuation property (IIIm), which holds by the induction

hypothesis, there is an L-term τ(δ′2, . . . , δ
′
i) such that

v(δj − τ(δ′2, . . . , δ′i)) > G2 ⊕ · · · ⊕Gr.
Via desingularization of L-terms (Corollary 2.4 and [20, Corollary 2.6]), we
can assume, after a suitable change of the infinitesimals δ′2, . . . , δ′i by special
modification, that

τ(δ′2, . . . , δ
′
i) = ϕ(δ′2, . . . , δ

′
i),

where ϕ is a function Q-analytic at zero. Then we attach the infinitesimal

ω := δj − ϕ(δ′2, . . . , δ′i)
to the new infinitesimals ε. By substituting ω + ϕ(δ′2, . . . , δ

′
i) for δj , we are

done. We continue this process until all infinitesimals δ2, . . . , δq have been
considered. In this manner, we get infinitesimals δ′2, . . . , δ′t and ε′1, . . . , ε′i that
fulfil conditions (4.1).

Next, consider the infinitesimal δ1. If

Γ〈δ′2,...,δ′t,δ1〉 < G+
1 ,

we are done by setting δ′1 := δ1. Otherwise δ1 is active over δ′2, . . . , δ′t.
As before, by the valuation property (IIIm) and via desingularization of
L-terms, we can assume that

v(ω) > G2 ⊕ · · · ⊕Gr with ω := δ1 − ϕ(δ′2, . . . , δ′t),
where ϕ is a functionQ-analytic at zero. Let δ′ = (δ′2, . . . , δ

′
t). Then, similarly

to [20, Section 4], we can replace the function f by some other Q-analytic
functions as follows:

ν = f(µ, (ϕ(δ′) + ω)/µ, δ′, ε′) = f1(µ, ϕ(δ
′)/µ, ω/µ, δ′, ε′)

= f2(µ, ϕ(δ
′)/µ, ω/ϕ(δ′), δ′, ε′).

We can thus attach the infinitesimal ε′s+1 := ω/ϕ(δ′) to the infinitesimals ε′,
and then

ν = f2(µ, ϕ(δ
′)/µ, ε′s+1, δ

′, ε′).

For simplicity, we drop the primes on the names of infinitesimals. By
transforming the function ϕ to a normal crossing, we may assume that

ν = f3(µ, δ
α/µ, δ, ε)
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for some α ∈ Nq. Replacing the infinitesimals µ and δ by their suitable roots,
we may assume that δα = δ1 ·. . .·δk for some k ≤ q. Now, we can successively
lower the number k of these factors as follows. Since v(µ) 6∈ Γ〈δ〉, exactly one
of the two fractions δ1 · . . . · δk−1/µ or µ/δ1 · . . . · δk−1 is an infinitesimal. In
the former case

ν = f3(µ, δ1 · . . . · δk/µ, δ, ε) = f4(µ, δ1 · . . . · δk−1/µ, δ, ε),

and in the latter

ν = f3(µ, δ1 · . . . · δk/µ, δ, ε) = f4(µ, µ/δ1 · . . . · δk−1, δ1 · . . . · δk/µ, δ, ε)
= f5(µ/δ1 · . . . · δk−1, δ1 · . . . · δk/µ, δ, ε),

and thus, replacing µ by µ′ := µ/δ1 · . . . · δk−1, we get

ν = f5(µ
′, δk/µ

′, δ, ε).

Again, we drop the primes. Eventually, we can assume that

ν = f6(µ, δ1/µ, δ1, δ̃, ε) = f7(µ, δ1/µ, δ̃, ε),

which is the desired result.

Summing up, the above construction yields a new regular sequence of
infinitesimals δ, ε which satisfy conditions (4.1). To finish the reduction step,
we must still show that Γ〈δ,µ〉 < G+

1 . But this follows immediately from
the valuation property (IIIm), which is at our disposal by the induction
hypothesis, applied to the infinitesimals δ and µ.

For the rest of the proof of (Im), we shall keep the conditions established
in the reduction step. In the completion of the valued field 〈λ, µ〉 with re-
spect to the standard valuation v, we can present the infinitesimal ν in the
following form:

ν = f(µ, δ1/µ, δ̃, ε) =
∑
α∈Np

εαfα(µ, δ1/µ, δ̃),

where

fα(u, v, x̃) :=
1

α!
· ∂
|α|f

∂yα
(u, v, x̃, 0), α ∈ Np.

We need an elementary fact about the standard valuation v:

Lemma 4.3. Consider a finite number of elements gi, hi ∈ 〈λ, µ〉, i =
1, . . . , n, such that

v(h1), . . . , v(hn) > G2 ⊕ · · · ⊕Gr
and

v
( n∑
i=1

cigi

)
< G+

1 , ci ∈ R, i = 1, . . . , n,
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for all real linear combinations of the elements g1, . . . , gn. Then there exist
n real linear combinations

Gj =

n∑
i=1

cjigi, Hj =

n∑
i=1

djihi, cji, dji ∈ R, i, j = 1, . . . , n,

such that
n∑
i=1

higi =

n∑
i=1

HiGi

and the valuations v(H1), . . . , v(Hn) are pairwise distinct; then, of course,
v(H1G1), . . . , v(HnGn) are also pairwise distinct.

