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Abstract. In this note we consider radially symmetric plurisubharmonic functions
and the complex Monge–Ampère operator. We prove among other things a complete char-
acterization of unitary invariant measures for which there exists a solution of the complex
Monge–Ampère equation in the set of radially symmetric plurisubharmonic functions.
Furthermore, we prove in contrast to the general case that the complex Monge–Ampère
operator is continuous on the set of radially symmetric plurisubharmonic functions. Finally
we characterize radially symmetric plurisubharmonic functions among the subharmonic
ones using merely the laplacian.

1. Introduction. Let ψ ≥ 0 be a smooth radially symmetric function
defined in a neighborhood of the unit ball B in C2. In 1975, Kerzman noticed
that the function u defined by

u(z) = − 4√
ω

1�

|z|

[ �

|z|<r

ψ(z) dV4

]1/2 dr

r
, z ∈ B ⊂ C2,

where ω is the area of the unit sphere in C2 and dV4 is the Lebesgue measure
in C2, is a radially symmetric plurisubharmonic function satisfying

det

(
∂2u

∂zi∂z̄j

)
= ψ on B,

u = 0 on ∂B
(1.1)

(see [12]). In other words, Kerzman gave an explicit integral representation
formula for the solution of the simple Dirichlet problem given in (1.1). Later
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Monn generalized this result to the unit ball in Cn and to more general func-
tions ψ (see [17, 18], and also Theorem 3.1). One cannot expect a similar
formula for other domains like for example the polydisc. This is since the
assumption of radial symmetry reduces the problem to a question concern-
ing properties of one-variable convex functions. The representation formula
is remarkably simple, and this makes it an efficient tool for constructing
examples.

In this note we collect several results concerning radially symmetric
plurisubharmonic functions, some of which, we believe, are known to ex-
perts but have never been written down. Let ∂, ∂̄ be the usual differential
operators, d = ∂ + ∂̄ and dc = i(∂̄ − ∂). Furthermore, let PSHR(B) de-
note the set of functions defined on B that are non-positive, radially sym-
metric, and plurisubharmonic, and let MR denote the set of non-negative
Radon measures µ defined on B such that there exists a function u ∈
PSHR(B) with (ddcu)n = µ. In Section 3 we prove the following charac-
terization.

Theorem 3.9. Let µ be a unitary invariant measure defined on B, and
let F (t) = (2π)−nµ(Bt). Then the following assertions are equivalent:

(1) µ ∈MR,

(2)
1�

1/2

n
√
F (t) dt <∞.

In [6], Cegrell showed that the complex Monge–Ampère operator (ddc · )n
is not continuous. But if we restrict our attention to PSHR(B), then it is
continuous in the following sense: let {uj}, uj ∈ PSHR(B), be a sequence
that converges pointwise to a function u in PSHR(B); then the associated
sequence {(ddcuj)n} tends to (ddcu)n in the weak∗-topology (Theorem 4.1).
Furthermore, we note that in PSHR(B) locally uniform convergence, point-
wise convergence, weak convergence, convergence in the sense of distribution
and convergence in capacity are all equivalent (Corollary 4.4).

Finally we characterize radially symmetric plurisubharmonic functions
among the subharmonic ones using merely the laplacian. We prove the fol-
lowing theorem.

Theorem 5.1. Let u be a radially symmetric subharmonic function de-
fined on B ⊂ Cn ∼= R2n, n ≥ 2, and set G(t) = ∆u(Bt)/σ(∂Bt). Then u is
plurisubharmonic if, and only if, the function t 7→ tG(t) is increasing.

It would be of great interest to obtain a characterization of those subhar-
monic functions that are plurisubharmonic without the assumption of radial
symmetry.
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For further information on classical and pluripotential theory see e.g. [2]
and [9, 15, 16] which are all excellent references. Kiselman’s historical sur-
vey [14] is highly recommended for those interested in the history of plurisub-
harmonic functions and potential theory in several complex variables.

