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Hyperbolically 1-convex functions

by William Ma (Williamsport, PA), David Minda (Cincinnati, OH)
and Diego Mejia (Medelĺın)

Abstract. There are two reasonable analogs of Euclidean convexity in hyperbolic
geometry on the unit disk D. One is hyperbolic convexity and the other is hyperbolic
1-convexity. Associated with each type of convexity is the family of univalent holomorphic
maps of D onto subregions of the unit disk that are hyperbolically convex or hyperbolically
1-convex. The class of hyperbolically convex functions has been the subject of a number
of investigations, while the family of hyperbolically 1-convex functions has received less
attention. This paper is a contribution to the study of hyperbolically 1-convex functions.
A main result is that a holomorphic univalent function f defined on D with f(D) ⊆ D is
hyperbolically 1-convex if and only if f/(1− wf) is a Euclidean convex function for each
w ∈ D. This characterization gives rise to two-variable characterizations of hyperbolically
1-convex functions. These two-variable characterizations yield a number of sharp results
for hyperbolically 1-convex functions. In addition, we derive sharp two-point distortion
theorems for hyperbolically 1-convex functions.

1. Introduction. There are two natural analogs of Euclidean convexity
in hyperbolic geometry. One of the two has received more attention than
the other. First, a subregion Ω of the unit disk D = {z : |z| < 1} is called
hyperbolically convex (relative to hyperbolic geometry on D) if for all points
A,B ∈ Ω the arc of the hyperbolic geodesic in D connecting A and B (the
arc of circle joining A and B that is orthogonal to the unit circle) lies in Ω.
A holomorphic and univalent function f on D is called hyperbolically convex if
its image f(D) is a hyperbolically convex subset of D. Hyperbolically convex
functions have been studied in [4], [5], [7]–[9] and [11]. There is another
notion of convexity in hyperbolic geometry that can be viewed as an analog
of Euclidean convexity. A subregion Ω of D is called hyperbolically 1-convex
(relative to hyperbolic geometry on D) if for any pair of points A,B ∈ Ω
both of the two shorter circular arcs of constant hyperbolic curvature 1 in
D connecting A and B lie in Ω. Arcs of constant hyperbolic curvature 1 are
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arcs of horocycles; that is, circles in D that are tangent to ∂D. Given distinct
points A and B in D there are precisely two circles through A and B that
are tangent to the unit circle. A holomorphic and univalent function f on
D is called hyperbolically 1-convex if its image f(D) is a hyperbolically 1-
convex subset of D. Hyperbolically 1-convex functions have been considered
in [8] and [9]. In these references the functions are called hyperbolically
2-convex due to a different normalization of the hyperbolic metric on D. As
observed in [9], hyperbolic 1-convexity in hyperbolic geometry often plays
a role in hyperbolic geometry analogous to the roles of Euclidean convexity
in Euclidean geometry and spherical convexity in spherical geometry, while
hyperbolic convexity sometimes presents intriguing differences.

Throughout this paper, we let B be the family of all holomorphic func-
tions f in D with f(D) ⊆ D. We also denote by K1

h the family of all hyperbol-
ically 1-convex functions in D. Finally, K1

h(α) is the subclass of normalized
(f(0) = 0 and f ′(0) = α ∈ (0, 1)) functions in K1

h.
Known one-variable characterizations for K1

h usually contain nonholo-
morphic terms that make such characterizations difficult to use. For ex-
ample, a locally univalent function f ∈ B is in K1

h if and only if either of
the following inequalities holds [8]:

(1.1)
∣∣∣∣(1− |z|2)

f ′′(z)
f ′(z)

− 2z +
2(1− |z|2)f(z)f ′(z)

1− |f(z)|2
∣∣∣∣

≤ 2
(

1− (1− |z|2)|f ′(z)|
1− |f(z)|2

)
,

(1.2) Re
{

1 +
zf ′′(z)
f ′(z)

+
2f(z)zf ′(z)
1− |f(z)|2

}
≥ 2|zf ′(z)|

1− |f(z)|2 .

Our principal goal is to extend an idea [8] used in establishing distortion
theorems for K1

h. Precisely, we give a transformation that converts functions
of K1

h into Euclidean convex functions; this transformation characterizes
functions in K1

h. The transformation gives a two-variable characterization
for functions in K1

h that is holomorphic in each of the two variables. By
using this two-variable characterization, we obtain a number of results for
K1
h including connections with starlike functions and best possible lower

bounds on Re{f ′′(0)f(z)}, Re{zf ′(z)/f(z)} and Re{1 + zf ′′(z)/f ′(z)}. We
also give sharp upper and lower estimates on the “hyperbolic derivative”
(1− |z|2)|f ′(z)|/(1− |f(z)|2). Finally, we derive sharp two-point distortion
theorems for K1

h.

2. Preliminaries. Let Ω be a region in D. The hyperbolic metric on Ω
is denoted by λΩ(w)|dw| and is normalized to have curvature
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−∆ log λΩ(w)
λ2
Ω(w)

= −1,

where w = u+ iv and

∆ =
∂2

∂u2 +
∂2

∂v2 = 4
∂2

∂w∂w

denotes the usual Laplacian. The hyperbolic metric on the unit disk D is
λD(z)|dz| = 2|dz|/(1− |z|2) and the associated hyperbolic distance on D is

dD(a, b) = 2 tanh−1
∣∣∣∣
a− b
1− ba

∣∣∣∣.