Proof. One can proceed by induction on n. We show the case n = 2. The
general case is similar, the details being left to the reader. If v(h1) 6= v(h1),
we are done. Otherwise there are real numbers d1, d2 6= 0 such that

v(d1h1 − d2h2) > v(h1) = v(h2),

and then

h1g1 + h2g2 = d1h1d
−1
1 g1 + d2h2d

−1
2 g2

= d1h1(d
−1
1 g1 + d−12 g2) + (d2h2 − d1h1)d−12 g2.

Letting

H1 := d1h1, H2 := d2h2 − d1h1, G1 := d−11 g1 + d−12 g2, G2 := d−12 g2,

we get the required result.

Applying Lemma 4.3 to the elements

hα = εα and gα = fα(µ, δ1/µ, δ̃), α ∈ Np,

we shall recursively define an increasing sequence (Nk) of positive integers
and three sequences of infinitesimals, (fk), (φk) and (ψk), k ∈ N. First, let
γ ∈ G+

1 , N0 be any positive integer and

A0 := {α ∈ Np : v(εα) < N0γ}, n0 := #A0.

With the notation of Lemma 4.3, we get

f0 :=
∑
α∈A0

εαgα =

n0∑
i=1

H0,iG0,i.

Set

ψ0 := 0, ϕ0 :=
∑
{H0,iG0,i : v(Hi) < N0γ} and ψ1 := f0 − ϕ0.

Take N1 so large that v(H0,i) < N1γ for all i = 1, . . . , n0. Let

A1 := {α ∈ Np : N0γ ≤ v(εα) < N1γ}
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and n1 be the sum of #A1 and the number of the summands of ψ1. Again,
with the notation of Lemma 4.3, we get

f1 :=
∑

α∈A1\A0

εαgα + ψ1 =

n1∑
i=1

H1,iG1,i;

clearly, v(H1,i) ≥ N0γ for i = 1, . . . , n1. Define

ϕ1 :=
∑
i

{H1,iG1,i : v(H1,i) < N1γ} and ψ2 := f1 − ϕ1.

We continue this process recursively. By construction, each ϕk is a finite sum
of the form

ϕk :=
∑
i

Hk,iGk,i, where Nk−1γ ≤ v(Hk,i) < Nkγ for all i,

and the values v(Hk,i) are pairwise distinct. It is easy to check that

ν =
∑
α∈Np

εαgα =

∞∑
k=0

fk =

∞∑
k=0

ϕk.

There are two possibilities: either Gk,i ∈ 〈δ〉 for each k ∈ N and every i,
or there is a k ∈ N such that Gk,i 6∈ 〈δ〉 for some i. We first show that the
former leads to a contradiction. Indeed, for each k ∈ N, the Gk,i are of the
form

Gk,i = Gk,i(µ, δ1/µ, δ̃), i = 1, . . . , nk,

where Gk,i(u, v, x̃) are functions Q-analytic in a common neighbourhood of
zero.

Since the infinitesimals µ, δ are analytically independent, the tantamount
conditions

Gk,i(µ, δ1/µ, δ̃) ∈ 〈δ〉 or Gk,i(µ, δ1/µ, δ̃) = τ(δ)

for an L-term τ(x) hold iff the L-term
Gk,i(u, x1/u, x̃)− τ(x)

vanishes on an open special cube containing the infinitesimals µ, δ. Then the
partial derivative

∂

∂u
Gk,i(u, x1/u, x̃)

vanishes on that special cube and, in particular,
∂

∂u
Gk,i(µ, δ1/µ, δ̃) = 0.

Therefore, the former possibility implies that the partial derivative
∂

∂u
f(u, x1/u, x̃, y)
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would vanish for u = µ, x = δ and y = ε. Again, this partial derivative
would vanish on a special cube containing the infinitesimals µ, δ and ε, and
thus it would vanish identically, by the identity principle for quasianalytic
functions. Just as when considering Case A, we deduce that the function

f(u, x1/u, x̃, y)

would coincide with a function g(x, y) which is Q-analytic at zero. Hence

ν = g(δ, ε) ∈ 〈δ, ε〉 = 〈λ〉,
contrary to the assumption of (Im).

In this fashion, we may assume that the latter possibility mentioned
above holds. Obviously, we can write the infinitesimal ν as

ν =

∞∑
k=0

ϕk =

∞∑
j=0

HjGj ,

where the values v(Hj), j ∈N, are pairwise distinct, and for any γ ∈ G1 there
are only finitely many j for which v(Hj) < γ. Under these circumstances,
the set

J := {j ∈ N : Gj 6∈ 〈δ〉} 6= ∅
is non-empty. There is, of course, a unique j0 ∈ J such that

v(Hj0) = min{v(Hj) : j ∈ J}.
Then

I := {j ∈ N : v(Hi) < v(Hi0)}
is a finite subset of N.