2. Preliminaries. For r > 0 let B(z0, r) = {z ∈ Cn : |z − z0| < r},
and to simplify the notation set B = B(0, 1), and Br = B(0, r). A function
u : B→ [−∞,+∞) is said to be radially symmetric if

u(z) = u(|z|) for all z ∈ B.

For each radially symmetric function u : B → [−∞,+∞) we define the
function ũ : [0, 1)→ [−∞,+∞) by

(2.1) ũ(t) = u(|z|), where t = |z|.

On the other hand, to every function ṽ : [0, 1)→ [−∞,+∞) we can associate
a radially symmetric function v through (2.1).

Remark. Let U(n) denote the unitary group of degree n. A function u
defined on B is radially symmetric if, and only if, it is unitary invariant, i.e.
u ◦ T = u for all T ∈ U(n).

Now let us recall some basic facts on convex functions. For further in-
formation we refer to [5] and [11]. Let I ⊂ R be an interval. A function
f : I → [−∞,∞) is called convex if

(2.2) f(λx+ (1− λ)x) ≤ λf(x) + (1− λ)f(y)

for all x, y ∈ I and all λ ∈ [0, 1]. We say that a function f : [0, 1)→ [−∞,∞)
is convex with respect to ln r if the function r 7→ f(er) is convex. We would
like to emphasize that the notion of being convex with respect to ln r is not
the same as being logarithmically convex: the latter means that the function
f is positive and ln f is convex.

Lemma 2.1. If u ∈ PSHR(B), then

(1) ũ is an increasing function, and convex with respect to ln r,
(2) the limit limt→1− ũ(t) exists,
(3) {z ∈ B : u(z) = −∞} ⊂ {0}, and
(4) u is continuous.

Proof. For any plurisubharmonic function we can consider

t 7→
�

∂B(z,t)

u dσt = M(u, z, t),

where dσt is the normalized Lebesgue measure on ∂B(z, t). This is an increas-
ing function that is convex with respect to ln r (see e.g. [11]). By assumption
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u is radially symmetric, and therefore

ũ(t) = M(u, 0, t).

Furthermore, since ũ is increasing, and bounded above by 0, the limit
limt→1− ũ(t) exists. That ũ is bounded above by 0 follows from the as-
sumption that u ∈ PSHR(B). Assertion (3) follows from the fact that
{z ∈ B : u(z) = −∞} is pluripolar, and u is radially symmetric. The func-
tion r 7→ ũ(er) is convex, hence (see e.g. [11]) is continuous, and therefore u
is continuous on B.

Remark. Let u ∈ PSHR(B). Then by property (2) of Lemma 2.1 there
is no loss of generality to assume that

(2.3) lim inf
z→ξ
z∈B

u(z) = lim sup
z→ξ
z∈B

u(z) = 0 for all ξ ∈ ∂B.

We shall therefore hereon assume (2.3).

Theorem 2.2. Let u be a radially symmetric function defined on B that
satisfies (2.3). Then the following assertions are equivalent:

(1) u ∈ PSHR(B),
(2) ũ is an increasing function that is convex with respect to ln r.

Proof. The implication (1)⇒(2) follows from Lemma 2.1.
(2)⇒(1). Note that u is plurisubharmonic at 0, since ũ is an increasing

function. For the moment assume that u is smooth, and let L(u,X) be the
Levi form of u at X ∈ Cn. Then for all X ∈ Cn, and all z 6= 0, we have

(2.4)
∂2u

∂zj∂z̄k
(z) = ujk̄(z) =

1

4|z|3
z̄jzk

(
|z|ũ′′(|z|)− ũ′(|z|)

)
+ δjk

ũ′(|z|)
2|z|

,

where δjk is the Kronecker delta, and

L(u,X) =

n∑
j,k=1

ujk̄(z)XjXk =
|z|ũ′(|z|) + |z|2ũ′′(|z|)