If f : D → Ω is any holomorphic universal covering projection, then the
density λΩ of the hyperbolic metric is determined from λΩ(f(z))|f ′(z)| =
2/(1− |z|2).

It is convenient to introduce certain invariant differential operators de-
fined for functions in B. If f ∈ B, set

Dh1f(z) =
(1− |z|2)f ′(z)

1− |f(z)|2 ,

Dh2f(z) =
(1− |z|2)2f ′′(z)

1− |f(z)|2 − 2z(1− |z|2)f ′(z)
1− |f(z)|2 +

2(1− |z|2)2f(z)f ′(z)2

(1− |f(z)|2)2 ,

Dh3f(z) =
(1− |z|2)3f ′′′(z)

1− |f(z)|2 +
6(1− |z|2)3f(z)f ′(z)f ′′(z)

1− |f(z)|2

− 6z(1− |z|2)2f ′′(z)
1− |f(z)|2 +

6z2(1− |z|2)f ′(z)
1− |f(z)|2

− 12z(1− |z|2)2f(z)f ′(z)2

(1− |f(z)|2)2 +
6(1− |z|2)3f(z)

2
f ′(z)3

(1− |f(z)|2)3 .

These differential operators satisfy the important invariance property that
|Dhj(S◦f ◦T )| = |Dhjf |◦T , j = 1, 2, 3, whenever S and T are conformal au-
tomorphisms of D. In particular, Dhjf(0) = f (j)(0), j = 1, 2, 3, if f(0) = 0.
More information about these operators can be found in [4]. For locally uni-
valent functions in B, the following combinations of these operators are used
frequently:

Qf (z) =
Dh2f(z)
Dh1f(z)

= (1− |z|2)
f ′′(z)
f ′(z)

− 2z +
2(1− |z|2)f(z)f ′(z)

1− |f(z)|2

and
Dh3f(z)
Dh1f(z)

− 3
2

(
Dh2f(z)
Dh1f(z)

)2

= (1− |z|2)2Sf (z),
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where

Sf (z) =
f ′′′(z)
f ′(z)

− 3
2

(
f ′′(z)
f ′(z)

)2

is the Schwarzian derivative of f .
For f(z) = αz + a2z

2 + · · · ∈ K1
h(α), we have |a2| ≤ α(1− α) ([8]). This

inequality is sharp. Equality holds for

(2.1) kα(z) =
αz

1− (1− α)z

and its rotations; these functions map D onto a horodisk. The invariant form
of the coefficient inequality |a2| ≤ α(1− α) is

(2.2) |Qf (z)| ≤ 2(1− |Dh1f(z)|)
for all z ∈ D. For kα equality holds in (2.2) on the interval (−1, 1). Inequality
(2.2) characterizes functions in K1

h; it is (1.1) in different notation. In [8],
the authors also proved the following growth theorem for K1

h(α):

(2.3) −kα(−|z|) ≤ |f(z)| ≤ kα(|z|).

3. Transforming hyperbolically 1-convex functions into Euclid-
ean convex functions. Clearly, a hyperbolically 1-convex region Ω ⊆ D
is Euclidean convex. We use this observation to derive a characterization
of functions of K1

h in terms of a transformation. A similar idea was used
by Mejia and Pommerenke [10] in their investigation of spherically convex
functions.

Theorem 3.1. For f ∈ B, f ∈ K1
h if and only if f/(1−wf) is Euclidean

convex for every w ∈ D.

Proof. Suppose f ∈ K1
h. Then for each w ∈ D,

fw =
f − w
1− wf ∈ K

1
h,

and so fw is Euclidean convex. As
fw + w

1− |w|2 =
f

1− wf ,

we deduce that f/(1 − wf) is Euclidean convex for any w ∈ D. A limit
argument implies that f/(1− wf) is Euclidean convex for every w ∈ D.

Conversely, we show f ∈ K1
h if f/(1−wf) is Euclidean convex for every

w ∈ D. First, we prove that for any a ∈ D, fa = (f−a)/(1−af) also satisfies
the same assumption, that is, fa/(1 − wfa) is Euclidean convex for every
w ∈ D. This follows from

fa
1− wfa

=
f − a

1 + aw − (a+ w)f
=

(
1− a a+w

1+aw

)
f

(1 + aw)
(
1− a+w

1+awf
) − a

1 + aw
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and a+w
1+aw ∈ D. Thus, we can assume f(0) = 0. By assumption,

f(z)
f ′(0)(1− e−iϕf(z))

= z +
(

1
2
f ′′(0)
f ′(0)

+ e−iϕf ′(0)
)
z2 + · · ·

is a normalized Euclidean convex function for each ϕ ∈ R, so

|f ′′(0)/(2f ′(0)) + e−iϕf ′(0)| ≤ 1.

