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Note on the Jacobian condition and the
non-proper value set

by NGUYEN VAN CHAU (Hanoi)

Abstract. We show that the non-proper value set of a polynomial map (P,Q) :
C? — C? satisfying the Jacobian condition det D(P,Q) = const # 0, if non-empty, must
be a plane curve with one point at infinity.

1. Let f = (P,Q) : (C%z,y) — (C%u,v) be a dominant polynomial map,
P,Q € Clz,y], and define J(P,Q) = P,Q, — PyQ,. Recall that the so-
called non-proper value set Ay of f consists of all points a € C? such that
the inverse f~!(K) is not compact for any compact neighborhood K C C?
of a. This set Ay, if non-empty, must be a plane curve such that each of
its irreducible components can be parameterized by a non-constant polyno-
mial map from C into C? (see [J]). The mysterious Jacobian conjecture (see
[BCW] and [E]), posed first by Keller in 1939 and still open, asserts that
a polynomial map f = (P,Q) of C? with J(P,Q) = const # 0 must have
a polynomial inverse. This conjecture can be reduced to proving that the
non-proper value set Ay is empty. Anyway one may think that in a coun-
terexample to the Jacobian conjecture, if one exists, the non-proper value
set must have a very special form. In [C] it was observed that in such a
counterexample the irreducible components of Af can be parameterized by
polynomial maps £ — (p(§),q(&)) with degp/degq = deg P/deg Q. In this
paper we notice that the non-proper value set of a nonsingular polynomial
map from C? into itself, if non-empty, must be a curve with one point at
infinity.

THEOREM 1. Suppose f = (P, Q) is a polynomial map of C? with J(P, Q)
const # 0, deg P = deg, P = Kd and degQ = deg, Q = Ke, gcd(d,e)
= 1’
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W P(z,y) = Ay"?+- +ai(@)y +aolz), AF#O,
Q(z,y) = By*+ -+ bi(2)y +bo(z), B #0.

If the non-proper value set Ay is not empty, then every irreducible compo-
nent of Ay can be parameterized by polynomial maps of the form

(2) & (AE™ + lower order terms in €,
BE™° + lower order terms in £), m € N.

By definition Ay is the set of all values a € C? such that the number
of solutions counted with multiplicities of the equation f(z,y) = a is differ-
ent from those for generic values in C?. Then, considering the components
P(z,y) and Q(x,y) as elements of C[z][y], we can define the resultant

(3) Res, (P —u,Q —v) = Ro(u,v)z™ + -+ Ry(u,v),

where R; € Clu,v], Ry # 0. From the basic properties of the resultant
function we know that N is the geometric degree of f and Ay = {(u,v) €
C? : Ro(u,v) = 0}. Note that a curve given by a polynomial parameter of
the form (1) can be defined by a polynomial of the form (A°u¢ — Byd)™ +
> 0<idtje<mde Cij u'v? and its branch at infinity has a Newton—Puiseux series
of the form u = cv?¢ + lower order terms in v, where ¢ is a dth root of
B/A¢. Thus, Theorem 1 leads to

COROLLARY 1. Let f be as in Theorem 1. Then

(4) Ro(u,v) = C(A%u° — BlyH)M 4 Z ciju'v?
0<id+je<Mde
with 0 # C € C and M > 0.

COROLLARY 2. Let f be as in Theorem 1. If Ay # ), then Ay is a curve
with one point at infinity and the irreducible branches at infinity of Ay have
Newton—Puiseux series of the form

d/e 4 lower order terms in v

with coefficients ¢ being dth roots of B%/A®.

As seen later, the representation in (1) of P and @ is only used to
visualize the coefficient B?/A°. In fact, when A; # 0 the numbers d, e,
B?/A¢ and the polynomial Rg(u,v) are invariant under right actions of
automorphisms of C2, since the set A; does not depend on the coordinate
(x,1). Furthermore, the coefficient BY/A¢ is uniquely determined from the
relation

U = cv

P (z,y) = (BY/A) Q4 (x,y),
which is a consequence of the Jacobian condition when deg P > 1 and
deg@ > 1. Here, Py and @) are the leading homogeneous components of
P and @, respectively.
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Theorem 1 will be proved in Sections 2-5 in an elementary way by using
Newton—Puiseux expansions and the Newton theorem. It would be interest-
ing to determine the form of Ry(u,v) by examining directly the resultant
function Resy (P — u,Q — v).