Now, it follows from the induction hypothesis (Im−1) that there is an
element τ(δ) ∈ 〈δ〉 such that

v(Gj0 − τ(δ)) 6∈ Γ〈δ〉.
Hence

Λ := Hj0τ(δ) +
∑
j∈I

HjGj ∈ 〈δ, ε〉 = 〈λ〉,

because Hj ∈ 〈ε〉 and Gj ∈ 〈δ〉 for all j ∈ I. It is not difficult to check that

v(ν − Λ) = v(Hj0) + v(Gj0 − τ(δ)) 6∈ Γ〈δ,ε〉 = Γ〈λ〉.

This means that ν is active over the infinitesimals λ, which completes the
proof of (Im).

5. Quantifier elimination and description of definable functions
by terms. In this section we are going to develop an approach to quantifier
elimination and description of definable functions by terms in the language
augmented by the names of rational powers, which is much shorter and more
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natural than the one in [20]. Observe first that one can introduce a well-
defined notion of dimension of sets piecewise defined by L-terms. Indeed,
every such set E is a finite union of special cubes Si [20, Theorem 2.1 and
Corollary 2.3], and one can set

dimE := maxdimSi.

It is easy to check that the dimension of a set E does not depend on the
decomposition into special cubes Si.

By the exchange property for L-terms from Section 3, i.e. (IVm), m ∈ N,
[20, Corollary 4.9], we have at our disposal a well-founded concept of rank
for the substructures of a given model R of the universal diagram T . This
allows us to establish the following result, which is a generalization of [20,
Proposition 5.4].

Proposition 5.1. Consider a map f : Rd → Rm piecewise given by
L-terms and such that for every special cube S ⊂ Rm, or equivalently for
every subset E of Rm piecewise given by L-terms, we have

dim f−1(S) ≤ dimS or dim f−1(E) ≤ dimE.

Then f admits a section piecewise given by L-terms, i.e. there is a function
ξ : Rm → Rd piecewise given by L-terms such that f(ξ(y)) = y for every
point y ∈ Rm.

Proof. We may, of course, assume that f : (0, 1)d→ (0, 1)m. We first show
that there exists a family (tι(y))ι∈I of L-terms, tι(y) = (tι,1(y), . . . , tι,d(y)),
such that the infinite disjunction∨

ι∈I
[(b = f(a) ∧ a ∈ (0, 1)d)⇒ b = f(tι(b))]

holds for any tuples a ∈ (0, 1)d and b ∈ (0, 1)m in an arbitrary model R of
the theory T . So take any elements a ∈ (0, 1)d and b ∈ (0, 1)m for which
b = ϕ(a). We may, of course, confine our analysis to the case where a = λ
and b = µ are infinitesimals. Let k := rk〈λ〉; then the infinitesimals λ lie
in a special cube of dimension k, but in no special cube of dimension < k.
Obviously,

〈µ〉 ⊂ 〈λ〉 and rk〈µ〉 ≤ rk〈λ〉.
Were rk〈µ〉 < k = rk〈λ〉, then the infinitesimals µ would lie in a special
cube S of dimension < k, and thus it follows from the assumption that
the infinitesimals λ would lie in the set f−1(S) of dimension < k, which is
impossible. Consequently,

rk〈µ〉 = rk〈λ〉 and 〈µ〉 = 〈λ〉;
the last equality follows from the suitable property of rank operation [20, Sec-
tion 5], which is formulated in Section 3 as clause (Vm),m ∈ N. Therefore the



254 K. J. Nowak

infinitesimals λ can be expressed by L-terms taken on the infinitesimals µ,
and the assertion follows.

Now, through model-theoretic compactness, one can find a finite set
ι1, . . . , ιn ∈ I of indices for which the finite disjunction

n∨
k=1

[(b = f(a) ∧ a ∈ (0, 1)d)⇒ b = f(tιk(b))]

holds for any tuples a and b in an arbitrary model R of the theory T .
In particular, this finite disjunction is satisfied in the standard model RQ,
concluding the proof.

Remark 5.2. The assumption of Proposition 5.1 is satisfied by every
function f piecewise given by L-terms which is an immersion. More gener-
ally, consider a decomposition of Rd into finitely many leaves (i.e. C1 sub-
manifolds) Fj piecewise given by L-terms, and a function f piecewise given
by L-terms whose restriction to each Fj is an immersion. Then f satisfies
that assumption too.

Corollary 5.3. Under the assumptions of Proposition 5.1, the image
f(Rd) is piecewise given by L-terms.

Proof. Indeed, suppose the section ξ is given by a finite number of
L-terms

τi(y) = (τi1(y), . . . , τid(y)), i = 1, . . . , s, y = (y1, . . . , ym),

i.e. x = ξ(y) iff
∨s
i=1 x = τi(y). Then

y ∈ f(Rd) ⇔
s∨
i=1

f(τi(y)) = y,

and thus the image f(Rd) is given by the L-terms f(τi(y))− y, i = 1, . . . , s,
as desired.