4|z|4
|〈z,X〉|2

+
ũ′(|z|)
2|z|3

(|z|2|X|2 − |〈z,X〉|2) ≥ 0,

since ũ(t) is an increasing function, and convex with respect to ln r. Thus,
u is plurisubharmonic on B. In the general case let {vj} be a sequence of
smooth increasing functions that are convex with respect to ln r and such
that {vj} decreases pointwise to ũ. The sequence {vj} can possibly be defined
on smaller intervals [0, 1 − 1/j). For the existence of such a sequence {vj}
see e.g. [11]. We observe that {uj} defined by uj(z) = vj(|z|) is a sequence
of smooth plurisubharmonic radially symmetric functions decreasing to u.
Thus, u is plurisubharmonic.
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3. The complex Monge–Ampère equation. In [18], Monn proved
the following result (we give a proof here for completeness):

Theorem 3.1. Let u ∈ PSHR(Br2 \ B̄r1)∩C2(Br2) with 0 ≤ r1 < r2 ≤ 1.
Then for r1 ≤ r < s ≤ r2,

(3.1) ũ(r)− ũ(s) =

s�

r

−2

t

(
2n

t�

0

x2n−1f(x) dx
)1/n

dt,

where f(z) = f(|z|) is given by (ddcu)n = 4nn!f(z)dV2n, and dV2n is the
2n-dimensional Lebesgue measure on B.

Proof. Note that if u(z) = u(|z|) = ũ(t) is a smooth radially symmetric
plurisubharmonic function, then for t = |z| we have, by (2.4),

(3.2) det(ujk̄) =
1

4

(
ũ′(t)

2t

)n−1(
ũ′′(t) +

ũ′(t)

t

)
.

Since
(ddcu)n = 4nn! det(ujk̄)dV2n,

it is enough to solve the following non-linear ordinary differential equation:

tũ′′(t)ũ′(t)n−1 + ũ′(t)n = 2n+1tnf(t)

and therefore

ũ′(t)n =
n2n+1

tn

t�

0

x2n−1f(x) dx.

Thus,

ũ(r)− ũ(s) =

s�

r

−2

t

(
2n

t�

0

x2n−1f(x) dx
)1/n

dt.

The function ũ given above is increasing and convex with respect to ln r,
since

ũ(er)− ũ(es) =

s�

r

−2
(

2n

et�

0

x2n−1f(x) dx
)1/n

dt.

Definition 3.2. Let f : B→ R be a smooth, non-negative, radially sym-
metric function, and set µ = fdV2n. We define the function F : [0, 1)→ R
by

(3.3) F (t) =
1

2n−1(n− 1)!

t�

0

x2n−1f(x) dx.

Remark. This construction yields F (t) = (2π)−nµ(Bt).

Now we prove the representation formula for all radially symmetric pluri-
subharmonic functions. Recall that since for all u ∈ PSHR(B) we have
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limz→ξ u(z) = 0, ξ ∈ ∂B, it follows from [8] that the complex Monge–Ampère
operator is well defined on PSHR(B).

Theorem 3.3. If u ∈ PSHR(B) with assumption (2.3), then

(3.4) ũ(r) =

1�

r

−1

t
n
√
F (t) dt,

where

F (t) =
1

(2π)n
(ddcu)n(Bt).

Proof. For u ∈ PSHR(B) take a regularizing sequence {uj} with uj ∈
PSHR∩C∞(B1−1/j) as in the proof of Theorem 2.2. Theorem 3.1 shows that
for 0 ≤ r ≤ s ≤ 1− 1/j we have

ũj(r)− ũj(s) =

s�

r

−1

t

n
√
Fj(t) dt,

where

Fj(t) =
1

(2π)n
(ddcuj)

n(Bt).

Since F is an increasing function, it is differentiable almost everywhere. If F
is differentiable at t then we get (ddcu)n(Bt) = (ddcu)n(B̄t). The sequence
{(ddcuj)n} tends to (ddcu)n in the weak∗-topology and therefore

lim sup
j→∞

(ddcuj)
n(B̄t) ≤ (ddcu)n(B̄t) = (ddcu)n(Bt) ≤ lim inf

j→∞
(ddcuj)

n(B̄t).

Hence, limj→∞ Fj(t) = F (t) almost everywhere. By the dominated conver-
gence theorem

ũ(r)− ũ(s) = lim
j→∞

(ũj(r)− ũj(s))

= lim
j→∞

s�

r

−1

t

n
√
Fj(t) dt =

s�

r

−1

t
n
√
F (t) dt.

