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On the Dirichlet problem in the Cegrell classes

by RAFAL Czvz (Krakéw) and PER AHAG (Taipei)

Abstract. Let ;1 be a non-negative measure with finite mass given by ¢(ddy)",
where v is a bounded plurisubharmonic function with zero boundary values and ¢ €
L((dd°y¥)™), ¢ > 0, 1 < g < co. The Dirichlet problem for the complex Monge-Ampére
operator with the measure y is studied.

1. Introduction. Let 2 C C", n > 2, be a bounded hyperconvex do-
main, i.e., a bounded, connected and open set that admits a negative pluri-
subharmonic exhaustion function. A bounded plurisubharmonic function
defined on {2 belongs to the class & if

lim u(z) =0
z—¢
z€
for every £ € 0f2, and
S (ddu)™ < oo,
2
where (dd®-)™ is the complex Monge-Ampére operator. Let the measure
defined on {2 be given by
= p(ddp),
where ¢ € L((dd°¢)"), ¢ > 0,1 < ¢ < 0o and ¢ € &. It is proved in
Theorem 5.11 of [4] that every non-negative measure pi defined on {2 can be
decomposed into
(L.1) i = 3(ddg)" + v,
where ¢ € & and § € Llloc((ddc{/;)"), ¢ > 0. The non-negative measure v is
such that there exists a pluripolar set A C {2 such that v(A) = v(f2). For
q = 1, the measure p has finite mass and it puts no mass on pluripolar sets,
by (1.1). Lemma 5.14 in [4] implies that there exists a unique function u € F
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such that (dd°u)™ = u as measures defined on (2 (see Definition 2.1 for the
class F).

In this article some results concerning the solution of this Dirichlet prob-
lem will be obtained for the case ¢ > 1. If ¢ > 1 is such that n(q¢ — 1) > 1,
then our Theorem 2.3 states that the unique solution u € F belongs to F,
where p = n(q — 1) (see Definition 2.1 for the class F},). On the other hand,
if ¢ > 1 is such that n(¢ — 1) < 1, then it is proved in Theorem 2.4 that the
unique solution u € F is such that

| (—u)P(ddeu) < oo,
2

where p = n(q — 1). Moreover there exists a decreasing sequence [uj]]o.’;l,

uj € &, which converges pointwise to u on (2 as j tends to oo and satisfies

sup S(—uj)p(ddcuj)" <00, sup X (dduj)™ < oo.
70 70
If there can be no misinterpretation a sequence |- |72, will be denoted by [-].
The results of Theorems 2.3 and 2.4 will be extended to the corresponding
classes with continuous boundary values. The note ends by recalling a the-
orem for the case when ¢ = oo (see Theorem 2.7). For an introduction to
pluripotential theory we recommend [7].

The authors would like to thank Jonas Andersson and Stawomir Koto-
dziej. They have both made many valuable comments on and suggestions for
this manuscript.

2. Dirichlet problem. A domain is an open and connected set. A do-
main {2 C C" is called hyperconvez if there exists a plurisubharmonic func-
tion ¢ : 2 — (—00,0) such that the closure of the set

{zeN:p(z)<c}

is compact in {2 for every ¢ € (—o00,0). Throughout this note 2 will be a
bounded hyperconvex domain in C", n > 2.

DEFINITION 2.1. Define F (= F({2)) to be the class of plurisubharmonic
functions ¢ defined on 2 such that there exists a decreasing sequence [p;],
@; € &, which converges pointwise to ¢ on {2 as j tends to oo, and

sup S (dd°p;)" < oo.
e,
Let p > 1. If [p;] can also be chosen such that
sup | (—;)7(dd°p;)" < o,
e
then ¢ is said to be in the class F, (= F,(12)).
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The classes F,, were first introduced in [3] and F in [4]. These classes
are two of the so-called Cegrell classes. For further information about the
Cegrell classes see, e.g., [3]-[6] and [9].

LEMMA 2.2. If ¢,9 € &, then for each p > 0,
J (o)t (ddey)n < € [(—)7(ddog)",

[0 2

where C' > 0 is a constant, depending only on n, p and the supremum of 1.
Proof. Cf. [1] (see also [2]). =
THEOREM 2.3. Let ¢ € & and ¢ € Li((dd°Y)"), ¢ > 0, n > 2. If
1 < g < o0 1is such that n(q — 1) > 1, then there exists a unique function
u € F, such that
(dd°u)™ = p(ddp)",
where p =n(qg—1).
Proof. Let ¢ € &. Holder’s inequality implies that
1/q B
@1) §(=o)ptdaw) < ([e(aamw)) " (§(-o)/ o (ddey))
(9] (9]

]

(¢=1)/q

n+p)

= or(§opaaepy)”",
(9}

where C1 > 0 is a constant and p = n(q — 1). Since p > 1 by assumption, it
follows from Lemma 2.2 that

(2.2) [ (—oyrm(ddew)r < Co {(—o)P(ddeo)",
2 (0]

where Cy > 0 is a constant. Inequalities (2.1) and (2.2) imply that there
exists a constant A such that

[(—o)re(ddep) < A( §(—)(ddg)"
n

2

)p/ (p+n)

for every ¢ € &y, hence Theorem 5.1 in [3] shows that there exists a unique
u € Fp, such that
(ddew)™ = p(ddep)™. =