2. Dicritical series of f. From now on, f = (P,Q) : C%x,y) — (C?u,v)
is a given polynomial map with J(P,Q) = const # 0, degP = Kd > 0
and deg@ = Ke > 0, ged(d,e) = 1. The Jacobian condition will be used
really in Lemma 3 and the proof of Theorem 1. Since Ay does not depend

on the coordinate (z,y), to examine it we can assume that deg, P = deg P,
deg, @ = deg () and

P(z,y) = Ay®? + ...+ a1 (x)y +ao(z), A#0,

Q(x,y) = By*e+ -+ by(2)y + bo(x), BH#DO.

With this representation the Newton—Puiseux roots at infinity y(z) of each
of the equations P(z,y) = 0 and Q(x,y) = 0 are fractional power series of
the form

()

o0

y(z) = chxl_k/m, m e N, ged{k : ¢ #0} =1,
k=0
for which the map 7 — (7", y(7™)) is meromorphic and injective for T large
enough. In view of the Newton theorem we can represent

deg P deg Q

(6) =A H y — ui(z =B H y—vj(z

where u;(x) and v;(x) are the Newton-Puiseux roots at infinity of the equa-
tions P = 0 and @ = 0, respectively. We refer the readers to [A] and [BK]
for the Newton theorem and the Newton—Puiseux roots.

We begin with the description of the non-proper value set Ay of f via
Newton—Puiseux expansions. We will work with finite fractional power series
o(z, &) of the form

K—1

(1) @8 = 3 axadHm g EIm e N, ged{k s ag £ 0} = 1,
k=1

where ¢ is a parameter. For convenience, we set mult(y) := m. Such a

series ¢ is called a dicritical series of f if
f(x,p(x,8)) = fo(§) + lower order terms in z,  deg f, > 0.
The following description of Ay was given in [C].
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LEMMA 1 ([C, Theorem 4.4]).
Af = U fo(C).

@ is a dicritical series of f

To see this, note that by definition the non-proper value set Ay consists
of all values a € C? such that there exists a sequence C? 3 p; — oo with
f(pi) — a.If @ is a dicritical series of f of the form (7), we can define the map
D(t, &) = (™™, p(t™™,&)). Then @ sends C* xC to C? and the line {0} xC to
the line at infinity of CPP?. The polynomial map Fi,(¢,&) := f o ®(t,£) sends
the line {0} x C to Ay C C2. Therefore, f,(C) is an irreducible component
of Ay, since deg f, > 0. Conversely, if £ is an irreducible component of Ay,
one can choose a smooth point (ug, vg) of Af, (ug,vo) € ¢, and an irreducible
branch at infinity v of the curve P = ugy (or @ = vp) such that the image
f(7) is a branch curve intersecting ¢ transversally at (ug, vg). Let u(z) be the
Newton—Puiseux expansion of « at infinity. Then we can construct a unique
dicritical series ¢(x, &) such that u(z) = ¢(x, &y + lower order terms in x).
For this dicritical series ¢ we have f,(C) = £.

3. Associated sequence of a dicritical series. Let ¢ be a given
dicritical series of f. Let us represent it as
K—1
(8) o, €) = 37 cpart el g gt/
k=0
where 0 < ng/mo < ni/mi < --- <ng_i1/mr_1 < ng/mg = n,/m, and
¢; € C may be zero, so that the sequence {¢; }i—o,1,... x of series defined by
i—1
(9) @i, &) =Y !/ pegtTm/me 20,1, K — 1,
k=0
and @ := ¢ has the following properties:

(S2)  For every i < K at least one of the polynomials p,, and g¢,, has a
root different from zero.

(S3)  For every ¥(x,€) = @;i(w,¢;) +&xt =% ny/m; < a < myy1/miy1, each
of the polynomials p, and gy is either constant or a monomial in &.

The representation (8) of ¢ is thus the longest representation such that
for each i there is a Newton—Puiseux root y(z) of P = 0 or Q = 0 such
that y(zr) = ¢i(x,c + lower order terms in =) and ¢ # 0 if ¢; = 0. This
representation and the associated sequence {¢;}i—o.1,... .k are well defined
and unique. Further, ¢o(z,§) = &x.

We will use the sequence {¢;} to determine the form of the polynomials
fo(&). For simplicity of notation, below we use lower indices “i” instead of
the lower indices “p;”.
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, K, let us write

pi(§)x

q:(€)z%/™ 4 lower order terms in x,

For each ;, 1 =0,...
T
Q(z, pi(v,§)) =
where p;, q; € C[¢]\ {0}, ai,b; € Z and m; := mult(p;).
Let {ui(z) : i = 1,...,deg P} and {v;(z) : j = 1,...,deg@} be the
collections of the Newton—Puiseux roots of P = 0 and ) = 0, respectively.