Letting s→ 1− we obtain (3.4).

As a direct consequence of the above representation formula we get the
following corollary.

Corollary 3.4. There is at most one solution in PSHR(B) for the
complex Monge–Ampère equation (ddcu)n = µ.

It is well known that uniqueness of the solution of the complex Monge–
Ampère equation fails when the measure has mass on a pluripolar set, even
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if we are considering the unit ball in Cn and µ = δ0, the Dirac measure at
the origin (see [3]). If we restrict our attention to PSHR(B), then we do
have uniqueness. We have even more: by Lemma 2.1, if the Monge–Ampère
measure of such a function does charge a pluripolar set, then this set must
be the origin. Now we prove, in an explicit way, that u(z) = ln |z| is the
unique radial solution to (ddcu)n = (2π)nδ0.

Proposition 3.5. Let δ0 denote the Dirac measure at the origin in Cn.
Then there exists a uniquely determined function u in PSHR(B) such
that (ddcu)n = (2π)nδ0. Furthermore, the function is given explicitly by
u(z) = ln |z|.

Proof. First note that for B 3 z 6= 0 the measure
1

(2π)n
ddc max(ln |z|, ln |w|) ∧ (ddc ln |w|)n−1

is the normalized Lebesgue measure on the sphere |w| = |z|. Then for any
u ∈ PSHR(B) we have, using integration by parts,

u(z) =
1

(2π)n

�

B

u(w)ddc max(ln |z|, ln |w|) ∧ (ddc ln |w|)n−1

=
1

(2π)n

�

B

max(ln |z|, ln |w|) ddcu ∧ (ddc ln |w|)n−1

≥ ln |z| 1

(2π)n

�

B

ddcu ∧ (ddc ln |w|)n−1,

which means that there exists a constant c = c(u) such that u(z) ≥ c ln |z|.
We shall proceed by proving that ddcu ∧ (ddc ln |z|)n−1 = (2π)nδ0. We have
(see [7, 9])
�

B

ddcu ∧ (ddc ln |z|)n−1 ≤
( �

B

(ddcu)n
)1/n( �

B

(ddc ln |z|)n
)(n−1)/n

= (2π)n.

Hence,

u(z) ≥ ln |z| 1

(2π)n

�

B

ddcu ∧ (ddc ln |w|)n−1 ≥ ln |z|.

Furthermore, using one of Demailly’s comparison principles (see e.g. [10] or
Lemma 4.1 in [1]) we get

(2π)n =
�

{0}

(ddcu)n ≤
�

{0}

ddcu ∧ (ddc ln |w|)n−1

≤
�

{0}

(ddc ln |w|)n = (2π)n.
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Hence, the measure ddcu ∧ (ddc ln |z|)n−1 is carried by {0}. Thus,

ddcu ∧ (ddc ln |z|)n−1 = (2π)nδ0.

To conclude this proof note that the assumption that u ∈ PSHR(B) implies
that for all z 6= 0,

u(z) =
1

(2π)n

�

B

max(ln |z|, ln |w|) ddcu ∧ (ddc ln |w|)n−1

=
1

(2π)n

�

{0}

max(ln |z|, ln |w|) ddcu ∧ (ddc ln |w|)n−1

+
1

(2π)n

�

B\{0}

max(ln |z|, ln |w|) ddcu ∧ (ddc ln |w|)n−1

=
1

(2π)n

�

{0}

ln |z| ddcu ∧ (ddc ln |w|)n−1 = ln |z|.

We need the following lemma.

Lemma 3.6. Let F : [0, 1)→ [0,∞) be a non-decreasing function that is
left-continuous and such that

1�

1/2

n
√
F (t) dt <∞.

Let

ũ(r) =

1�

r

−1

t
n
√
F (t) dt.

Then the function u defined on B by u(z) = ũ(|z|) is in PSHR(B), and
(ddcu)n is the unique unitary invariant measure that satisfies

1

(2π)n
(ddcu)n(Bt) = F (t).