An appropriate choice of ϕ gives

|f ′′(0)/f ′(0)| ≤ 2(1− |f ′(0)|).
If we apply this inequality to

Fζ(z) =
f
(
z+ζ
1+ζz

)
− f(ζ)

1− f(ζ)f
(
z+ζ
1+ζz

) ,

which satisfies our assumption, we obtain, for any ζ ∈ D,

|Qf (ζ)| =
∣∣∣∣
Dh2f(ζ)
Dh1f(ζ)

∣∣∣∣ =
∣∣∣∣
F ′′ζ (0)

F ′ζ(0)

∣∣∣∣ ≤ 2(1− |F ′ζ(0)|) = 2(1− |Dh1f(ζ)|).

Therefore, f ∈ K1
h.

In [8], the authors showed f/(1 − e−iϕf) is Euclidean convex for all
ϕ ∈ R when f ∈ K1

h. Theorem 3.1 is a stronger result and characterizes K1
h.

Theorem 3.1 is analogous to a result on spherically convex functions due
to Mejia and Pommerenke [10]; however, Theorem 3.1 does not require the
normalization f(0) = 0 as does the result in [10].

4. Two-variable characterizations. Theorem 3.1 yields two-variable
characterizations for K1

h that are holomorphic in each variable. Recall that
a holomorphic function g in D is Euclidean convex if and only if (see [13]
and [14])

(4.1) Re
{

2zg′(z)
g(z)− g(ζ)

− z + ζ

z − ζ

}
> 0 (z, ζ ∈ D).

Theorem 4.1. Suppose f ∈ B. Then f ∈ K1
h if and only if

(4.2) Re
{

2zf ′(z)
f(z)− f(ζ)

− z + ζ

z − ζ +
2wzf ′(z)
1− wf(z)

}
> 0 (z, ζ ∈ D)

holds for all w ∈ D.

Proof. By using Theorem 3.1 and (4.1), we have

Re
{

2zf ′(z)
f(z)− f(ζ)

1− wf(ζ)
1− wf(z)

− z + ζ

z − ζ

}
> 0.

This is equivalent to (4.2).
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Theorem 4.1 with the special choice w = f(z) characterizes hyperbol-
ically convex functions (see [11] and [7]). We now give a symmetric two-
variable characterization.

Corollary 4.2. Suppose f ∈ B. Then f ∈ K1
h if and only if

(4.3) Re
{
zf ′(z)− ζf ′(ζ)
f(z)− f(ζ)

+
wzf ′(z)

1− wf(z)
+

ωζf ′(ζ)
1− ωf(ζ)

}
> 0 (z, ζ ∈ D)

for all w,ω ∈ D.

Proof. If f ∈ K1
h, then (4.2) holds. By interchanging z and ζ, and re-

placing w by ω, we obtain

Re
{
− 2ζf ′(ζ)
f(z)− f(ζ)

+
z + ζ

z − ζ +
2ωζf ′(ζ)
1− ωf(ζ)

}
> 0.

By adding this inequality to (4.2) and then dividing by 2, we get (4.3).
Next, assume (4.3) holds. In particular, when ζ = z and ω = w, (4.3)

becomes

Re
{

1 +
zf ′′(z)
f ′(z)

+
2wzf ′(z)
1− wf(z)

}
≥ 0.

Let

w =
f(z)− |zf

′(z)|
zf ′(z)

1− f(z) |zf
′(z)|

zf ′(z)

and note |w| = 1 since |zf
′(z)|

zf ′(z) ∈ ∂D for z 6= 0. Direct calculation shows

wzf ′(z)
1− wf(z)

=
f(z)zf ′(z)
1− |f(z)|2 −

|zf ′(z)|
1− |f(z)|2 .

Therefore, for z ∈ D \ {0},

Re
{

1 +
zf ′′(z)
f ′(z)

+
2f(z)zf ′(z)
1− |f(z)|2 −

2|zf ′(z)|
1− |f(z)|2

}
≥ 0

and the inequality trivially holds for z = 0. This is equivalent to (1.2), which
characterizes K1

h.

5. Applications. Recall that a holomorphic and univalent function
g normalized by g(0) = g′(0) − 1 = 0 is called starlike of order β if
Re{zg′(z)/g(z)} > β in D.

Theorem 5.1. Suppose f ∈ B and f(0) = 0. Then f ∈ K1
h if and only

if

Fζ,w(z) =
zζ

f(ζ)
f(z)− f(ζ)

(z − ζ)(1− wf(z))

is starlike of order 1/2 for each ζ ∈ D and each w ∈ D.
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Proof. Direct calculations give

2zF ′ζ,w(z)

Fζ,w(z)
− 1 =

2zf ′(z)
f(z)− f(ζ)

− z + ζ

z − ζ +
2wzf ′(z)
1− wf(z)

.

Thus, Theorem 5.1 follows from Theorem 4.1.

For the special value w = f(ζ), the analogous result characterizes hyper-
bolically convex functions [6].

Corollary 5.2. If f ∈ K1
h with f(0) = 0, then

Re
{

ζ

f(ζ)
f(z)− f(ζ)

(z − ζ)(1− wf(z))

}
>

1
2

for all ζ ∈ D and all w ∈ D. In particular , if f ∈ K1
h(α), then for z ∈ D,

(5.1) Re{zf ′(z)/f(z)} > 1/(2− α).