By an immersion cube C ⊂ Rm we mean the image ϕ((0, 1)d) where ϕ is
a Q-map in a neighbourhood of the compact cube [0, 1]d whose restriction
to (0, 1)d is an immersion. As demonstrated in [19], the theorem on decom-
position into special cubes along with the technique of fibre cutting makes it
possible to decompose every bounded Q-subanalytic set into finitely many
immersion cubes [19, Corollary 1]. This, in turn, together with Corollary 5.3,
immediately yields quantifier elimination for the expansion RQ of the real
field with restricted quasianalytic functions in the language L augmented by
the names of rational powers (cf. [20, Theorem 5.8]):

Theorem 5.4 (Quantifier elimination). Every set definable in the struc-
ture RQ is piecewise given by a finite number of L-terms.
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A fortiori, the structure RQ is model complete. Let us mention that
one can apply decomposition into immersion cubes (cf. [19]) to prove that
RQ is a polynomially bounded o-minimal structure which admits Q-analytic
cell decomposition (this was established in [27]); the last result requires an
induction procedure (cf. [19]).

We now turn to the problem of description of a definable function by
L-terms.

Theorem 5.5. Each definable function f : Rm → R is piecewise given
by a finite number of L-terms.

Proof. Indeed, consider the graph F ⊂ Rm+1 = Rmx ×Ry of the function
f and denote by

p : F → Rmx and q : F → Ry
the canonical projections. Via cell decomposition (of class C1), the graph F
can be partitioned into finitely many cells Ci defined by L-terms such that
the restriction of p to each cell Ci is an immersion and, in fact, a diffeomor-
phism onto the image p(Ci). It follows from Proposition 5.1 (cf. Remark 5.2)
that each inverse

p−1 : p(Ci)→ Ci, i = 1, . . . , s,

is piecewise given by finitely many L-terms, and thus so is the restriction of
f = q ◦ p−1 to each set p(Ci).

We immediately obtain the following three corollaries.

Corollary 5.6. The structure RQ admits cell decompositions piecewise
defined by L-terms, and hence Skolem functions (of choice) piecewise given
by L-terms.

Corollary 5.7. The structure RQ is universally axiomatizable. Hence
its universal diagram T admits quantifier elimination (in the language L) and
RQ can be embedded as a prime model into each model of T . Consequently,
in every model of T , each definable function is piecewise defined by a finite
number of L-terms.

Corollary 5.8 (Valuation property for definable functions). Consider
a simple (with respect to definable closure) extension R ⊂ R〈a〉 of substruc-
tures in a fixed model of the theory T . Then we have the following dichotomy:

either dimΓR〈a〉 = dimΓR or dimΓR〈a〉 = dimΓR + 1.

In the latter case, one can find an element r ∈ R such that

v(a− r) 6∈ ΓR and ΓR〈a〉 = ΓR ⊕Q · v(a− r).
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Remark 5.9. For the valuation property in the case of general polyno-
mially bounded o-minimal structures and its connection with the preparation
theorem in the sense of Parusiński–Lion–Rolin, see [7, 8] and also [18].

Similarly, we can immediately rephrase Theorem 2.1 for definable func-
tions (cf. [21, Theorem 1]):

Theorem 5.10 (On rectilinearization of definable functions). For defin-
able functions f1, . . . , fs : Rm → R and a compact subset K of Rm, there
exists a finite collection of modifications

ϕi : [−1, 1]m → Rm, i = 1, . . . , p,

such that

(1) each ϕi extends to a Q-map in a neighbourhood of the cube [−1, 1]m
which is a composite of finitely many local blow-ups with smooth
Q-analytic centres and local power substitutions;

(2) the union of the images ϕi((−1, 1)m), i = 1, . . . , p, is a neighbourhood
of K;

(3) for every bounded quadrant Qj, j = 1, . . . , 3m, the restriction to Qj
of each function fk ◦ϕi, k = 1, . . . , s, i = 1, . . . , p, either vanishes or
is a normal crossing or a reciprocal normal crossing on Qj.

Further, the following two results concerning rectilinearization of defin-
able functions from our paper [21] can be repeated verbatim in the quasian-
alytic setting:

Theorem 5.11 (On rectilinearization of a definable function). Let
U ⊂ Rm be a bounded open subset and f : U → R be a definable function.
Then there exists a finite collection of modifications

ϕi : [−1, 1]m → Rm, i = 1, . . . , p,

such that

(1) each ϕi extends to a Q-map in a neighbourhood of the cube [−1, 1]m
which is a composite of finitely many local blow-ups with smooth
Q-analytic centres and local power substitutions;

(2) each set ϕ−1i (U) is a finite union of bounded quadrants in Rm;
(3) each set ϕ−1i (∂U) is a finite union of bounded closed quadrants in Rm

of dimension m− 1;
(4) U is the union of the images ϕi(Int(Q)) with Q ranging over the

bounded quadrants contained in ϕ−1i (U), i = 1, . . . , p;
(5) for every bounded quadrant Q, the restriction to Q of each function

f ◦ ϕi either vanishes or is a normal crossing or a reciprocal normal
crossing on Q, unless ϕ−1i (U) ∩Q = ∅.
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Remark 5.12. One can formulate Theorem 5.11 for several definable
functions f1, . . . , fs.