As shown in Section 2, by the Newton theorem the polynomials P(x,y) and
Q(z,y) can be factorized as

@i/mi 4 Jower order terms in z,

deg P deg Q
(11) = A H e =B H y —vj(x
For each i = 0,..., K, define

S; i ={k:1<k<degP,

ug(z) = pi(z, a;, + lower order terms in x), a;, € C},
T, :={k:1<k<degQ, vi(xz) = p;(x, by + lower terms in x),b; € C},
SV ={keSi:aw=ci}, TC:={keT;:by=c}
Write
pi(€) = Api(€)(€ — )5, m©) = [ (€—an),
keS;\S?
ai(§) = Ba(©)E —e)*, q©) = [ (€—bu).
kET\T?
LEMMA 2. (i) ng =0, mg =1 and
Ag=A, degpy=ag= Kd,
By=B, degqy=by= Ke.
(ii) Fori=1,..., K,

A=A 1Di—1(ci—1),

degp; = #5; = #5;_,

) Q;— n;— n;
-2 (i-2)
mi M mi—1 My

B = Bi1Gi-1(ci—1), degq; = #T; = #T} 1,
bi bif n;— n;
b by (e )
mi o Mi—1 mi—1 My

Proof. Note that ¢o(z, )

= ¢z and p;(, §)

= @i 1w, cimq) +Ext T/

for i > 0. Then, substituting y = ¢;(z,£), i = 0,1,..., K, into the New-
ton factorizations of P(z,y) and Q(z,y) in (11) one can easily verify the
conclusions. m
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4. The Jacobian condition. Let ¢ be a dicritical series of f and {p;}
be its associated series. Define

Ji(§) = aipi(§)ai(§) — bipi(§)ai(§)-
The Jacobian condition will be considered in the following sense.
LEMMA 3. Let 0 <i< K. Ifa; >0 and b; > 0, then
Ti(6) = { —m;J(P, Q) z:f a; +b; =2m; — n;,
0 if a; +b; > 2m; — n,.

Further, J;(§) = 0 if and only if p;(§) and q;(§) have a common root. In
this case

pi(§)" = Cqi(§)*, CeC"
Proof. Since a; > 0 and b; > 0, differentiating f(t=™, ¢;(t7™,§)) with
respect to t, we obtain
m;J (P, Q)t" 2™ ~! 4 higher order terms in ¢
= —J;(6)t=%~b%~1 4 higher order terms in t.

Comparing the two sides we get the first conclusion. The remaining ones are
left to the reader as an elementary exercise. m

5. Proof of Theorem 1. (i) Assume that Ay # (). Then Ay is a plane
curve in C?. Let £ be an irreducible component of A. By Lemma 1 there is
a dicritical series ¢ of f such that ¢ can be parameterized by the polynomial

map f,(§) = (py(£),qp(£)), i.e. £ = f,(C). We will show that
(12)  fo(&) = (ACLEPe 4 ... BOLEP#e +.-1), C, #0, Dy €N.
Then by changing variable { — C 1¢ we get the desired parameterization
£ (AEPed ... BEPee 4 ..0) of L.

(ii) Consider the associated sequence {@;}X of ¢. Since Ay # 0, we

have
degP>1, deg@Q > 1.

Otherwise, f is bijective and Ay = (). Since ¢ is a dicritical series of f,
without loss of generality we can assume that
degpxg >0, ax =0, bg <O0.
Then from the construction of the sequence ; it follows that
pi(c;)=0and a; >0, 1=0,1,..., K —1,
qi(ci) =0 if b; > 0.
This allows us to use the Jacobian condition in the sense of Lemma 3. Then,

by induction using Lemma 2, Lemma 3 and (13) we can obtain without
difficulty the following.

(13)
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ASSERTION. Fori=0,1,...,K —1 we have
(a) a; >0, b; > 0,
b g i
(b) b, - 4T, e

#SY  d e

(iii) Now, we prove (12). By Lemma 2(iii) and (b-c) we have

bx br_1 n n
. — 0 K—-1 K
= + #Th -
mg Mmg—1 mgeg_—1 mg

e| a1 0 nNKg—1 NK
il e ()
d[mK_l #5k mKg—1 MK
e akg
:——:O7
de

as ag = 0. Hence, f,(§) = (px(£),qx(&)) by definition and (a). Using
Lemma 2(ii)—(iii) to compute the coefficients Ax and Bx we get

Ak = A( 11 ﬁk(ck))7 Bk = B( 11 (jk(ck))-
k<K -1 k<K —1

Let C, be a dth root of [,y | Pr(ck) and Dy, = ged(#S9 |, #T% ).

Then, by Lemma 2(ii) and (b-c) we have Ax = Acg, By = BCS, degpg =

#S9. | = Dyd and degqx = #T%_, = Dye. Thus,

fol€) = (ACZED*? + - | BOGEP  + ). m
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