Inequality (5.1) is best possible for each α ∈ (0, 1).

Proof. It is known (see [12]) that Re{F (z)/z} > 1/2 if F is starlike of
order 1/2. Then Theorem 5.1 implies the first inequality. For ζ = z, the first
inequality becomes

Re
{

zf ′(z)
f(z)(1− wf(z))

}
>

1
2
.

The choice w = −f(z)/|f(z)| produces

Re{zf ′(z)/f(z)} > (1 + |f(z)|)/2.
From the lower bound in (2.3),

lim
|z|→1

1
2

(1 + |f(z)|) ≥ 1
2

(
1 +

α

2− α

)
=

1
2− α.

Because Re{zf ′(z)/f(z)} is harmonic in D, we obtain (5.1).

For the function kα, inf{Re{zk′α(z)/kα(z)} : z ∈ D} = 1/(2− α), so
(5.1) is best possible for each α ∈ (0, 1).

Corollary 5.3. If f ∈ K1
h with f(0) = 0, then for every ζ ∈ D and

w ∈ D,
F 2
ζ,w(z)

z
=

zζ2

f(ζ)2

(f(z)− f(ζ))2

(z − ζ)2(1− wf(z))2

is starlike in D.

Now we derive the sharp order of Euclidean convexity for functions in
K1
h(α).
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Theorem 5.4. If f ∈ K1
h(α), then for z ∈ D,

(5.2) Re
{

1 +
zf ′′(z)
f ′(z)

}
>

α

2− α.

This result is best possible for each α ∈ (0, 1).

Proof. For ζ = z, (4.2) becomes

Re
{

1 +
zf ′′(z)
f ′(z)

+
2wzf ′(z)
1− wf(z)

}
> 0.

The choice w = −f(z)/|f(z)| gives

(5.3) Re
{

1 +
zf ′′(z)
f ′(z)

}
> 2

|f(z)|
1 + |f(z)| Re

{
zf ′(z)
f(z)

}
.

From (2.3),

(5.4)
|f(z)|

1 + |f(z)| ≥
α|z|

(1 + (1− α)|z|)
(
1 + α|z|

1+(1−α)|z|
) =

α|z|
1 + |z| .

This together with Corollary 5.2 yields

Re
{

1 +
zf ′′(z)
f ′(z)

}
>

2
2− α

α|z|
1 + |z| .

The right-hand side approaches α
2−α as |z| → 1. As Re{1 + zf ′′(z)/f ′(z)} is

harmonic in D, we get (5.2). For kα,

inf
{

Re
{

1 +
zk′′α(z)
k′α(z)

}
: z ∈ D

}
=

α

2− α,

so (5.2) is best possible for each α.
For locally univalent holomorphic functions, the order of starlikeness is

clearly at least the same as the order of convexity. The first part of our next
result provides a comparison in the other direction for f ∈ K1

h(α), which
will be used to improve the known order of growth of |f ′(z)| when α > 1/2.
In [8], we obtained a sharp upper bound on |f ′(z)| for f ∈ K1

h(α) only when
|z| ≤ 2/(1 +

√
1 + 4α), and also showed |f ′(z)| = O(1/(1− |z|)) as |z| → 1.

For |z| close to 1, the sharp upper bound on |f ′(z)| remains unknown.

Theorem 5.5. If f ∈ K1
h(α), then for z ∈ D,

(5.5) Re
{

1 +
zf ′′(z)
f ′(z)

}
> αRe

{
zf ′(z)
f(z)

}

and

|f ′(z)| ≤ α

(1− |z|)2(1−α)

∣∣∣∣
f(z)
αz

∣∣∣∣
α

<
α1−α

(1− |z|)2(1−α)
.
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Proof. From (5.3) and (5.4),

Re
{

1 +
zf ′′(z)
f ′(z)

}
>

2αr
1 + r

Re
{
zf ′(z)
f(z)

}

on |z| ≤ r for each fixed r, 0 < r < 1. By letting r → 1 and noting the two
sides cannot be identical when α < 1, (5.5) holds.

In order to derive the upper bound on |f ′(z)|, we define

F (z) =
zf ′(z)

α
( f(z)
αz

)α .

Then
zF ′(z)
F (z)

= 1 +
zf ′′(z)
f ′(z)

− α zf
′(z)

f(z)
+ α.

This together with (5.5) implies that F is starlike of order α and so (see
[3]) |F (z)| ≤ |z|/(1− |z|)2(1−α). This is equivalent to the second inequality
in Theorem 5.5.

If f is meromorphic and satisfies (1 − |z|2)2|Sf (z)| ≤ 2 in D, then f is
called a Nehari function. Chuaqui and Osgood [1] proved that for normalized
(f(0) = f ′(0) − 1 = 0) holomorphic Nehari functions, a2f(z) 6= −1 in D,
where a2 = f ′′(0)/2. For normalized Euclidean convex functions f , Fournier,
Ma and Ruscheweyh [2] established the stronger result Re{a2f(z)} > −1/2,
z ∈ D. Related inequalities hold for hyperbolically convex functions [7].

Theorem 5.6. If f ∈ K1
h(α), then

Re{a2f(z)} > −α2 1− α
2− α

for all z ∈ D. The result is best possible for each α ∈ (0, 1).