It follows from (1) and (2) of Theorem 5.11 that every bounded quadrant
of dimension < m contained in ϕ−1i (U) is adjacent to a bounded quadrant
of dimension m (a bounded orthant) contained in ϕ−1i (U). Hence

ϕ−1i (U) = ϕ−1i (U),

and therefore (4) implies that U is the union of the images ϕi(Q) of the
closures of those bounded quadrants Q of dimension m (bounded orthants)
for which ϕi(Q) ⊂ U , i = 1, . . . , p.

For a bounded orthant Q contained in ϕ−1i (U), denote by domi(Q) the
union of Q and all those bounded quadrants that are adjacent to Q and
disjoint from ϕ−1i (∂U); it is, of course, an open subset of the closure Q.
Moreover, the open subset ϕ−1i (U) of the cube [−1, 1]m coincides with the
union of domi(Q), where Q ranges over the bounded orthants that are con-
tained in ϕ−1i (U), and with the union of those bounded quadrants that are
contained in ϕ−1i (U). Consequently, the union of the images ϕi(Int(Q)),
where Q ranges over the bounded quadrants that are contained in ϕ−1i (U),
coincides with the union of the images

ϕi(domi(Q) ∩ (−1, 1)m),
where Q ranges over the bounded orthants Q that are contained in ϕ−1i (U).
Thus we get

Corollary 5.13 (Rectilinearization of a continuous definable function).
Let U be a bounded open subset in Rm and f : U → R be a continuous
definable function. Then there exists a finite collection of modifications

ϕi : [−1, 1]m → Rm, i = 1, . . . , p,

such that

(1) each ϕi extends to a Q-map in a neighbourhood of the cube [−1, 1]m
which is a composite of finitely many local blow-ups with smooth
Q-analytic centres and local power substitutions;

(2) each set ϕ−1i (U) is a finite union of bounded quadrants in Rm;
(3) each set ϕ−1i (∂U) is a finite union of bounded closed quadrants in Rm

of dimension m− 1;
(4) U is the union of the images ϕi(domi(Q)∩ (−1, 1)m) with Q ranging

over the bounded orthants contained in ϕ−1i (U), i = 1, . . . , p;
(5) for every bounded orthant Q, the restriction to domi(Q) of each func-

tion f ◦ ϕi either vanishes or is a normal crossing or a reciprocal
normal crossing on Q, unless ϕ−1i (U) ∩Q = ∅.
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Remark 5.14. Observe that in the foregoing rectilinearization results,
if the functions f1, . . . , fs are piecewise given by terms in the language of
restricted Q-analytic functions augmented merely by the reciprocal func-
tion 1/x, then one can require that the modifications ϕi, i = 1, . . . , p, be
composites of finitely many local blow-ups with smooth Q-analytic centres.

6. Power substitution for Denjoy–Carleman classes. Consider an
increasing sequence M = (Mn) of real numbers with M0 = 1. Let I be an
interval (open or closed) contained in R. We denote by Q(I,M) the class of
functions on I whose derivatives satisfy the following growth condition:

|∂|α|f/∂xα(x)| ≤ CR|α||α|!M|α| for all x ∈ I, α ∈ Nn,
with some constants C,R > 0.

The main purpose of this section is to prove the following

Theorem 6.1. Let p > 1 be an integer and I = [0, 1] or [−1, 1] according
as p is even or odd. Consider the power substitution x = ξp, which is a
bijection of I onto itself. Let f : I → R be a smooth function. If

F (ξ) := (f ◦ ϕ)(ξ) = f(ξp) ∈ Q(I,M),

then f(x) ∈ Q(I,M (p)), where M (p)
n :=Mpn.

Equivalently, in terms of the corresponding sequences M ′ (see the In-
troduction), the function f belongs to the class determined by the sequence
M
′(p)
n := n−(p−1)nM ′pn, n ∈ N.
Remark 6.2. Using a function constructed by Bang, we shall show at

the end of this section that, when p = 2 and the sequence M ′ is log-convex,
Q(I,M (2)) is the smallest Denjoy–Carleman class containing all those func-
tions f(x).

Remark 6.3. The case p = 2 of Theorem 6.1 may be related to the
following problem, which was investigated by Mandelbrojt [15, 16] and solved
completely by Lalaguë [12, Chap. III]:

Consider a smooth function f(x) on the interval [−1, 1], and suppose that
F (ξ) := f(cos ξ) belongs to a class Q(R,M). To which class on the interval
[−1, 1] does f belong?

Before establishing Theorem 6.1, we state two lemmas.

Lemma 6.4. Consider the Taylor expansions
∞∑
i=1

xi

i
= − log (1− x) and

( ∞∑
i=1

xi

i

)k
=

∞∑
n=1

ck,nx
n.

Then
ck,n ≤ (2e)n

k!

nk
for all k, n ∈ N.



Quantifier elimination in quasianalytic structures 259

Proof. Indeed, it is easy to verify the estimate

|log(1− z)| ≤
∣∣∣∣log 2 + π

6

√
−1
∣∣∣∣ ≤ 1 for all z ∈ C, |z| ≤ 1/2.

By Cauchy’s inequalities, we thus get |ck,n| ≤ 2n. Since en > nk/k! for all
n, k ∈ N, we have

ck,n ≤ 2n < 2nen
k!

nk
= (2e)n

k!

nk
.