Proof. Since F is non-negative, ũ is non-decreasing. Furthermore, F is a
non-decreasing function that is left-continuous, and it follows that for r < 0
we have

v(r) = ũ(er) =

1�

er

−1

t
n
√
F (t) dt =

0�

r

− n
√
F (es) ds.

From the fact that the left derivative v′l(r) = n
√
F (er) is a non-decreasing

function we deduce that v is a convex function. Thus, ũ is convex with respect
to ln r, and therefore u(z) = ũ(|z|) ∈ PSHR(B).

For the second part, let us first assume that F is a smooth function.
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Recall that the Lelong number (see e.g. [13]) of a plurisubharmonic func-
tion α at 0 is defined by

ν(α, 0) = lim
r→0

1

(2π)n

�

Br

ddcα ∧ (ddc ln |z|)n−1 = lim
r→0

supBr
α

ln r
.

Therefore

(3.5) lim
r→0

supBr
u

ln r
= lim

r→0

	1
r −t

−1 n
√
F (t) dt

ln r
= n
√
F (0).

If we assume that F (0) = 0 then by (3.5) we have ν(u, 0) = 0. Moreover, from
the proof of Proposition 3.5 it follows that there exists a constant A such
that u(z) ≥ A ln |z|, and then it is a well known fact that (ddcu)n({0}) = 0
(see e.g. [7]).

Now for F (0) > 0 we have

u(z) =

1�

|z|

−1

t
n
√
F (t) dt =

1�

|z|

−1

t
n
√
F (0) dt+

1�

|z|

−1

t
( n
√
F (t)− n

√
F (0)) dt

= n
√
F (0) ln |z|+ u1(z),

and by the argument above (ddcu1)n({0}) = 0. Thus, we have proved that,
at 0,

(ddcu)n = (2π)nF (0)δ0.

For z 6= 0 it follows from (3.2) that

(ddcu)n = 4nn!
1

4

(
ũ′(|z|)
2|z|

)n−1(
ũ′′(|z|) +

ũ′(|z|)
|z|

)
dV2n

= 2n−1(n− 1)!F ′(|z|) 1

|z|2n−1
dV2n.

Furthermore,
1

(2π)n
(ddcu)n(Bt) =

1

(2π)n
(ddcu)n({0})

+
1

(2π)n

�

Bt\{0}

2n−1(n− 1)!F ′(|z|) 1

|z|2n−1
dV2n

= F (0) +

t�

0

F ′(x) dx = F (t).

For an arbitrary function F let {Fj} be a decreasing sequence of smooth,
non-decreasing functions converging to F . Then

uj(z) = ũj(|z|) ∈ PSHR(B),
1

(2π)n
(ddcuj)

n(Bt) = Fj(t),
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and by the monotone convergence theorem {uj} increases to u ∈ PSHR(B),
and

ũ(r) =

1�

r

−1

t
n
√
F (t) dt.

Let G(t) = (2π)−n(ddcu)n(Bt). As in the proof of Theorem 3.3, the weak∗-
convergence of the sequence {(ddcuj)n} to the limit (ddcu)n implies that
G(t) = F (t) almost everywhere. Thus, F = G, since both functions F and G
are left-continuous.

From the proofs of Proposition 3.5 and Lemma 3.6 we obtain the following
decomposition of a radially symmetric plurisubharmonic function.

Corollary 3.7. For any u ∈ PSHR(B) there exist a constant c > 0 and
a function v ∈ PSHR(B) with Monge–Ampère measure (ddcv)n vanishing on
pluripolar sets, such that

u(z) = c ln |z|+ v(z),

where

c =
1

(2π)n

�

{0}

ddcu ∧ (ddc ln |w|)n−1 = n
√
F (0) = ν(u, 0),

v(z) =
1

(2π)n

�

B\{0}

max(ln |z|, ln |w|) ddcu ∧ (ddc ln |w|)n−1

=

1�

|z|

−1

t
( n
√
F (t)− n

√
F (0)) dt.

Here, F (t) = (2π)−n(ddcu)n(Bt), and ν(u, 0) is the Lelong number of u at 0.