Proof. By Theorem 4.1, the function

pζ,w(z) =
2zf ′(z)

f(z)− f(ζ)
− z + ζ

z − ζ +
2wzf ′(z)
1− wf(z)

is holomorphic and has positive real part in D. Direct calculation yields
1
2
p′ζ,w(0) = − α

f(ζ)
+

1
ζ

+ αw

and
1
8

(p′′ζ,w(0)− p′ζ,w(0)2) = (1− wf(ζ))
(
− a2

f(ζ)
− α2

f(ζ)2 +
α

ζf(ζ)

)
.

From |p′′ζ,w(0)− p′ζ,w(0)2|+ |p′ζ,w(0)|2 ≤ 4 (see [5]), we obtain

|1− wf(ζ)|
∣∣∣∣a2f(ζ) + α2 − αf(ζ)

ζ

∣∣∣∣+
1
2

∣∣∣∣
f(ζ)
ζ
− α(1− wf(ζ))

∣∣∣∣
2

≤ 1
2
|f(ζ)|2.
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By choosing w = −f(ζ)/|f(ζ)|, we find
∣∣∣∣a2f(ζ) + α2 − αf(ζ)

ζ

∣∣∣∣ ≤
1

2(1 + |f(ζ)|)

(
|f(ζ)|2 −

∣∣∣∣
f(ζ)
ζ
− α(1 + |f(ζ)|)

∣∣∣∣
2)
.

Therefore,

Re{a2f(ζ)} ≥ − α2 + αRe{f(ζ)/ζ}

− 1
2(1 + |f(ζ)|)

(
|f(ζ)|2 −

∣∣∣∣
f(ζ)
ζ
− α(1 + |f(ζ)|)

∣∣∣∣
2)

=
1− |ζ|2

2(1 + |f(ζ)|)

∣∣∣∣
f(ζ)
ζ

∣∣∣∣
2

− α2

2
+
α2

2
|f(ζ)|

> −α
2

2
+
α2

2
|f(ζ)|.

If a2 = 0, the desired inequality clearly holds. If a2 6= 0, then Re{a2f(ζ)}
is a non-constant harmonic function of ζ. By using (2.3) and the fact that
this lower bound tends to α/(2− α) as |ζ| → 1, we obtain, for any ζ ∈ D,

Re{a2f(ζ)} > −α2 1− α
2− α.

It is straightforward to check that the infimum of Re{a2kα(z)} over z ∈ D
is −α2(1− α)/(2− α).

Theorem 5.7. Suppose f ∈ B is locally univalent. Then f ∈ K1
h if and

only if

(5.6) (1− |z|2)2|Sf (z)|+ 1
2

(∣∣∣∣
Dh2f(z)
Dh1f(z)

∣∣∣∣+ 2|Dh1f(z)|
)2

≤ 2

for all z ∈ D. The constant 2 is best possible.

Proof. First, assume f ∈ K1
h. Because of the invariance of the quantities

involved, it suffices to establish (5.6) in the special case that z = 0 and
f(0) = 0. From Theorem 3.1, g = f/(1− wf) satisfies Trimble’s inequality
(see [15])

|Sg(0)|+ 1
2
|g′′(0)/g′(0)|2 ≤ 2.

Because Sg(0) = Sf (0) and g′′(0)/g′(0) = f ′′(0)/f ′(0) + 2wf ′(0), we obtain

|Sf (0)|+ 1
2
|f ′′(0)/f ′(0) + 2wf ′(0)|2 ≤ 2.

By choosing w with |w| = 1 so that

|f ′′(0)/f ′(0) + 2wf ′(0)| = |f ′′(0)/f ′(0)|+ 2|f ′(0)|,
we get (5.6) when z = 0 and f(0) = 0. Conversely, (5.6) clearly implies
(2.2), which characterizes K1

h.
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Next, we show that the constant 2 is best possible. For any a, 0 < a < 1,
it is straightforward to check that the function

ha(z) = a

(
1+z
1−z
)4 arctan a/π − 1

(
1+z
1−z
)4 arctan a/π

+ 1

maps D univalently onto the lens-shaped region that is the intersection of
the two horodisks bounded by the two horocycles passing through −a and a.
Thus, ha ∈ K1

h. Direct calculations show that

Sha(0) = 2(1− 16 arctan2 a/π2),

which tends to 2 as a approaches 0. This implies that the constant 2 is best
possible.

Theorem 5.7 is the analog for K1
h of the invariant form of Trimble’s

inequality for Euclidean convex functions.

6. Sharp bounds on the hyperbolic derivative. In this section, we
derive sharp upper and lower bounds on the hyperbolic derivative |Dh1f(z)|
for functions in K1

h.

Theorem 6.1. Suppose f ∈ K1
h. Then for any a, b ∈ D, we have

(6.1)
|Dh1f(a)|e−L

1− (1− e−L)|Dh1f(a)| ≤ |Dh1f(b)| ≤ |Dh1f(a)|eL
1 + (eL − 1)|Dh1f(a)| ,

where L = dD(a, b). In particular , if f ∈ K1
h(α), then

(6.2)
α(1− |z|)

1 + (1− 2α)|z| ≤ |Dh1f(z)| ≤ α(1 + |z|)
1− (1− 2α)|z| .