As an immediate consequence, we obtain

Corollary 6.5.∑
i1+···+ik=n

1

i1
· . . . · 1

ik
= ck,n ≤ (2e)n

k!

nk
for all k, n ∈ N.

Lemma 6.6. Let p, k ∈ N with p > 1, k ≥ 1, and

αk(X,x) :=
1

k!
(X1/p − x1/p)k for X,x > 0,

where αk is regarded as a function in one variable X and parameter x. Then

|α(n)
k (x, x)| ≤ (2e)nnn−kx−(pn−k)/p for all n, k ∈ N, x > 0.

Proof. Consider first the case k = 1, α1(X,x) = X1/p − x1/p. Then

α
(n)
1 (x, x) = ±(p− 1)(2p− 1) · . . . · ((n− 1)p− 1)

pn
· x−(pn−1)/p,

whence
|α(n)

1 (x, x)| ≤ (n− 1)!x−(pn−1)/p ≤ nn−1x−(pn−1)/p,

as asserted. The Taylor expansion of α1(X,x) at X = x is

α1(X,x) =

∞∑
i=1

aix
−(pi−1)/p(X − x)i,

where

ai := ±
1

i!
· (p− 1)(2p− 1) · . . . · ((i− 1)p− 1)

pi
;

obviously, |ai| ≤ (i− 1)!/i! = 1/i. We thus get

αk(X,x) =
1

k!

( ∞∑
i=1

aix
−(pi−1)/p(X − x)i

)k
=

∞∑
j=1

bjx
−(pj−k)/p(X − x)j ,

where

bj :=
1

k!

∑
i1+···+ik=j

ai1 · . . . · aik .
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Then

|bn| ≤
1

k!

∑
i1+···+ik=n

|ai1 | · . . . · |aik | ≤
1

k!

∑
i1+···+ik=n

1

i1
· . . . · 1

ik

=
ck,n
k!
≤ (2e)n

nk
for all n, k ∈ N;

the last inequality follows from Corollary 6.5. Hence

|α(n)
k (x, x)| ≤ n!|bn|x−(pn−k)/p ≤ (2e)n

n!

nk
x−(pn−k)/p ≤ (2e)nnn−kx−(pn−k)/p

for all n, k ∈ N, x > 0, as asserted.

Proof of Theorem 6.1. We shall work with estimates corresponding to
the sequence M ′. So suppose that

|F (n)(ξ)| ≤ AnM ′n
for all n ∈ N, ξ ∈ I and some constant A > 0. We are going to estimate the
growth of the nth derivative f (n). Fix n ∈ N and set

pn(x) := Tn0 f(x) =

n−1∑
k=0

fk(0)
xk

k!
, rn(x) := f(x)− pn(x),

Pn(ξ) := pn(ξ
p), Rn(ξ) := rn(ξ

p).

Obviously,
P (pn)
n ≡ 0 and R(pn)

n ≡ F (pn).

From the Taylor formula, we therefore obtain the estimate

|R(pn)
n (ξ)| ≤ ApnM ′pn

ξpn−k

(pn− k)!
for all k < pn, ξ ∈ I. We still need the elementary inequality

(6.1)
1

(pn− k)!
≤ epn

npn−k
for all k < pn.

Indeed, it suffices to show that

(6.2)
epn−k

(pn− k)pn−k
≤ epn

npn−k
.

When pn−k ≥ n, or equivalently k ≤ (p−1)n, the last inequality is evident.
Suppose now that pn− k < n, or equivalently k > (p− 1)n. Inequality (6.2)
is, of course, equivalent to (

n

pn− k

)pn−k
≤ ek,
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which holds because(
n

pn− k

)pn−k
=

(
1 +

k − (p− 1)n

pn− k

)pn−k
=

[(
1 +

k − (p− 1)n

pn− k

) pn−k
k−(p−1)n

]k−(p−1)n
< ek.

Now, the foregoing estimate along with (6.1) yields

|R(pn)
n (ξ)| ≤ ApnM ′pn

epn

npn−k
ξpn−k.

Applying the formula for the derivatives of a composite function, we obtain

r(n)n (x) =
n∑
k=1

R(k)
n (ξ)α

(n)
k (x, x).

Hence and by Lemma 6.6, we get

|f (n)(x)| = |r(n)n (x)| ≤
n∑
k=1

ApnM ′pn
epn

npn−k
|ξ|pn−k(2e)nnn−k|ξ|−(pn−k)

= n(2e)n(eA)pn
M ′pn

n(p−1)n
,

which completes the proof of Theorem 6.1.

Finally, we show that, when the sequence M ′ is log-convex, Q(I,M (2))
is the smallest Denjoy–Carleman class containing all smooth functions f(x)
on I = [0, 1] such that F (ξ) = f(ξ2) ∈ Q(I,M). We make use of a classi-
cal function constructed by Bang [1], applied in his proof that the classes
determined by log-convex sequences contain functions with sufficiently large
derivatives (the result due to Cartan [4] and Mandelbrojt [5]; see also
[30, Section 1, Theorem 1]).