Definition 3.8. Let MR denote the set of non-negative Radon mea-
sures µ defined on B such that there exists a function u ∈ PSHR(B) with
(ddcu)n = µ.

Remark. Let T ∈ U(n), u ∈ PSHR(B) and E ⊂ B be a Borel set. Then

(ddc(u ◦ T ))n(E) = |JacT |2(ddcu)n(T (E)) = (ddcu)n(T (E)),

and as a consequence every µ ∈MR is a unitary invariant measure.

Theorem 3.9. Let µ be a unitary invariant measure defined on B, and
let F (t) = (2π)−nµ(Bt). Then the following assertions are equivalent:

(1) µ ∈MR,

(2)
1�

1/2

n
√
F (t) dt <∞.
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Proof. (1)⇒(2): This implication follows from the representation for-
mula (3.1).

(2)⇒(1): This implication follows from Lemma 3.6, since

u(z) = ũ(|z|) =

1�

|z|

−1

t
n
√
F (t) dt

is a well defined radially symmetric plurisubharmonic function such that
(ddcu)n = µ.

As a direct consequence of Lemma 3.6 we have the following corollary.

Corollary 3.10. Let µ be a unitary invariant measure on B, let F (t) =
(2π)−nµ(Bt), and let (ddcu)n = dµ. Then u is bounded if, and only if,

1

t
n
√
F (t) ∈ L1([0, 1]).

Corollary 3.11. If µ ∈MR and ν is a unitary invariant measure on B
such that ν ≤ µ, then ν ∈MR.

Example 3.12. Take µ = (1− |z|2n)−αdV2n. Then

F (t) =

{
cn(1− α)−1(1− (1− t2n)1−α) for α 6= 1,
−dn ln(1− t2n) for α = 1,

where cn and dn are constants. Therefore n
√
F is integrable in the neighbor-

hood of the point t = 1 if, and only if, α < n+ 1.

Definition 3.13. Let µ be the measure of the form

µ =
∞∑
k=1

ak dσbk ,

where ak and bk are sequences of real numbers with ak ≥ 0, bk > 0, and {bk}
increasing to 1. Here dσbk is the normalized Lebesgue measure on the sphere
∂Bbk . Denote the class of those measures byMσ.

Theorem 3.14. Let µ ∈Mσ. Then µ ∈MR if, and only if,

(3.6)
∞∑
k=1

(a1 + · · ·+ ak)
1/n ln

bk
bk+1

> −∞.

Proof. Let µ =
∑∞

k=1 ak dσbk ∈Mσ and define

µk =

k∑
l=1

aldσbl and ũk(r) =
1

2π

1�

r

−1

t
(µk(Bt))1/n dt.

The sequence {uk} defined by uk(z) = ũk(|z|) is a decreasing sequence of
plurisubharmonic functions that tends to u 6= −∞ if, and only if, there exists
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r > 0 such that u(r) > −∞. Taking 0 < r < b1 we have

lim
k→∞

1

2π

1�

0

−1

t
(µk(Bt))1/n dt =

1

2π

∞∑
k=1

(a1 + · · ·+ ak)
1/n ln

bk
bk+1

> −∞.

Remark. Note that condition (3.6) is satisfied if
∑∞

k=1 ak < ∞, i.e. if
the measure µ is finite.

4. Continuity of the complex Monge–Ampère operator. The aim
of this section is to prove that the complex Monge–Ampère operator is con-
tinuous on PSHR(B).

Theorem 4.1. Let {uj}, uj ∈ PSHR(B), be a sequence that converges
pointwise to a function u in PSHR(B). Then the associated sequence
{(ddcuj)n} tends to (ddcu)n in the weak∗-topology.