All of these bounds are sharp.

Proof. We need only consider those f that are not conformal automor-
phisms of D since the inequalities clearly hold for conformal automorphisms
of D. For any pair of fixed a, b ∈ D, let γ : z = z(s), 0 ≤ s ≤ L = dD(a, b),
be the hyperbolic geodesic connecting a, b and parametrized by hyperbolic
arc length. Then z′(s) = 1

2 (1 − |z(s)|2)eiθ(s), where eiθ(s) is the Euclidean
unit tangent of γ at z(s). From [4] we have

d
ds |Dh1f(z(s))|
|Dh1f(z(s))| =

1
2

Re{Qf (z(s))eiθ(s)},

and applying (2.2) we find that
d
ds |Dh1f(z(s))|

|Dh1f(z(s))|(1− |Dh1f(z(s))|) ≤ 1.
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By integrating this inequality over [0, L], we obtain

log
|Dh1f(b)|(1− |Dh1f(a)|)
(1− |Dh1f(b)|)|Dh1f(a)| ≤ L,

or
|Dh1f(b)|

1− |Dh1f(b)| ≤
|Dh1f(a)|

1− |Dh1f(a)| e
L.

This is equivalent to the upper bound in (6.1). The lower bound in (6.1) is
obtained by interchanging a and b in the upper bound.

If f ∈ K1
h(α), then |Dh1f(0)| = α. By setting a = 0 and b = z in (6.1),

we find
α 1−|z|

1+|z|

1− α+ α 1−|z|
1+|z|

≤ |Dh1f(z)| ≤
α 1+|z|

1−|z|

1− α+ α 1+|z|
1−|z|

since eL = edD(0,z) = (1 + |z|)/(1− |z|). Simplifying both sides gives (6.2).
For kα, direction calculation gives

|Dh1kα(r)| = α(1− r2)
(1− (1− α)r)2 − α2r2 =

α(1 + r)
1− (1− 2α)r

.

This shows that the upper bounds are sharp. The sharpness of the lower
bounds follows from

|Dh1kα(−r)| = α(1− r2)
(1 + (1− α)r)2 − α2r2 =

α(1− r)
1 + (1− 2α)r

.

7. Two-point distortion theorems. In this section, we present two-
point distortion theorems for functions in K1

h. The method is very similar
to that employed in [6] in which two-point distortion theorems for bounded
univalent functions were established. If a proof is similar to that for bounded
univalent functions, we do not hesitate to omit some of the details. Note that
a different normalization of the hyperbolic metric was employed in [6], so
some formulas here are slightly different from the corresponding formulas
in [6].

Assume γ : z = z(s), −L ≤ s ≤ L, is a smooth path in D parametrized
by hyperbolic arclength. For any real number p 6= 0, set

(7.1) v(s) =
( |Dh1f(z(s))|

1− |Dh1f(z(s))|

)p
.

Then (see [6])

(7.2) v′(s) =
pv(s)

2(1− |Dh1f(z(s))|) Re{eiθ(s)Qf (z(s))},
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(7.3)
4(1− |Dh1f(z(s))|)

pv(s)
v′′(s)

= Re
{
ei2θ(s)

(
(1− |z(s)|2)2Sf (z(s)) +

1
2
Q2
f (z(s))

)}

+
p+ |Dh1f(z(s))|
1− |Dh1f(z(s))| Re2{eiθ(s)Qf (z(s))}

− 2κD(z(s), γ) Im{eiθ(s)Qf (z(s))} − 2 + 2|Dh1f(z(s))|2

and so

(7.4)
4(1− |Dh1f(z(s))|)

pv(s)
v′′(s)

= Re
{
ei2θ(s)

(
(1− |z(s)|2)2Sf (z(s)) +

1
2
Q2
f (z(s))

)}

+
p+ |Dh1f(z(s))|
1− |Dh1f(z(s))| Re2{eiθ(s)Qf (z(s))}+ Im2{eiθ(s)Qf (z(s))}

− 2κD(f(z(s)), f ◦ γ)|Dh1f(z(s))| Im{eiθ(s)Qf (z(s))}
− 2 + 2|Dh1f(z(s))|2.

Here κD(z(s), γ) denotes the hyperbolic curvature of γ at z(s), with a similar
interpretation of the term κD(f(z(s)), f ◦ γ).

The following integral inequalities were established in [6].

Proposition 7.1. Suppose v ∈ C2[−L,L], v > 0, k > 0, p ≥ 1, |v′| ≤
kpv and v′′ ≤ k2p2v. Then the following inequalities hold :

(7.5) 2L+
1
k

log
(1 + e−2kpL)1/p + [v(L) + v(−L)]1/p

(1 + e2kpL)1/p + [v(L) + v(−L)]1/p
≤

L�

−L

v(s)1/p

1 + v(s)1/p
ds

and equality holds if and only if v(s) = Ae±kps, A > 0; and

(7.6)
L�

−L

1
1 + v(s)1/p

ds

≤ 2L+
1
k

log
(1 + e2kpL)−1/p + [v(L) + v(−L)]−1/p

(1 + e−2kpL)−1/p + [v(L) + v(−L)]−1/p

and equality holds if and only if v(s) = Ae±kps, A > 0.