The logarithmic convexity of M ′ yields, for every j, k ∈ N,(
1

mk

)k−j
≤
M ′j
M ′k

where mk :=
M ′k+1

M ′k
.

Consequently,

F (ξ) :=

∞∑
k=0

M ′k
(2mk)k

cos (2mkξ)

is an even smooth function on R such that

F (ξ) ∈ Q(R,M) and |F (2n)(0)| ≥M ′2n
for all n ∈ N. Therefore F (ξ) = f(ξ2) for some smooth function f on R
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(cf. [32]), and we get

f (n)(0) =
n!

(2n)!
F (2n)(0) and |f (n)(0)| ≥ n!M ′2n

(2n)!
,

which is the desired result.
We conclude this section with some examples, one of which (namely, for

k = 2) will be applied to the construction of our counterexample in the last
section.

Example 6.7. Fix an integer k ∈ N, k ≥ 1, and set

log(k) := log ◦ · · · ◦ log︸ ︷︷ ︸
k times

and e↑↑k := (exp ◦ · · · ◦ exp︸ ︷︷ ︸
k times

)(1);

let nk be the smallest integer greater than e↑↑k. Then the sequence

(log(k) n)n for n ≥ nk
is log-convex. Further, the shifted sequence

M = (Mn), Mn :=
1

(log(k) nk)nk
(log(k)(nk + n))(nk+n),

determines a quasianalytic class closed under derivatives; this follows from
Cauchy’s condensation criterion. It is easy to check that the sequencesM (p),
p > 1, are quasianalytic when k > 1, but are not quasianalytic when k = 1.

7. Non-extendability of quasianalytic germs. In this section we are
concerned with a result by V. Thilliez [31] on the extension of quasianalytic
function germs in one variable, recalled below. As before, consider two log-
convex sequences M and N with M0 = N0 = 1 such that Q1(M) ⊂ Q1(N).
Denote by Q1(M)+ the local ring of right-side germs at zero (i.e. germs of
functions from Q([0, ε],M) for some ε > 0).

Theorem 7.1. If Q1(N) is a quasianalytic local ring, then

O1  Q1(M) ⊂ Q1(N) ⇒ Q1(M)+ \ Q1(N) 6= ∅,
i.e. there exist right-side germs from Q1(M)+ which do not extend to germs
from Q1(N). Here O1 stands for the local ring of analytic function germs in
one variable at 0 ∈ R.

Remark 7.2. Theorem 7.1 may be related to the research by M. Langen-
bruch [13] on extension of ultradifferentiable functions in several variables,
principally focused on the non-quasianalytic case, which seems to be more
difficult in this context. His extension problem is, roughly speaking, as fol-
lows:

Given two compact convex subsets K,K1 of Rm such that int(K) 6= ∅ or
K = {0} and K ⊂ int(K1), characterize the sequences of positive numbers
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M and N such that every function from the class Q(K,M) extends to a
function from Q(K1, N).

M. Langenbruch applies, however, methods and techniques different from
those of V. Thilliez. In particular, his approach is based on the theory of
Fourier transform and plurisubharmonic functions.

On the other hand, Thilliez’s approach relies on Grothendieck’s ver-
sion of the open mapping theorem (cf. [9, Chap. 4, Part 1, Theorem 2] or
[17, Part IV, Chap. 24]) and Runge approximation. It also enables formu-
lating the non-extendability theorem for quasianalytic function germs on a
compact convex subset K ⊂ Rm with 0 ∈ K.

Nevertheless, in order to construct our counterexample in the next sec-
tion, we need a refinement of Theorem 7.1, stated below. Thilliez’s proof
can be adapted mutatis mutandis. We shall outline it for the reader’s conve-
nience. Consider an increasing countable family M [p], p ∈ N, of log-convex
sequences

1 =M
[p]
0 ≤M

[p]
1 ≤M

[p]
2 ≤ · · · and M

[p]
j ≤M

[q]
j

for all j, p, q ∈ N, p ≤ q. Then we obtain an ascending sequence of local rings

Q1(M
[1]) ⊂ Q1(M

[2]) ⊂ · · ·

such that Q1(M
[p]) is dominated by Q1(M

(q)) for all p, q ∈ N with p ≤ q.

Theorem 7.3. If every local ring Q1(M
[p]) is quasianalytic, then

O1  Q1(M) ⊂
⋃
p∈N
Q1(M

[p]) ⇒ Q1(M)+ \
⋃
p∈N
Q1(M

[p]) 6= ∅.

Proof. For a smooth function f on an interval I ⊂ R and r > 0, set

‖f‖M,I,r := sup

{
|f (n)(x)|
rnn!Mn

: n ∈ N, x ∈ I
}
.

For k ∈ N, k > 0, let Bk(M) resp. Bk(M)+ denote the Banach space with
norm

‖ · ‖M,[−1/k,1/k],k resp. ‖ · ‖M,[0,1/k],k,

of those smooth functions on the interval [−1/k, 1/k] resp. [0, 1/k] such that

‖f‖M,[−1/k,1/k],k <∞ resp. ‖f‖M,[0,1/k],k <∞.