Proof. The continuity of the complex Monge–Ampère operator is a con-
sequence of basic properties of convex functions. Let {uj} and u be as in the
statement and in addition assume that they are bounded. Then the functions
defined by

vj(r) = uj(e
r) and v(r) = u(er)

are non-decreasing, and convex on (−∞, 0]. Furthermore, {vj} converges
pointwise to v. Therefore, {vj} converges locally uniformly to v (see e.g. [11]).
Hence, {uj} converges locally uniformly to u on B \ {0}. We can now de-
duce that {(ddcuj)n} tends to (ddcu)n in the weak∗-topology on B \ {0}.
But since uj , u are bounded, (ddcuj)

n({0}) = (ddcuj)
n({0}) = 0. Thus, the

convergence of {(ddcuj)n} is valid on the whole B.
In the general case, let {uj} and u be as in the statement without any

additional assumption. Then for any k < 0:

(1) max(uj , k)→ max(u, k), j →∞, so

(ddc max(uj , k))n → (ddc max(u, k))n

in the weak∗-topology (by the argument above),
(2) max(uj , k) → uj as k → −∞, so (ddc max(uj , k))n → (ddcuj)

n in
the weak∗-topology, and

(3) max(u, k) → u as k → −∞, so (ddc max(u, k))n → (ddcu)n in the
weak∗-topology.

Conditions (2) and (3) follow from the fact that the complex Monge–Ampère
operator is continuous under decreasing sequences (see e.g. [3]).

Hence, {(ddcuj)n} converges to (ddcu)n in the weak∗-topology in B.
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Remark. Recall that the Cn-capacity , introduced by Bedford and Tay-
lor in [4], of a Borel set A ⊂ Ω b Cn is defined by

Cn(A,Ω) = sup
{ �

A

(ddcu)n : u ∈ PSH(Ω), −1 ≤ u ≤ 0
}
.

A sequence {uj} of functions defined in Ω is said to converge in capacity to u
if for any t > 0 and K b Ω,

lim
j→∞

Cn(K ∩ {|u− uj | > t}, Ω) = 0.

Theorem 4.1 is valid if we change pointwise convergence to any of the fol-
lowing:

(1) weak convergence,
(2) convergence in the sense of distributions,
(3) convergence in capacity.

It is well known that for plurisubharmonic functions weak convergence
is equivalent to the convergence in the sense of distributions, and that con-
vergence in capacity implies weak convergence (see [11, 15]). To see the
remaining implication suppose that {uj}, uj ∈ PSHR(B), is a sequence that
is weakly convergent to a function u in PSHR(B). Recall that it is sufficient
to prove that for any subsequence {ujk} of {uj} there exists a subsequence
{ujkl} such that {(ddcujkl )

n} tends to (ddcu)n in the weak∗-topology. But
this follows from Theorem 4.1, since for any subsequence {ujk} of {uj} there
exists another subsequence {ujkl} of {ujk} such that {ujkl} converges to u
almost everywhere. All functions are continuous and convex with respect to
ln r and therefore the convergence is pointwise. Theorem 4.1 shows now that
{(ddcujkl )

n} tends to (ddcu)n in the weak∗-topology.

Next we prove stability of the solution of the complex Monge–Ampère
equation.

Theorem 4.2. Let {µj}, µj ∈ MR, be a sequence that tends in the
weak∗-topology to a measure µ inMR. Then {u(µj)} converges pointwise to
u(µ), where u(ν) ∈ PSHR(B) is the unique solution of the complex Monge–
Ampère equation (ddcu(ν))n = ν.

Proof. On [0, 1) we define the following functions:

Fj(t) =
1

(2π)n
µj(Bt) and F (t) =

1

(2π)n
µ(Bt),

and then, by Lemma 3.6,

u(µj)(z) =

1�

|z|

−1

t

n
√
Fj(t) dt and u(µ)(z) =

1�

|z|

−1

t
n
√
F (t) dt.
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The functions defined by v(r) = u(er) and vj(r) = uj(e
r) are non-decreasing

and convex on (−∞, 0]. We shall prove that {vj} converges pointwise to v.
It is enough to show that for any subsequence {vjk} of vj there exists a
subsequence {vjkl} that converges pointwise to v. Take any subsequence
{vjk} of vj ; then there exist a subsequence {vjkl} of {vjk} and a convex
function ṽ such that {vjkl} converges locally uniformly to ṽ (see [11]). But
since µj tends to µ in the weak∗-topology, the sequence of left-continuous
functions {Fj} converges almost everywhere to the left-continuous function F
(see the proof of Theorem 3.3). Hence, ṽ = v.