Theorem 7.2. Suppose f ∈ K1
h.

(a) For a, b ∈ D and p ≥ 1,

dD(a, b) + Ef (a, b; p) ≤ dD(f(a), f(b)),
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where

Ef (a, b; p)

= log
(1 + e−pdD(a,b))1/p +

[( |Dh1f(a)|
1−|Dh1f(a)|

)p
+
( |Dh1f(b)|

1−|Dh1f(b)|
)p]1/p

(1 + epdD(a,b))1/p +
[( |Dh1f(a)|

1−|Dh1f(a)|
)p

+
( |Dh1f(b)|

1−|Dh1f(b)|
)p]1/p .

(b) For a, b ∈ D and p ≥ 1.5,

dD(f(a), f(b)) ≤ dD(a, b) +Ef (a, b;−p).
These inequalities are identities on (−1, 1) for kα.

Proof. (a) Fix a, b ∈ D. Since f ∈ K1
h, the hyperbolic geodesic Γ connect-

ing f(a) and f(b) lies in f(D). Set γ = f−1 ◦Γ. Then γ is a smooth arc in D
joining a and b. Suppose γ : z = z(s), −L ≤ s ≤ L, is a hyperbolic arclength
parametrization of γ. Then 2L ≥ dD(a, b) and κD(f(z(s)), f ◦ γ) = 0. For
p ≥ 1, we consider the function v(s) defined in (7.1). Then (7.2) and (2.2)
give |v′(s)| ≤ pv(s). By using (7.4) and Re2{z} = 1

2 Re{z2}+ 1
2 |z|2, we have

4(1− |Dh1f(z(s))|)
pv(s)

v′′(s)

= Re
{
ei2θ(s)

(
(1− |z(s)|2)2Sf (z(s)) +

1
2
Q2
f (z(s))

)}

+
p+ |Dh1f(z(s))|
1− |Dh1f(z(s))| Re2{eiθ(s)Qf (z(s))}+ Im2{eiθ(s)Qf (z(s))}

− 2 + 2|Dh1f(z(s))|2.
Wirths [16] proved

(7.7) (1− |z|2)2|Sf (z)| ≤ 2(1− |Dh1f(z)|)− |Qf (z)|2
2(1− |Dh1f(z)|) .

This is an identity on (−1, 1) for kα. From (7.7) and (2.2), we obtain

4(1− |Dh1f(z(s))|)
pv(s)

v′′(s)

≤ 2p+ |Dh1f(z(s))|
2(1− |Dh1f(z(s))|) |Qf (z(s))|2 + 2|Dh1f(z(s))|2 − 2|Dh1f(z(s))|

≤ 4p(1− |Dh1f(z(s))|).
Thus, v(s) satisfies the hypotheses of Proposition 7.1 for k = 1 and p ≥ 1.
Since

dD(f(a), f(b)) =
L�

−L

v(s)1/p

1 + v(s)1/p
ds,

2L ≥ dD(a, b) and the left-hand side of (7.5) is an increasing function of L,
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(7.5) implies

dD(f(a), f(b)) ≥ 2L+ log
(1 + e−2pL)1/p + [v(L) + v(−L)]1/p

(1 + e2pL)1/p + [v(L) + v(−L)]1/p

≥ dD(a, b) + log
(1 + e−pdD(a,b))1/p + [v(L) + v(−L)]1/p

(1 + epdD(a,b))1/p + [v(L) + v(−L)]1/p
.

This is equivalent to the inequality in (a).
(b) Fix a, b ∈ D. Let γ be the hyperbolic geodesic arc between a and b,

and γ : z = z(s),−L ≤ s ≤ L, the hyperbolic arclength parametrization
of γ. In this situation, dD(a, b) = 2L and κD(z(s), γ) = 0. This time we take

v(s) =
( |Dh1f(z(s))|

1− |Dh1f(z(s))|

)−p
,

where p > 0. From (7.2) and (2.2), we have |v′(s)| ≤ pv(s). It follows from
(7.3) and Re2{z} = 1

2 Re{z2}+ 1
2 |z|2 that

4(1− |Dh1f(z(s))|)
pv(s)

v′′(s)

= − Re
{
ei2θ(s)

(
(1− |z(s)|2)2Sf (z(s)) +

1
2
Q2
f (z(s))

)}

+
p− |Dh1f(z(s))|
1− |Dh1f(z(s))| Re2{eiθ(s)Qf (z(s))}+ 2− 2|Dh1f(z(s))|2

≤ (1− |z(s)|2)2|Sf (z(s))|+ 2p− 1− |Dh1f(z(s))|
2(1− |Dh1f(z(s))|) |Qf (z(s))|2

+ 2− 2|Dh1f(z(s))|2.
By using (7.7) and (2.2) and assuming p ≥ 1.5, we obtain

4(1− |Dh1f(z(s))|)
pv(s)

v′′(s) ≤ 4p(1− |Dh1f(z(s))|).

Hence, v satisfies the conditions of Proposition 7.1 for k = 1 and p ≥ 1.5.
In this case,

dD(f(a), f(b)) ≤
�

f◦γ
λD(w) |dw| =

L�

−L

1
1 + v(s)1/p

ds.