THEOREM 2.4. Let ¢ € & and ¢ € Li((dd°Y)"), ¢ > 0, n > 2. If
1 < g < o0 1is such that n(q — 1) < 1, then there exists a unique function
u € F such that (dd“u)™ = @(dd“¢Y)"™ and

| (—w)P(ddeu)" < oo,
k94
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where p = n(q—1). Moreover there exists a decreasing sequence [u;], u; € &,
which converges pointwise to u on {2 as j tends to oo and satisfies

sup X (—u;)P(ddu;)"™ < oo, supS (dduj)™ < oo.
I 0 70
Proof. Let ¢ € &. By using the same technique as in the proof of The-

orem 2.3 it follows that there exists a constant A not depending on ¢ such
that

(2.3) [(—opp(ddcp) < A( [(-o)(dao))
02

2

p/(n+p)

In particular, this shows that the measure ¢(ddy)" vanishes on pluripolar
sets. Lemma 5.14 in [4] implies that there exists a unique u € F such that

(dd°u)" = p(dd“p)",
since the given measure has finite total mass. Let u; € & be such that
(ddeus)" = min(j, ) (ddv)".
The comparison principle shows that the sequence [u;] is decreasing and
converges pointwise to u on {2 as j tends to co. Inequality (2.3) implies that

X( P(ddu;)" S —u;)P min(j, ) (ddp)"
2 2
< [ (~uy)?(ddew) §14(y—uppmwmp"YVM+m.
2 2

This yields
§ (—uy)P(ddeuy)m < APF0/m,
2
hence
sup S(—uj)p(ddcuj)” < APtm)/n,
70
Inequality (2.3) implies that

/(n+p)
24)  J(-u)(ddeuy < A( §(—up)(ddeuy)n) T < abn,
2 2
By the monotone convergence theorem,
(2.5) lim | (—u;)P(ddou) = | (—u)?(dd°u)".
J]—00 0 O

Combining (2.4) and (2.5) yields

| (—w)P(ddeu)" < AT/ g
2
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The next step is to generalize the results in Theorems 2.3 and 2.4 to some
more general classes of bounded plurisubharmonic functions. Recall that the
Perron—Bremermann envelope is defined by

PB(z) :=sup{w(z) : w € PSH(2), limsupw(¢) < f(§) V& € 02},

(—¢
cen

where PSH(£2) denotes the class of plurisubharmonic functions defined on
2 and f : 02 — R is a given function. Recall that if {2 is a bounded
hyperconvex domain and f : 92 — R is a continuous function, then PB; €
PSH(£2).

DEFINITION 2.5. Let K € {&,Fp,F} and f : 02 — R be a continuous
function such that

lim PBy(2) = £(6),
zZ€L2
for every £ € 9f2. A plurisubharmonic function » defined on {2 belongs to
the class K(f) (= K(£2, f)) if there exists a function ¢ € K such that
PBf >u > QD—|—PBf.
REMARK. If K € {&, F,, F}, then K(0) = K.
REMARK. Theorem 2.3 is also valid for the Cegrell class F,(f).

The classes &(f) and Fp(f) were first introduced in [3] and the class
F(f) in [9].
THEOREM 2.6. Assume that f : 02 — R is a continuous function such
that
lim PB(2) = /()
z€2
for every £ € 012, and PBy +PB_j € &. Let ¢ € & and ¢ € LI((dd“p)"™),
©>0,n>2 If 1 < q< o is such that n(q — 1) < 1, then there exists a
unique function u € F(f) such that (dd°u)"™ = p(dd)" and
| (—u — PB_j)P(dd°u)" < oo,
Q
where p = n(q — 1). Moreover there exists a decreasing sequence [uj], u; €
Eo(f), which converges pointwise to u on {2 as j tends to oo and satisfies

sup S(—uj — PB_)P(ddu;)"™ < oo, supS (dduj)™ < 0.
Proof. From Theorem 2.4 it follows that there exists v € F such that
(ddv)™ = @(dd)™, S(—v)p(dd"’v)" < 00,

2
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where p = n(q — 1). Theorem 7.4 in [9] implies that there exists u € F(f)
such that (dd°u)” = ¢(dd“y)". The function v + PBy belongs to F(f) and

(ddu)™ = (dd°v)" < (dd°(v + PBy))",

hence
v+ PBy < u,

by Corollary 7.7 in [9]. Thus

{(—u—PB_y)P(ddu)" < {(—v — PBy — PB_;)P(ddv)" < oo.
n 2
Now for the second part of the theorem. Theorem 4.10 in [9] together with
the assumption that PB; + PB_; € & implies that there exists u; € E(f)
such that
(ddeuy)" = min(j, o)(dd)".
Moreover [u;] is a decreasing sequence which converges pointwise to u on 2
as j — oo, and
sup X (dduj)"™ < oo.
")

Furthermore, u; + PB_; € &. The assertion then follows by repeating the
argument in the proof of Theorem 2.4. =

THEOREM 2.7. Let ¢ € & and ¢ € Li((dd“Y)"), ¢ > 0, n > 2.
q = 00, then there exists a unique u € Ey(f) such that (ddu)™ = p(ddy)™.
In particular, if f = 0, then there exists a unique u € & such that (ddu)™ =
p(dd ).

Proof. There exists a constant ¢ > 0 such that
(2.6) p(ddy)™ < c(ddep)™ = (dd°(c/™))",

hence there exists a unique u € Ey(f) such that (dd“u)™ = p(dd))™, by the
proof of Theorem 7.4 in [9]. =

REMARK. Theorem 2.7 is a special case of Theorem A in [8].
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