As the canonical embeddings

Bk(M) ↪→ Bl(M) and Bk(M)+ ↪→ Bl(M)+, k, l ∈ N, k ≤ l,

are compact linear operators (a consequence of Ascoli’s theorem; cf. [10]), one
can endow the local rings Q1(M) and Q1(M)+ with the inductive topologies.
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Similarly, the countable union of local rings⋃
p∈N
Q1(M

[p])

is the inductive limit of the sequence Bk(M (k)), k ∈ N, k > 0, of Banach
algebras. Further, the local ring⋃

p∈N
Q1(M

[p]) ∩Q1(M)+

is the inductive limit of the sequence

Bk(M
(k)) ∩Bk(M)+, k ∈ N, k > 0,

of Banach algebras with norms

‖f‖k := max{‖f‖M [k],[−1/k,1/k],k, ‖f‖M,[0,1/k],k}.
Clearly, the restriction operator

R :
⋃
p∈N
Q1(M

[p]) ∩Q1(M)+ → Q1(M)+

is continuous and injective by quasianalyticity. We nead to show that R is
not surjective.

Towards a contradiction, suppose that R is surjective. By Grothendieck’s
version of the open mapping theorem mentioned after Remark 7.2, the op-
erator R is a homeomorphism onto the image. Further, by Grothendieck’s
factorization theorem (see the same references), for each k ∈ N there is an
l ∈ N and a constant C > 0 such that

R(Bl(M
(l))) ⊃ R(Bl(M (l)) ∩Bl(M)+) ⊃ Bk(M)+

and
‖R−1f‖M(l),[−1/l,1/l],l ≤ ‖R

−1f‖l ≤ C‖f‖M,[0,1/k],k

for all f ∈ Bk(M)+. In particular, there is an l ∈ N and a constant A > 0
such that

R(Bl(M
(l))) ⊃ B1(M)+

and
‖R−1f‖M(l),[−1/l,1/l],l ≤ A‖f‖M,[0,1],1

for all f ∈ B1(M)+. Notice that

|P (−1/l)| ≤ A‖P‖M,[0,1],1

for every polynomial P ∈ C[x]. Set
W := {z ∈ C : dist(z, [0, 1])≤1/(2l)}, B := sup{(2l)n/Mn : n ∈ N} <∞;

the last inequality holds because O1  Q1(M), whence

sup {n
√
Mn : n ∈ N} =∞.
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It follows from Cauchy’s inequalities that

sup{|P (n)(x)| : x ∈ [0, 1]} ≤ n!(2l)n sup {|P (x)| : x ∈W},
and hence

‖P‖M,[0,1],1 ≤ B sup {|P (x)| : x ∈W}.
Consequently,

|P (−1/l)| ≤ AB sup{|P (x)| : x ∈W}
for every polynomial P ∈ C[x]. But, by Runge approximation, there exists
a sequence of polynomials Pν ∈ C[x] which converges uniformly to 0 on W ,
and to 1 for x = −1/l. This contradicts the above estimate, and thus the
theorem follows.

8. Construction of a counterexample. We give a counterexample in-
dicating that quasianalytic structures, unlike the classical structure Ran, may
not admit quantifier elimination in the language augmented merely by the
reciprocal function 1/x. The example we construct is a plane curve through
0 ∈ R2 which is definable in the quasianalytic structure corresponding to the
log-convex sequence

M = (Mn), Mn :=
1

(log log 3)3
(log log(n+ 3))(n+3);

this sequence determines a quasianalytic class closed under derivatives
(cf. Example 6.7). By Theorem 7.3, we can take a function germ

f ∈ Q1(M)+ \
⋃
p odd

Q1(M
(p)).

Let V ⊂ R2 be the graph of a representative of this germ in a right-side
neighbourhood [0, ε].

For a contradiction, suppose V is given by a term in the language of
restricted QM -analytic functions augmented merely by the reciprocal func-
tion 1/x. Taking into account Remark 2.2, we can thus deduce from The-
orem 2.1 that there would exist a rectilinearization of this term by a finite
sequence of blow-ups of the real plane at points. Consequently, the germ of
V at zero would be contained in the image ϕ([−1, 1]), where

ϕ = (ϕ1, ϕ2) : [−1, 1]→ R2, ϕ(0) = 0,

is a QM -analytic homeomorphism. But then the order of ϕ1 at zero must be
odd, and thus the set V would have a parametrization near zero of the form
(ξp, g(ξ)), where p is an odd positive integer and g is a QM -function in the
vicinity of zero. Hence and by Theorem 6.1, we would get

f(x) = g(x1/p) ∈ Q1(M
(p)),

which is a contradiction.
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Remark 8.1. By Puiseux’s theorem for definable functions (cf. [23, Sec-
tion 2]), the germ of every smooth function in one variable that is defin-
able in the structure RQM

belongs to Q1(M
(p)) for some positive integer p.

Therefore the structure under study will not admit quantifier elimination,
even considered with the richer language of restricted definable quasianalytic
functions augmented by the reciprocal function 1/x.

Remark 8.2. Also, our counterexample demonstrates that the classical
theorem of Łojasiewicz [14] that every subanalytic set of dimension ≤ 1 is
semianalytic is no longer true in quasianalytic structures.
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