By applying (7.6) and dD(a, b) = 2L, we find

dD(f(a), f(b)) ≤ 2L+ log
(1 + e2pL)−1/p + [v(L) + v(−L)]−1/p

(1 + e−2pL)−1/p + [v(L) + v(−L)]−1/p

= dD(a, b) + log
(1 + epdD(a,b))−1/p + [v(L) + v(−L)]−1/p

(1 + e−pdD(a,b))−1/p + [v(L) + v(−L)]−1/p
.

This is equivalent to the inequality in (b).
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We conjecture that the upper bound in Theorem 7.2 remains valid for
p ≥ 1. The lower bound in part (a) is a decreasing function of p while the
upper bound in (b) is an increasing function of p. The weakest inequalities
in Theorem 7.2 are as follows when p =∞.

Corollary 7.3. Suppose f ∈ K1
h. Then for a, b ∈ D,

dD(a, b) + log
1 + max

{ |Dh1f(a)|
1−|Dh1f(a)| ,

|Dh1f(b)|
1−|Dh1f(b)|

}

edD(a,b) + max
{ |Dh1f(a)|

1−|Dh1f(a)| ,
|Dh1f(b)|

1−|Dh1f(b)|
}

≤ dD(f(a), f(b)) ≤ dD(a, b) + log
e−dD(a,b) + min

{ |Dh1f(a)|
1−|Dh1f(a)| ,

|Dh1f(b)|
1−|Dh1f(b)|

}

1 + min
{ |Dh1f(a)|

1−|Dh1f(a)| ,
|Dh1f(b)|

1−|Dh1f(b)|
} .

This corollary can be regarded as a refinement for functions in K1
h of

the Schwarz–Pick Lemma. It is the invariant version of the growth theorem
(2.3) for K1

h. If we choose a = 0, b = z in Corollary 7.3, we obtain

log
1

1− α+ αe−dD(0,z)
≤ dD(0, f(z)) ≤ log(1− α+ αedD(0,z)),

or
1

1− α+ α 1−|z|
1+|z|

≤ 1 + |f(z)|
1− |f(z)| ≤ 1− α+ α

1 + |z|
1− |z|

as log 1+x
1+xe−dD(0,z) and log 1+xedD(0,z)

1+x are increasing functions of x. This is
equivalent to (2.3).

Remarks. The weakest inequalities in Theorem 7.2 imply f ∈ K1
h. Pre-

cisely, if f ∈ B satisfies either of the inequalities in Corollary 7.3, then
f ∈ K1

h. To see this, it suffices to show that each of the inequalities in
Corollary 7.3 implies (2.2). Because the inequalities in Corollary 7.4 are
invariant when we replace f by S ◦ f ◦ T , where S, T are conformal au-
tomorphisms of D, we may assume f(0) = 0 and it is enough to show
|f ′′(0)/f ′(0)| ≤ 2(1− |f ′(0)|). Inequalities (2.3) implies

|f ′(0)| |z|
1 + (1− |f ′(0)|)|z| ≤ |f(z)| ≤ |f ′(0)| |z|

1− (1− |f ′(0)|)|z| ,

or
|z|(1− (1− |f ′(0)|)|z|+ o(|z|)) ≤ |f(z)/f ′(0)|

≤ |z|(1 + (1− |f ′(0)|)|z|+ o(|z|)).
Since

|f(z)/f ′(0)| = |z|(1 + Re{zf ′′(0)/(2f ′(0))}+ o(|z|)),
we have

−(1− |f ′(0)|)|z|+ o(|z|) ≤ Re{zf ′′(0)/(2f ′(0))} ≤ (1− |f ′(0)|)|z|+ o(|z|).
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For z = reiθ we obtain

−(1− |f ′(0)|) + o(1) ≤ Re{eiθf ′′(0)/(2f ′(0))} ≤ 1− |f ′(0)|+ o(1).

Since θ is arbitrary, either inequality implies |f ′′(0)/f ′(0)| ≤ 2(1− |f ′(0)|).
As in the proof of Corollary 4 in [6], we obtain the following comparison

theorem between hyperbolic geometry on hyperbolically 1-convex region Ω
and hyperbolic geometry on D by using the lower bound in Corollary 7.3.

Corollary 7.4. Suppose Ω ⊂ D is hyperbolically 1-convex , Ω 6= D.
Then for w ∈ Ω,

λΩ(w) ≥ λD(w)
1− exp(−εΩ(w))

,

where εΩ(w) = inf{dD(w,ω) : ω ∈ ∂Ω}.
Remarks. Corollary 7.4 is an invariant version of a covering theorem

for K1
h. If f ∈ K1

h(α), then (see [9]) f(D) ⊃ {w : |w| < α/(2− α)}. Set
Ωα = kα(D). Then λΩα(0) = 2/α and εΩα(0) = dD(0,−α/(2− α)) =
− log (1− α). This implies

λD(0)
1− exp(−εΩα(0))

=
2
α

= λΩα(0).

Thus the inequality in Corollary 7.4 is best possible.
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Reçu par la Rédaction le 14.8.2004
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