Corollary 4.3. The complex Monge–Ampère operator

PSHR(B) 3 u 7→ (ddcu)n ∈MR

is a continuous bijection with continuous inverse.

Corollary 4.4. In PSHR(B), locally uniform convergence, pointwise
convergence, weak convergence, convergence in the sense of distribution and
convergence in capacity are equivalent.

5. Radially symmetric subharmonic functions. Let SHR(B) de-
note the set of non-positive, radially symmetric, and subharmonic functions
defined in the unit ball B in RN . The aim of this section is the following
theorem.

Theorem 5.1. Let u be a radially symmetric subharmonic function de-
fined on B ⊂ Cn ∼= R2n, n ≥ 2, and set G(t) = ∆u(Bt)/σ(∂Bt). Then
u is plurisubharmonic if, and only if, the function t 7→ tG(t) is increas-
ing.

Before starting we need some preliminaries. We shall need counterparts
of Lemma 2.1, Theorem 2.2 and Theorem 3.1 for radially symmetric subhar-
monic functions.

Lemma 5.2. If u ∈ SHR(B), then

(1) ũ is an increasing function, and convex with respect to r2−N ,
(2) limt→1− ũ(t) exists,
(3) {x ∈ B : u(x) = −∞} ⊂ {0}, and
(4) u is continuous.

Proof. The proof is the same as that of Lemma 2.1 (see also [2]).

We have the following characterization of radially symmetric subhar-
monic functions.

Theorem 5.3. Let u be a radially symmetric function defined on B that
satisfies (2.3). Then the following assertions are equivalent:
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(1) u ∈ SHR(B),
(2) ũ is an increasing function that is convex with respect to r2−N .

Proof. See [2].

For a smooth subharmonic function u(x) = u(|x|) = ũ(t) note that

ujk(x) =
1

t3
xjxk

(
tũ′′(t)− ũ′(t)

)
+ δjk

ũ′(t)

t
,

where t = |x|, and δjk is the Kronecker delta. Therefore,

∆u(x) =
1

t
(tũ′′(t) + (N − 1)ũ′(t))

and the following theorem holds.

Theorem 5.4. Let u ∈ SHR(Br2 \ B̄r1) ∩ C2(Br2) with 0 ≤ r1 < r2 ≤ 1.
Then for r1 ≤ r < s ≤ r2,

ũ(r)− ũ(s) =

r�

s

1

tN−1

t�

0

yN−1f(y) dy dt,

where f(x) = f(|x|) is given by ∆u = f(x)dVN , and dVN is the N -dimen-
sional Lebesgue measure on B.

Following the proof of Theorem 3.3, with the use of Theorem 5.4 instead
of Theorem 3.1 one can prove

Theorem 5.5. If u ∈ SHR(B), then

ũ(r)− ũ(1) =

1�

r

−G(t) dt, where G(t) =
∆u(Bt)
σ(∂Bt)

.

We are now able to prove Theorem 5.1.

Proof of the Theorem 5.1. Assume at first that u is smooth. To prove
that u is plurisubharmonic it is enough to check that ũ is convex with respect
to ln t, i.e.

(5.1) s
(
ũ′(s) + sũ′′(s)

)
= s(sũ′(s))′ ≥ 0, where s = et.

By Theorem 5.5, condition (5.1) is equivalent to (tG(t))′ ≥ 0.
In the general case, we use an approximation procedure. Let {ũj} be

the smooth approximation sequence, defined in Theorem 2.2, that converges
to ũ. Then the corresponding functions tGj(t) are increasing. Since the se-
quence {Gj} converges to G except for a countable set (see the proof of
Theorem 3.3), and G is a left-continuous function, we see that tG(t) is also
increasing. On the other hand, if tG(t) is increasing and left-continuous, then
the function

ũ(r) =

1�

r

−G(t) dt
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is convex with respect to ln r, since

ũ(er) =

1�

er

−G(t) dt =

r�

0

esG(es) ds.

Thus, u ∈ PSHR(B).
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